
Aberystwyth University

Subsethood-based fuzzy modelling and classification
Rasmani, Khairul; Shen, Qiang

Publication date:
2004

Citation for published version (APA):
Rasmani, K., & Shen, Q. (2004). Subsethood-based fuzzy modelling and classification. 181-188.

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 18. Apr. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aberystwyth Research Portal

https://core.ac.uk/display/288843081?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Subsethood-based Fuzzy Modelling and Classification

Khairul Anwar Rasmani
Centre for Intelligent Systems and their

Applications, School of Informatics,
The University of Edinburgh
K.A.Rasmani@ sms.ed.ac.uk

Qiang Shen
Department of Computer Science,
University of Wales, Aberystwyth

qqs@aber.ac.uk

Abstract

Reasoning with fuzzy rule-based models has
been widely applied to perform various real
world classification tasks. The main
advantage of this approach is that it supports
inferences in the way people think and make
judgements. However, in order to gain high
classification accuracy, transparency and
interpretability of such models has often
been ignored. To counter against this
limitation, this paper proposes a quantifier-
based fuzzy modelling method based on
fuzzy subsethood measurements. The
resulting induced models are transparent,
interpretable whilst still able to provide high
classification accuracy. This is confirmed by
experimental comparative studies between
this work and previous subsethood-based
modelling approaches, for classification
problems using benchmark datasets.

1 Introduction

Various fuzzy rule-based systems (FRBS) have
been developed to solve classification problems
with the aims to produce high classification
accuracy. However, in many cases transparency and
interpretability of the systems are ignored. In
certain application domains such as fault diagnosis
and performance evaluation it is not only the
classification results that are important but also how
the results were reached. It is important that the
designed fuzzy models are comprehensible by the
user and their inference processes explainable to the
user [18]. Otherwise the user may turn back to
established non-fuzzy approaches which may be
less difficult to implement and understood.

Although comprehensibility of fuzzy models has
long been an issue in developing fuzzy models,
many modelling approaches that were claimed to be
'comprehensive' may not be so when dealing with

systems that have a very large number of
conditional attributes. Thus, while
comprehensibility is used to explain how the
models work, applicability of the model for various
types and sizes of dataset should also be explored.
In particular, problems involving many conditional
attributes will typically require a large number of
rules. To reduce the complexity of rulesets, several
approaches have been suggested such as the use of
tolerance [10] and threshold values [3, 22]. Such
work has a significant limitation as question will
arise on what is the optimal tolerance or threshold
value needed to obtain rulesets which will achieve
the highest classification accuracy possible and
what are the basis upon which to choose the
tolerance/threshold values.

One of the techniques to create fuzzy models
that are able to provide high classification accuracy
is to use weights for modification of attribute values
[13].  Crisp weights within the interval of [0,1] may
be used for this. However, it is rather unnatural to
modify fuzzy terms with non-fuzzy values. Their
use may lead to confusion regarding the semantics
of the fuzzy labels and the linguistic interpretation
of a given fuzzy system [13]. Thus, as an alternative
approach is worth investigating - using linguistic
hedges or fuzzy quantifiers to modify fuzzy terms
suggested in [1, 12].  This paper proposes such a
method to generate fuzzy classification models
which each have a fixed number of rules according
to the number of classification outcomes without
the use of any threshold values. Fuzzy quantifiers
which are created from fuzzy subsethood values are
used to improve the transparency and
interpretability of the resulting systems.

The rest of the paper is organised as follows.
Section 2 summarises the background theory of
fuzzy subsethood values, fuzzy quantifiers and
subsethood-based fuzzy rule induction algorithm.
Section 3 describes the proposed modelling
method, the FuzzyQSBA. Section 4 presents
experimental results on benchmark datasets.
Finally, conclusions and future directions of this
research are outlined in Section 5.



2 Background Theory

To be self-contained, this section gives a brief
outline of the underlying theories employed in the
present work.

2.1 Fuzzy Subsethood Values

Let A and E be two fuzzy sets defined on the
universe U. The fuzzy subsethood value of A with
regard to E, S(E, A) represents the degree to which
A is subset of E [3, 22]:

∑
∈

∑
∈

∇
=

∧
=

Ux
xE

Ux
xAxE

EM
AEMAES

)(

))(),((

)(
)(),(

µ

µµ

(1)

where S(E, A) ∈   [0,1] and C is the t-norm
operator.

Fuzzy subsethood values have been used to
address different problems, including to measure
the degree of truth of learned fuzzy rules [22], and
to promote certain linguistic terms as part of the
antecedent of an emerging fuzzy rule [3].

2.2 Fuzzy Quantifiers

In general, quantifier in logic can be expressed as
Q(x)A(x) where Q(x) is a quantifier and A(x) is a
predicate for variable x [4]. In classical logic, both
the quantifier and the predicate can be represented
by crisp sets. In fuzzy logic the quantifier may be
apply to crisp or fuzzy sets. A quantifier based on
fuzzy sets seems to be more suitable for quantifier
based fuzzy models which are described in natural
language.

Although there exist different types of
quantifier, this paper will mainly refer to the fuzzy
relative quantifier Q where µQ(q) ∈  [0,1] with q
defined on real interval [0,1]. In particular, Q
possesses the non-decreasing behavior: ∀  q1, q2 ∈
Q,  q1 < q2  → µQ(q1) ≤ µQ(q2). Such a quantifier is
based on the quantified statement "Q Es are As"
where Q is the linguistic quantifier and A and E are
fuzzy values defined on X = {x1,x2,…,xk}. An
example of a quantified statement is  "Most
students who get a high score are young", where
"most" is the quantifier, "high" and "young"  are
the fuzzy values E and A respectively.

In general, the membership function µQ(q) of a
quantifier Q has no direct meaning. Thus in
evaluating a fuzzy quantified proposition, a
quantification mechanism is needed to map the
membership value µQ(q) such that:

F : (µQ(q))  →  I ∈  [0,1] (2)

In this paper, the result of evaluating the fuzzy
relative quantifier is referred to as the truth-value of
the quantifier, and is presented using notation QΤ .

Fuzzy quantification technique can be based on
generalization of first order logic quantifiers, where
the quantification mechanism involves the
definition of the existential quantifier, ∃  (exists at
least one) and of the universal quantifier, ∀  (for
all). However, the two-valued quantification
technique seems too strict as it will return two
extreme values thus ignoring the existence of other
quantifications that are readily available in fuzzy
terms and natural language such as "almost half",
"nearly all", "few", "most", etc. Extending this
representation language to fuzzy sets, the truth
value of the existential relative quantifier and the
universal relative quantifier can be defined [1, 4]
as:
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where µ(ak) and µ(ek) are the membership functions
of fuzzy sets A and E respectively, and ⇒  denotes
fuzzy implication.

It is obvious that this definition covers as its
specific cases classical existential and universal
quantifiers. The multi-valued fuzzy quantification
can be defined using any available functions such as
non-decreasing, non-increasing or unimodal
whithin the above definition. Several different
quantifiers can be defined between the existential
quantifier and the universal quantifier, for example
"almost all of them", "almost three-quarter of
them", "almost half of them ", "almost a quarter of
them" and "a few of them". Several existing
methods proposed and discussed in [1, 4] can be
used in evaluating the quantified proposition.

The multi-valued quantifiers can be expanded
further because the number of quantifiers that can
exist may not be limited to only a few specific ones.
However, the problems in expanding this kind of
quantifier lie in the need to pre-define each of the
quantifiers. Limited pre-defined quantifiers are
difficult to be adapted to suit fuzzy models which
generate rules based on training data. This is
because small changes in the dataset might cause
the change of the entire ruleset. Thus, a continuous
fuzzy quantification method may be more
appropriate.

Vila et al. [20] proposed a continuous quantifier
which uses linear interpolation between the two



extreme cases of the existential quantifier ∃  and
the universal quantifier ∀ . In particular, the
quantifier was defined as a linear interpolation:

EAQEAQAEQ /,/, .).1(),( ∃∀ Τ+Τ−= λλ (5)

where Q is the quantifier for fuzzy set A relative to
fuzzy set E and λQ is the degree of orness of the
two extreme quantifiers. The truth-values of the
existential quantifier EA /,∃Τ  and the universal

quantifier EA /,∀Τ were defined as:
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where ak and ek are the membership functions of
fuzzy sets A and E respectively, ∇  represents the t-
norm and ∆  represents the t-conorm. This
definition will enable the creation of all possible
quantifiers that exist between the existential and
universal quantifiers.

2.3 Subsethood-based Fuzzy Rule
Algorithm (SBA)

The Subsethood-based Fuzzy Rule Algorithm
(SBA) represents learned knowledge in fuzzy
decision trees for handling classification tasks [3].
This approach involves three main steps: a)
classifying training data into subgroups according
to the underlying classification results, b)
calculating fuzzy subsethood values for every
linguistic term, and c) creating rules based on fuzzy
subsethood values.

The generation of fuzzy rules is therefore,
dependent on the fuzzy subsethood values between
the decision to be made and the possible linguistic
terms of the conditional attributes. Fuzzy rules are
created subject to a pre-specified threshold value α
∈  [0, 1]. Any linguistic terms that have a
subsethood value that is greater than or equal to α
will automatically be chosen as an antecedent for
the resulting fuzzy rules.

These include those terms whose negation is of
subsethood value that is greater than or equal to α.
If there are training cases that the generated rules
do not cover because none of the subsethood values
is greater than α, additional rules will be created
based on the membership function values of those
rules generated earlier, with regard to another
preset threshold value β ∈  [0, 1]. This is needed to
provide full coverage of the generated rule set.

This technique has been tested using the Saturday
Morning Problem (SMP) data and was shown to
produce better results [3] as compared to the earlier
subsethood-based learning algorithm [22].
However, both of these approaches assume that all
pieces of information gathered from the training
data are equally important. This may not be the case
in modelling many real problems [5]. A modified
approach that takes a certain weighting strategy to
represent the degrees of "importance" is therefore
necessary.

3 FuzzyQSBA

FuzzyQSBA is developed on the basis of  Weighted
Subsethood based Algorithm WSBA [17], which
induces fuzzy rules that weight the contributions of
conditional attributes to the conclusion
(classification). The weighting is in crisp values
created from fuzzy subsethood values. The work
here is to modify the WSBA to enable the use of
fuzzy linguistic quantifiers to replace crisps weights
used in the models induced by WSBA. This section
will first explain in brief the background of WSBA
and then describes improved version of WSBA,
namely FuzzyQSBA.

3.1 Weighted Subsethood-based Algorithm
(WSBA)

WSBA makes use of subsethood values as relative
weights over the significance of different
conditional attributes which they may have upon the
conclusion, in conjunction with the use of default
fuzzy general rules. As with many existing
techniques for representing weights, in WSBA,
measures of weighting are limited to the range of 0
to 1, with 0 representing the lowest weight (or of
least importance) and 1 the highest (or of most
importance).  Such weights can be calculated from
fuzzy subsethood values as follows. Note that the
meaning of subsethood is herein extended to allow
fuzzy sets associated with different linguistic
variables to be related.

Suppose that the subsethood value for a certain
linguistic term Aj of linguistic variable A with
regard to classification X is S(E, A), and that the
linguistic variable A has the following possible
linguistic terms: A1, A2,…, Al. Then, the relative
weight for linguistic term Ai, with regard to
classification E is:
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Clearly, w(E, Ai) ∈  [0,1]  and  i = 1, 2, …, l. This
allows the creation of a weight for each linguistic
term per condition attribute. Intuitively, the
linguistic term with the highest subsethood value



will be the most important and that with the lowest
will be the least important.

By multiplying each possible linguistic value by
its respective weight, the proposed WSBA fuzzy
rules will be in the form:

Rule 1 IF A is w(E1,A1)A1 OR w(E1,A2)A2 OR
…OR w(E1,Ai)Ai AND B is w(E1,B1)B1 OR
w(E1,B2)B2 OR… OR w(E1,Bj)Bj AND … AND  H
is w(E1,H1)H1 OR w(E1,H2)H2  OR … OR
w(E1,Hk)Hk  THEN the output is  E1

Rule 2 IF A is w(E2,A1)A1 OR w(E2,A2)A2 OR
…OR w(E2,Ai)Ai AND B is w(E2,B1)B1 OR
w(E2,B2)B2 OR… OR w(E2,Bj)Bj AND … AND  H
is w(E2,H1)H1 OR w(E2,H2)H2  OR … OR
w(E2,Hk)Hk  THEN the output is  E2

.

.

.
Rule n IF A is w(En,A1)A1 OR w(En,A2)A2 OR
…OR w(En,Ai)Ai AND B is w(En,B1)B1 OR
w(En,B2)B2 OR… OR w(En,Bj)Bj AND … AND  H
is w(En,H1)H1 OR w(En,H2)H2  OR … OR
w(En,Hk)Hk  THEN the output is  En     

(9)

In above definition, "OR" is interpreted by the t-
conorm operator and "AND" by the t-norm
operator.

Initially, all linguistic terms of each attribute are
used to describe the antecedent of each rule. This
may look tedious, but the reason for keeping this
complete form is that every linguistic term may
contain important information that should be taken
into account. Otherwise, there is no need for
adopting the given fuzzy partitions of the
underlying domains in the first place.

Computationally, the ruleset can be simply
represented by
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where 

kij EAw , denote the weights of atomic

linguistic propositions and )(x
ijAµ  represent the

membership function of the linguistic terms
modified by the weights, with ∆ and ∇  denoting the
interpretation of logical conjunction and disjunction
operators respectively.

This method does not require any threshold
value and generates a fixed number of rules, with
the ruleset cardinality equalling to the number of
classes of interest (i.e. one rule will be created for
each class). In the process of generating fuzzy rules,
linguistic terms that have a weight greater than zero
will automatically be promoted to become part of
the antecedents of the resulting fuzzy rules. Any
linguistic term that has a weight equal to 0 will of
course be removed from the fuzzy rule. This will

make the rules simpler than the original default
rules (9). In running WSBA for classification tasks,
the concluding classification will be that of the rule
whose overall weight is the highest amongst all.

3.2 Modifying WSBA with Fuzzy
Quantifiers

The aim of this proposed technique is to replace
crisp weights in WSBA by fuzzy quantifiers. For
this, the quantification method originally proposed
by Vila et al. is employed here. Several reasons
have been taken into account to support the use of
Vila et al.'s approach:

a) The use of degree of orness enables the
implementation of continuous quantifiers. Thus,
any possible quantifier can be created in
principle.

b) The relative quantifier based method proposed
by Villa et al. can be adapted into WSBA easily,
thanks to the structure of the WSBA general
rule. Thus, the simplicity of WSBA can be
preserved.

c) Relative subsethood values can be used as the
degree of orness (λQ) of the fuzzy quantifiers.
Thus, the two seemingly separate approaches
are unified.

d) This approach fulfils the desirable monotonicity
and duality properties of quantification [1].

Computationally, the induced ruleset can be
represented by
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where 
kij EAQ , are now fuzzy quantifiers as defined

in (5).
The crisp weights that were used in WSBA are

herein replaced by fuzzy quantifiers. The main
difference of FuzzyQSBA compared to WSBA lies
in the interpretation of the inference between
weights/quantifiers with the linguistic terms. In
WSBA the weights for each linguistic term are
crisp values and behave as multiplication factor for
the linguistic terms. Clearly the use of crisp value
will limit the interpretation of ))(( , xw

ijkij AEA µ× .

In FuzzyQSBA both the quantifiers and the
linguistic terms are fuzzy sets. This offers flexibility
as it enables the use of t-norm operators to interpret

))(( , xQ
ijkij AEA µ∇ whilst guarantee that the

inference results are fuzzy sets.



The use of fuzzy quantifier in QSBA also enables
representation of the ruleset in a more natural way.
This can be shown by the following example:

In WSBA, the ruleset is in the form of "IF SL is
(SL1 OR 0.09SL2) AND SW is (SW2 OR
0.2SW3) AND PW is (PL1) AND PW is (PW1)
THEN the class is Iris-setosa".

In FuzzyQSBA, the ruleset will be in the form of
"IF SL is ((almost all)SL1 OR (a little)SL2)
AND SW is ((almost all)SW2 OR (almost a
quarter of )SW3) AND PW is ((almost all )PL1)
AND PW is ((almost all)PW1) THEN the class is
Iris-setosa.

 Clearly, the use of fuzzy quantifiers make the
model more readable, although the computation
still needs to be done using real numbers.

Based on the definitions of the fuzzy subsethood
value (1), the existential quantifier (6) and the
universal quantifier (7), it can be shown that if λQ is
equal to 0 then the truth-value of quantifier Q will
also equal 0. Thus any linguistic terms which have
the truth-value of the quantifier equal to 0 will be
removed automatically from the fuzzy rule
antecedents. The final FuzzyQSBA ruleset will
contain the same antecedents as the WSBA ruleset.
Figure 1 shows the framework of this approach. It

is clear that the main structure of WSBA general
rules is preserved [17].

4 Experimental Results

To demonstrate the advantages of the proposed
method (FuzzyQSBA), five datasets which have
different features are chosen from the UCI machine
learning repository [19]. The datasets, which are
widely used as benchmarks for classification tasks
are the Iris-Plant, Wine Recognition, Wisconsin
Breast Cancer, Spambase and Mushroom datasets
as summarised in Table 1.

Dataset Number of
Instances

Number of
Conditional
Attributes

Number of
classes

Iris-Plant 150 4 3

Wine
Recognition

178 13 3

Wisconsin
Breast Cancer

699 9 2

Spambase 4601 58 2

Mushroom 8124 22 2

Table 1. Classification Problem Datasets.

Training Dataset  

Divide training dataset into
subgroups

(according to the
underlying

classification outcomes)

Calculate fuzzy
subsethood values for

each subgroup

Testing
Dataset

Create weights based
on the subsethood

values

Create Rules in form
of Fuzzy General

Rule
Fuzzy Rules

              

Classification
Outcomes

Figure 1.  Framework of FuzzyQSBA.



Ten-fold cross-validation is used to evaluate the
classification accuracy: Each dataset was divided
randomly into ten subsets, with nine subsets used
for training and the remaining one for testing. Thus,
ten sub-experiments have been carried out for each
dataset. Table 2 shows the comparison of the
classification accuracy of the models induced by
WSBA and FuzzyQSBA, and Figures 2 - 5 show
such comparison between SBA and FuzzyQSBA.
All the comparisons are made in terms of minimum,
maximum and average classification accuracy.

4.1 Comparison between WSBA and
FuzzyQSBA

The experimental results on five different datasets
show that the classification accuracy for models
induced by FuzzyQSBA are as good as that of the
models learned by WSBA. It clearly demonstrates
that the differences between average classification
accuracies produced by the two algorithms are very
small. However, as discussed previously,
FuzzyQSBA has an advantage over WSBA in terms
of the transparency of the associated inference
process and of the readability of the induced
ruleset.

WSBA FuzzyQSBADataset

Min Ave Max Min Ave Max

Iris
Plant

86.7 96.0 100 86.7 96.0 100

Wine
Recog.

83.3 97.2 100 77.8 96.7 100

Breast
Cancer

88.4 92.8 97.1 88.4 92.2 97.1

Mush. 87.7 89.3 91.1 87.7 89.4 91.1

Spam. 85.7 86.7 88.9 85.7 86.9 88.9

Table 2. Comparison of Classification Accuracy
between WSBA and FuzzyQSBA.

4.2 Comparison between SBA and
FuzzyQSBA

On Iris-Plant dataset, which involves a small
number of instances and conditional attributes,
results show that the average classification accuracy
of FuzzyQSBA is better than the average
classification accuracy of SBA, although both
FuzzyQSBA and SBA can reach the maximum
classification accuracy of 100%. However, for the
Wine Recognition dataset, which also has a small
number of instances and conditional attributes,
results show that FuzzyQSBA has outperformed
SBA in terms of maximum, average and minimum

classification accuracy, consistently. For the
experiment on the Breast Cancer dataset, which has
a medium number of instances but still involves
small number of conditional attributes, results show
that SBA manage to obtain a higher classification
accuracy over certain threshold values.

 Experiments on Spambase and Mushroom
datasets, both of which involve a high number of
instances and of conditional attributes, show that
FuzzyQSBA has again outperformed SBA in all of
the classification results. This clearly demonstrate
that the FuzzyQSBA is capable of inducing
accurate rule models from given training data.

Iris Plant Dataset
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Figure 2. Classification Accuracy of Iris-Plant
Dataset.

Wine Recognition Dataset
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Figure 3. Classification Accuracy of Wine
Recognition Dataset.

In particular, it is worth noting that classification
accuracy of FuzzyQSBA is obtained without the
use of any threshold value, whereas for SBA,
certain threshold values are needed to be specified
to induce models that have a high classification
accuracy. Furthermore, the use of threshold values
is very confusing as different training datasets may
need different threshold values to obtain a good
classification performance. Of course, all such



advantages of FuzzyQSBA are achieved on top of
its ability in inducing more readily interpretable
models.

Breast Cancer Dataset
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Figure 4. Classification Accuracy of Breast Cancer
Dataset.

Mushroom Dataset
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Figure 5. Classification Accuracy of Spambase
Dataset.

Spambase Dataset
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Figure 6. Classification Accuracy of Mushroom
Dataset.

5 Conclusion

This paper has presented a new method for
generating linguistic rule models from data based
on fuzzy subsethood measurements. The work has
been applied for classification tasks, offering a
number of advantages over existing subsethood-
aided approaches. It does not need any threshold
values while creating a fixed number of rules with
respect to the potential classification outcomes. In
addition, the use of fuzzy quantifiers makes the
induced models more interpretable and hence the
associated inference processes more transparent.

The proposed method also has potentials to be
developed further. In particular, it can be expected
to perform better generalisation if the fuzzy
membership functions employed are optimised.
Also, it would be interesting to investigate how the
algorithm would perform in coping with scaled-up
real-world problems. For this, work is being carried
out, which applies FuzzyQSBA for evaluation of
student academic performance. It is obvious that in
this problem domain, transparency and
interpretability are very important as the users are
mainly the students, teachers and policy planners
who might not have any background in fuzzy rule-
based systems at all.
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