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Concise Papers __________________________________________________________________________________________

Using Hybrid Knowledge Engineering and
Image Processing in Color Virtual
Restoration of Ancient Murals

Baogang Wei, Yonghuai Liu, Member, IEEE, and
Yunhe Pan

Abstract—This paper proposes a novel scheme to virtually restore the colors of

ancient murals. Our approach integrates artificial intelligence techniques with

digital image processing methods. The knowledge related to the mural colors is

first categorized into four types. A hybrid frame and rule-based approach is then

developed to represent knowledge and to infer colors. An algorithm that takes into

account color similarity and spatial proximity is developed to segment mural

images. A novel color transformation method based on color histograms is finally

proposed to restore the colors of murals. A number of experiments based on real

images have demonstrated the validity of the proposed scheme for color

restoration.

Index Terms—Mural, color restoration, hybrid reasoning, color image processing.

�

1 INTRODUCTION

WITH the development of digital image processing, the restoration
and preservation of art works using digital technology has been
widely accepted as an effective and practical method. In particular,
the virtual preservation and restoration of paintings have attracted
the interest of researchers from both the art and image processing
communities. Some applications have been developed [1], [2], [8],
[9] which can be used as a guide to the actual restoration of the
artwork, but, in general, they are intended for clearing soiled
paintings or removing cracks from old paintings and frescoes.

Mogao Grotto, located in the Dunhuang region of the Gansu
province, China, has been a treasure of Chinese art and is listed as
a World Heritage Site by the United Nations. Dunhuang’s frescoes
have a history of nearly 2,000 years. Unfortunately, due to
discoloring and partial decay for various reasons, the murals have
been badly damaged. Scientists and artists at the Dunhuang
Research Academy of China have been working for a long time on
the protection and restoration of murals by analyzing the
composition of pigments through chemical experiments or by
restoring colors in the process of imitating original murals.
Chemical experiments, however, require collecting pigment
samples from murals, which is in conflict with the protection of
the art works. While restoring colors depends on the artists’
personal understanding on the ancient art, a large part of their
knowledge about the application of colors on murals is heuristic
and has been developed over a long period of practical experience.

We have studied and developed a computer-aided system to
virtually restore mural colors. Our aim is to build a bridge between
the technical and art communities through which the user can
utilize knowledge from the experts of various fields to restore
mural colors rapidly. Such a system is not only useful for the

appreciation of murals, but also provides a new approach for the

artists to understand the ancient application of mural colors.

2 STATUS OF DISCOLORATION OF DUNHUANG’S

MURALS

2.1 Classification of Discoloration

The discoloration of murals can be categorized into two classes [3]:

color fading and color change. The color fading of a pigment

means the decrease of its luster and saturation or the weakening of

color contrast between different pigments. It is a common

phenomenon that, in Dunhuang, almost every color has faded to

a certain extent. The color change of a pigment is one of the serious

disfigurements because it results in one pigment’s chrominance

changing into others and the pigment’s original bright hue

becomes gloomy and vague. The internal cause of the color change

is that the pigments contain lead substances, such as PbO2 (black

lead), Pb3O4 (red lead), and 3PbCO3 � 2PbðOHÞ2 (white lead). It

has been found that the more lead a pigment contains, the more the

color changes.

2.2 Environmental Factors Causing Discoloration of the
Wall Paintings

The external causes leading to mural discoloration are very

complex. They include physical, chemical, and biological ones,

such as sunshine, oxygen, industrial gas, temperature, humidity,

mold, bactera, etc. Among these causes, sunshine, temperature,

and humidity are the most important ones. The location, tier, and

size of a cave roughly determines its temperature and humidity

range. In the same cave, the wall paintings exposed to the sun are

more seriously discolored than those not exposed to the sun.
The extent of the color change in a lead pigment is different

under different environmental conditions [3]. For example, white

lead under certain sunshine conditions changes its color according

to the regular pattern: white ! light gray ! light coffee !
brown coffee and the pattern of red lead is: tangerine ! brown

red ! black red. Yellow lead under certain humidity conditions

changes its color according to the regular pattern: yellow ! light

gray ! light green ! blackish green.

3 SYSTEM ARCHITECTURE

We develop a computer-aided system to virtually restore the colors

of murals. This system integrates artificial intelligence and image

processing techniques. Fig. 1 shows the system architecture.
Users interact with the system through the user interface

module. The image processing module fulfills the image’s

segmentation, region extraction, and color restoration as well.

The input and output modules are used to maintain database,

knowledge base, and input/output images. The inference engine is

used to determine the changed and restored colors.

3.1 Classification of the Color Restoration Knowledge

The color restoration knowledge is classified into the following

four types [4]:

1. Environmental knowledge. As mentioned in the last
section, environmental factors affect the extent of mural
discoloration. Determining and representing these factors
are important for color restoration of wall paintings. This
kind of knowledge is relative to a cave’s size, temperature,
humidity, sunshine, position, and the like.
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2. Color distribution knowledge. The pigments contain

mineral, phytogenic, or their mixture. Moreover, murals

painted in different dynasties, ages, and caves have their

own characters and certain regular patterns. So, the

knowledge relative to ages and caves can roughly

determine the distribution of mural colors.
3. Painting style knowledge. It contains mural topics,

contents, and painting styles. For example, a faint dyeing

method was widely used on people’s faces to emphasize

the depth.
4. Typical color templates. The researchers at the Dunhuang

Art Research Academy used X-ray diffraction, infrared

spectrum, SEM, and microphotograph to analyze the

pigments used. Although the analysis is limited, the

surveying results are usually valuable.

3.2 Representation of the Color Restoration Knowledge

As expert system technology has been widely accepted in solving

symbolic reasoning-based problems, it has become increasingly

apparent that no single programming paradigm is suitable for the

entire solution of the problems. We thus propose combining frame

and rule-based representation paradigms into a single integrated

framework in order to model and infer the complicated mural

discoloring phenomena.

3.2.1 Frame Representation

In the knowledge base, the frames are organized hierarchically

according to the murals’ contents. The top layer is composed of

concepts, the middle layers are composed of the instance frames

for different mural contents, and the bottom layer is composed of

the instance frames for various color objects, which are the patterns

with certain geometrical and physical meanings. Fig. 2 shows the

hierarchical structure of the frame knowledge base, where the

frames about people are listed in detail.

3.2.2 Rule Representation

For the restored murals, some frame attributes can inherit from

their father frames or be retrieved from the database, whereas the

restored colors are determined by rule-based reasoning. For

example, for murals of the Sui dynasty, people’s faces were

usually painted in four main dyeing ways:

1. the integrated Chinese and western dyeing style,
2. traditional Chinese dyeing style,
3. Chinese white face, and
4. TianLi inherited style.

The production rules associated with these four painting styles can

be expressed as:

R1: IF Dynasty =“SUI dynasty” and Style =“Combination of

Chinese and Western elements” and
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Content =“Buddha” and C_Object =“Face”

THEN (Base_Color,Dyeing_Color)=(RGB(192,160,141),

RGB(152,80,56))

R2: IF Dynasty =“ SUI dynasty” and Style

=“Traditional dyeing”

Content =“Buddha” and C_Object =“Face”

THEN (Base_Color,Dyeing_Color)=(RGB(136,108,96),

RGB(250,126,68))

R3: IF Dynasty =“SUI dynasty” and Style

=“Chinese white face” and

Content =“Buddha” and C_Object =“Face”

THEN (Base_Color,Dyeing_Color)=

(RGB(255,255,255),None)

R4: IF Dynasty =“SUI dynasty” and Style

=“TIAN-ZHU genetic method” and

Content =“Buddha” and C_Object =“Face”

THEN (Base_Color,Dyeing_Color)=

(RGB(190,155,137),RGB(252,128,66))

3.3 Hybrid Reasoning Strategy

Our integrated system models the problem domain using the

concepts of Classes along with Rules. This is a framework that

gathers all known information about an object. The known

information may be lists of possible values, initial values, default

values, or inherited values for some colors. More importantly, such

a framework not only provides values for the objects, but also ways

of obtaining the values.
According to the four types of knowledge, we create four

subclasses, which are the cave environment class (CEnvironment),

the color distribution class (CDistribution), the painting style class

(PStyle), and the color template class (CTemplate). For the common

attributes and operations in the four classes, a frame base class

(BFrame) is created. The frame-based reasoning is the main

mechanism in the process of determining colors. It is achieved

by comparing the descriptions of incoming facts with the frames in

the knowledge base and retrieving the class frame that best

matches the situation. If a given slot has no value or no slot has a

value, the control is transformed into rule-based reasoning,

database retrieval, or object class inheritance to obtain values.

The main inference mechanism for applying general information to

specific instances is inheritance. We use rule-based reasoning as

the assistant mechanism to fire a sequence of rules by using

incoming facts.

4 IMAGE PROCESSING TECHNIQUES

In order to restore mural colors, we first have to extract the image
regions in which the pigments have discolored. The mural images
are more difficult to process than the other type of images, not only
because different pigments have partly decayed and have
interpenetrated in varying degrees, but also because different
pigments have different chemical compositions and different
murals in different ages have different environmental conditions.
As a result, one color may come from several pigments and one
pigment may also change into several colors. All these factors
make the murals’ color changes very complex. In order to tackle
this difficult problem, we have studied and utilized several image
processing approaches which are detailed as follows.

4.1 Visual Color Space

The human perception of color is a complex physiological
phenomenon. Up to now, human beings have not yet fully
understood its mechanism and many conclusions relative to colors
have been obtained by experiments. Consequently, various solid
shape or color models, such as pyramid, cone, spheroid, as well as
some irregular bodies, are used to describe colors. These models
(also called color spaces) can be categorized into three classes:
chromatic, industrial, and visual. The visual models use Hue,
Saturation, and Luminance (or intensity) (HSL) to describe color
information. They correspond more closely to the human percep-
tion of color.

4.2 The Oddity of the Visual Color Space

Since the hue component in the HSL color space integrates all
chromatic information, it is more powerful and successful for the
segmentation of color images than the primary colors, red, green,
and blue, in the RGB color space. However, the HSL color space
has a problem referred to as the oddity of the visual color space.
Generally speaking, when 1) the values of RGB components of a
pixel are proximal and 2) the saturation is too high (s > 90%) or is
too low (s < 10%), the oddity will occur. In these cases, the hue of a
pixel is undefined. A slight change of RGB component values can
result in a large fluctuation of the hue value. This means that the
hue value has a divergent distribution in its histogram from which
it is difficult to identify the peak value to be used to segment the
images as described in the next section.

Fig. 3 shows two color distributions in RGB and HSL spaces
calculated from two typical colors from Dunhuang murals. Fig. 3a
shows the histograms of a gray color whose RGB components have
peak values of 70, 82, and 82, respectively. Its hue component
value ranges from 109 to 203 and shows obvious divergent
distribution. In this case, using HSL color space to segment images
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cannot obtain satisfactory results. Fig. 3b shows the histograms of a

tangerine color whose RGB components have peak values of 178,

147, and 106, respectively. Its hue distribution is regular. The

general strategy to deal with the oddity of the visual color space is

the avoidance method [5]. We thus propose that the pixels with

oddity in the visual space are processed in RGB space, while other

pixels are still processed in HSL space.

4.3 Region Growing in Multiple Color Spaces

Many methods [6], [7] have been proposed for color image

segmentation. Unfortunately, no single method is applicable to all

types of images. Considering the fact that only partial contents in

an image are required to be processed, we take some special

measures to improve traditional methods.

We adopt a region growing and merging approach to extract

the interesting color regions or color objects. If a pixel’s color

satisfies one of the following criteria (expansion criterion, region

criterion, and seed criterion), it belongs to the region under

analysis:

dg1ðCði; jÞ; Cðm;nÞÞ � �ptp
dg2ðCði; jÞ; CRði; jÞÞ � �ptr
dg3ðCði; jÞ; Csði; jÞÞ � �pts ;

8<
:

where Cði; jÞ denotes the color of the checked pixel ði; jÞ, Cðm;nÞ
the color of the expansion pixel ðm;nÞ, CRði; jÞ the average color of
the growing region, and Csði; jÞ the color of the seed pixel. �ptp, �ptr,

and �pts denote the threshold values of these criteria. Their sizes

should satisfy �pts > �ptr > �ptp. The process of region growing is

described as:

Step 1: Push the seed pixel and its 3� 3 adjacent pixels into a stack:

stack[ps++]=seed+i. Mark down the region number in a label

image: Lab_image[nx*img_height+ny]=N_region;

Step 2: Take an expansive point out of the stack

Step 3: Calculate the distances between checked pixel and seed

pixel, expansive pixel, as well as growing region in RGB and

HSL color spaces:

D1_rbg (seed(R, G, B), (r, g, b)); D1_hsl (seed(H, S, L), (h, s, l));

D2_rbg (neighbor(R, G, B), (r, g, b)); D2_hsl (neighbor(H, S, L),

(h, s, l);

D3_rbg (mean(R, G, B), (r, g, b)); D3_hsl (mean(H, S,L), (h, s, l));

Step 4: If saturation s < 10% or the differences of RGB components

are small, then

FF=D1_rbg<16 || D2_rbg<8 || D2_rbg<10;

else FF=D1_hsl<20.0 || D2_hsl<4.0 || D3_hsl<16.0;

Step 5: If FF is true and Lab_image[nx*img_height+ny]=0, push

the point into the stack; Mark down the region number in label

image: Lab_image[nx*img_height+ny]=N_region; Calculate the

average color of the region: mean(H,S,L) and mean(R,G,B);

Step 6: If the stack is not empty, go to Step 2; else end the growing

process;

Color distance determines the segmented region characteristics

and the segmentation results. We adopt Minkowski color distance

measurement. It is expressed as:

dðMinkowskiÞ ¼
Xp
k¼1

ðCk
i � Ck

j Þ
��� ���p

 !1
p

:

In the HSL color space, the hue, saturation, and luminance
component plays different roles for the human perception of color.
For the simulation of this in segmenting images, we allow each
component in the HSL color space to have its own parameter p.
Thus, the distance can be expressed as:

dMði; jÞ ¼ ð Hi �Hj

���� aþ Si � Sj

���� bþ Ii � Ij
���� cÞ

1
d;

where parameters a, b, and c satisfy the inequality: a > b > c > 0
representing the decreasing importance of hue, saturation, and
luminance to the human perception of color. In the experiments
described below, we let a ¼ 3, b ¼ 2, c ¼ 1, and d ¼ 1=2. When
using RGB color space, Euclidean distance is used instead.

4.4 Region Merging

The results produced by the region growing procedure described

above usually contain a lot of fragmented regions. To solve this

problem, we propose a region merging technique to combine these

fragmented regions into bigger connected ones.

Besides the color information, the size of the fragmented region

is an important factor to be considered when merging them. If the

kernel size is too big, some of fragmented regions that should be

connected may be left out. If the kernel size is too small, it may be

impossible to merge the fragmented regions. The experiments

show the size of 5� 5 pixels is a good value suitable for the

processing of Duanhuang mural images at hand. The algorithm for

region merging is described as:

Step 1: Determine the circumscribed rectangle of the region
N_region: rect_region(N_region,left,right,bottom,top)

Step 2: Extract the fragmentary regions in the rectangle:

for(x=left; x<=right; x++)

for(y=bottom; y<=top; y++)

if Lab_image[x*hight+y] !=0, take the next point

mark down the region number in label image {

push the point into stack: push_stack(x,y);

do{ take point out of stack: pop_stack(cx,cy)

if its adjacent point satisfies

Lab_image[(cx+i)*hight+cy+j]=0,

push it into stack: push_stack(cx+i,cy+j) and

calculate the region size

}while (size of the fragmentary region

is larger than 5 or stack is empty)

}

Step 3: If the fragmentary region is extracted, then calculate its
mean color �i

Step 4: If �r � �ij j < �R, this fragmentary region in label image are
marked as N_region;
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Fig. 4 shows an example of segmentation of a Dunhuang image.

Fig. 4a shows the original image. Although the image has a blue

hue as a whole, its color density is not uniformly distributed.

Fig. 4b shows the segmentation result where only the seed criterion

is considered. Fig. 4c shows the segmentation result where both the

seed and the region criteria are considered. Fig. 4d shows the

segmentation result where all three criteria described above are

considered simultaneously. From these figures, we can see that

each figure reveals a better performance of the algorithm than its

previous ones. However, there exist many fragmented regions

after region growing. Fig. 4e shows the result after region merging.

A size of 5� 5 pixels is chosen to merge fragmented regions in this

case. After the region growing and merging process, only some

relatively big regions are left.
It is unnecessary to use a constant to describe the size of the

fragmented region. In practice, a trade off has to be made between

the regions to be merged and retained when deciding the size of

the kernel for such a process. However, the merging threshold

value of �R should be bigger than the thresholds used in the region

growing process.

5 COLOR RESTORATION

After color regions (or color objects) have been extracted using the

method as described in Section 4 from the input image, their

corresponding color histograms can be generated in HSL color

space and their corresponding color distributions can be deter-

mined. Their restored colors can be obtained by the hybrid frame

and rule-based reasoning approach. The attribute values, such as

dynasty, age, cave, mural topic, content, painting style, etc., used

for reasoning are interactively specified by the user through the

dialog box. The restored colors are estimated using the following

transformations:

Hoi0 ¼ Hoi þ ðHohis �HrmeanÞ �Dh

Soi0 ¼
ðSoi�SominÞ�ðSrmax�SrminÞ

Somax�Somin
þ Srmin; if color template is used:

Soi � Srmean

Sohis
�Ds; if rule base is used:

(

L0
oi ¼

ðLoi�LominÞ�ðLrmax�LrminÞ
Lomax�Lomin

þ Lrmin; if color template is used:

Loi � Lrmean

Lohis � �Dl; if rule base is used:

8<
:

where ðHoi0 ; Soi0 ; Loi0 Þ are the restored colors, ðHoi; Soi; LoiÞ,
ðHomin; Somin; LominÞ, and ðHomax; Somax; LomaxÞ are the original,

minimum, and maximum colors of an extracted discolored region,

respectively, ðHohis; Sohis; LohisÞ are the peak values of the color

histograms of an extracted discolored region, ðSrmin; LrminÞ and

ðSrmax; LrmaxÞ are the minimum and maximum values obtained

from the color template, ðHrmean; Srmean; LrmeanÞ are the color

values obtained from the rule base, and ðDh;Ds;DlÞ 2 ð0::1� are the
constants.

Fig. 5 shows the color restoration results of a bodhisattva’s skin.

Fig. 5a shows the image with changed colors. The bodhisattva’s

skin colors have become black and gray owing to the color change

of the red lead. Fig. 5b and Fig. 5c show the segmented images

using the segmentation algorithm as described in Section 4. Fig. 5d

shows the color restoration result. Based on the mural’s cave,

dynasty, age, content, topic, and other attributes, the inference

engine reasons out its original colors as brown red and flesh red.
Fig. 6 shows another example of color restoration. Fig. 6a shows

a faded fresco and the color distribution in the bodhisattva’s facial

faint dyeing and Fig. 6b shows the restored image and the color

distribution in the bodhisattva’s facial faint dyeing.
From these experiments, we can see that the restored colors of

ancient murals are vivid, harmonic, and believable. In the wall

paintings of Dunhuang, red lead pigment was extensively used on

the face and body of the painted figures and most of them have, to

date, become dark. So, the color restoration of red lead has a

representative significance.

1342 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 5, SEPTEMBER/OCTOBER 2003

Fig. 5. The restoration of skin color of a bodhisattva.

Fig. 6. The restoration of facial faint dyeing of a bodhisattva.



6 CONCLUSION

We described in this paper a computer-aided system to facilitate

Dunhuang mural preservation research. The system can be used to

aid artificial mural imitating, check pigment color fading rules

under various environments, and simulate virtual changing

processes of murals’ colors over different ages. Experiments based

on real images have shown that our proposed approach is effective

and practical in restoring the original colors of ancient murals. We

believe that the system is an important and necessary prerequisite

for the future preservation and restoration of these unique frescoes

in the history of human beings. Our future work will contain two

aspects: 1) improving image segmentation techniques in order to

separate different spoiled parts of murals more accurately and

automatically and 2) collecting more knowledge about mural

pigments and color changing rules.
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