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Abstract

Fuzzy interpolative reasoning offers the
potential to model problems using sparse
rule bases, as opposed to dense rule bases
deployed in traditional fuzzy systems. It
thus supports the simplification of com-
plex fuzzy models in terms of rule num-
ber and facilitates inferences when lim-
ited knowledge is available. This pa-
per presents an interpolative reasoning
method by means of scale and move trans-
formations. It can be used to interpolate
fuzzy rules involving arbitrarily complex
polygonal fuzzy sets. In particular, the
paper introduces the general definition
on representative values (RVs) employed
by fuzzy interpolation and presents three
useful implementations of this definition.
This provides a degree of freedom to
choose appropriate RVs to meet different
requirements. The interpolation mecha-
nism associated with the general RV defi-
nition is outlined and a comparative study
of the interpolation results over different
RV implementations is given.

1 Introduction

Fuzzy rule interpolation helps reduce the com-
plexity of fuzzy models and supports inference in
systems that employ sparse rule sets [7]. With
interpolation, fuzzy rules which may be approx-
imated from their neighbouring rules can be
omitted from the rule base. This leads to the
complexity reduction of fuzzy models. When
given observations have no overlap with the an-
tecedent values of rules, classical fuzzy inference
methods have no rule to fire, but interpolative
reasoning methods can still obtain certain con-
clusions. Despite these significant advantages,
earlier work in fuzzy interpolative reasoning does
not guarantee the convexity of the derived fuzzy
sets [9][13], which is often a crucial requirement
of fuzzy reasoning to attain more easily inter-

pretable practical results.
In order to eliminate the non-convexity draw-

back, there has been considerable work reported
in the literature. For instance, Vas, Kalmar and
Kóczy have proposed an algorithm [10] that re-
duces the problem of non-convex conclusions.
Qiao, Mizumoto and Yan [8] have published an
improved method which uses similarity transfer
reasoning to guarantee the attainment of convex
results. Hsiao, Chen and Lee [4] have introduced
a new interpolative method which exploits the
slopes of the fuzzy sets. General fuzzy inter-
polation and extrapolation techniques [1], and
a modified α-cut based method [2], have also
been proposed. In addition, Bouchon, Marsala
and Rifqi have created an interpolative method
by exploiting the concept of graduality [3], and
Yam and Kóczy [11][12] have proposed a fuzzy
interpolative method based on Cartesian repre-
sentation.

Nevertheless, some of the existing methods
may include complex computation. It becomes
more difficult when they are extended to mul-
tiple variables interpolation. Some others may
only apply to simple fuzzy membership functions
limited to triangular or trapezoidal. Others may
not be able to obtain unique as well as normal
and convex fuzzy (NCF) results. This paper,
based on the initial work carried out by the au-
thors [5][6], introduces a general RV definition
(which includes the RV definitions used in previ-
ous work, of course) and summaries the compu-
tation steps for this general RV definition. Like
the work in [5][6], the enhanced interpolation
method avoids the problems mentioned above
and ensures unique, normal and convex results.
It also provides the flexibility to employing dif-
ferent RVs to suit different application require-
ments.

The rest of the paper is organized as follows.
Section 2 introduces the general representative
value definition for arbitrarily complex polyg-
onal fuzzy sets. Section 3 describes scale and
move transformations, and presents the compu-
tation procedure by using the general RV defi-



nition. Section 4 compares the interpolation re-
sults obtained by employing different RV defi-
nitions. Finally, Section 5 concludes the paper
and points out further work.

2 General Representative Value

To facilitate the discussion of the transformation
based interpolation method, the representative
value (RV) of the polygonal fuzzy sets involved
must be defined first. This value captures the
overall location of the fuzzy set, and will be used
as the guide to perform transformations as pre-
sented in the next section. In general, given a
fuzzy set, different RVs may be defined. Whilst
different RVs may lead to different interpolation
results (although the transformations are to be
applied in the same way), they offer a degree
of freedom to suit different application require-
ments.

The RVs, employed in previous work [5][6]
are expected to be specific cases and hence out-
lined below. Considering a triangular fuzzy set
A, denoted as (a0, a1, a2), as shown in Fig. 1,
the typical RV for triangular sets is defined by

Rep(A) =
a0 + a1 + a2

3
. (1)

This happens to be the x value of the center of
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Figure 1: The classical RV of a triangular fuzzy
set

gravity of such a fuzzy set [5].
To be compatible to this definition, the RV

for a trapezoidal fuzzy set A = (a0, a1, a2, a3)
(as shown in Fig. 2) is defined by [6]:

Rep(A) =
1

3
(a0 +

a1 + a2

2
+ a3). (2)

Indeed, this definition subsumes the RV of a tri-
angular set as its specific case. This is because
when a1 and a2 in a trapezoid are collapsed into
a single value a1, the set degenerates into a tri-
angular.

It becomes more complicated to deal with
more complex fuzzy sets such as hexagonal fuzzy
sets (as shown in Fig. 3). The simplest solution
is to use the average of all the odd points as the
RV of that fuzzy set:

Rep(A) =
a0 + a1 + a2 + a3 + a4 + a5

6
. (3)

An alternative RV [6] can be defined by

Rep(A) =
(a0 + a5) + (1 − α

2
)(a1 + a4) + 1

2
(a2 + a3)

5 − α
,

(4)

where α is the membership value of both a1

and a4. This definition assigns different pairs
of points with different weights. That is, a
weighted average is taken as the representative
value.

Another alternative RV definition for hexag-
onal fuzzy sets is compatible to the less complex
fuzzy sets including triangular, trapezoidal and
pentagonal. For example, if a1 and a4 happen
to be on the lines between a0, a2 and a3, a5, re-
spectively, such a hexagonal fuzzy set becomes
a trapezoidal set, the definition is thus equiva-
lent to (2). Such a compatible definition can be
written as:

Rep(A) =
1

3
[a0 + (1 −

α

2
)(a1 − a′

1) +
1

2
(a2 + a3)

+(1 −
α

2
)(a4 − a′

4) + a5], (5)

where a′
1 = αa2 +(1−α)a0 and a′

4 = αa3 +(1−
α)a5, see Fig 3.

Now, considering a generalized RV definition
for an arbitrary polygonal fuzzy set with n odd
points, A = (a0, . . . , an−1), as shown in (4).
Note that the two top points (of the membership
value 1) do not have to be different (e.g., a trape-
zoidal having the same top value is just a trian-
gular). Although this figure explicitly assumes
that evenly paired odd points are on each α-cut
level, this does not affect the generality of the
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Figure 2: The RV of a trapezoidal fuzzy set
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Figure 3: The RV of a hexagonal fuzzy set



fuzzy set as artificially odd points can be created
to consist of evenly paired odd points. Clearly,
a general fuzzy membership function with n odd
points has bn

2 c supports (horizontal intervals be-
tween a pair of odd points which have the same
membership value) and 2(dn

2 e − 1) slopes (non-
horizontal intervals between two consecutive odd
points). A general RV definition of such an ar-

n
2

i

−1n
2

−1n
2

A
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Figure 4: The RV of an arbitrarily complex
fuzzy set

bitrary polygonal fuzzy set can be written as:

Rep(A) =

n−1
∑

i=0

wiai, (6)

where wi is the weight assigned to point ai.
The above general definition has little prac-

tical value if no knowledge is available for the
weighting scheme used. Specifying it helps avoid
this problem. The simplest case (which is called
the average RV hereafter) is that all points take
the same weight value, i.e., wi = 1

n
. The RV is

therefore written as:

Rep(A) =
1

n

n−1
∑

i=0

ai. (7)

Note that (1) is a particular implementation of
this definition.

To maintain maximal generality, it is useful
to have a compatible RV definition. A fuzzy set
represented using more odd points is the same
fuzzy set that can be represented by using less
odd points, then their RVs ought to be identical.
One such definition can be written as:

Rep(A) =
1

3
[(a0 + an−1) +

1

2
(ad n

2
e−1 + an−d n

2
e)

d n

2
e−2

∑

i=1

(1 −
αi

2
)(ai − a

′
i + an−1−i − a

′
n−1−i)], (8)

where a′
i = αiadn

2 e−1 + (1−αi)a0 and a′
n−1−i =

αian−dn

2 e + (1 − αi)an−1 (see Fig 4). Note that

this definition subsumes cases (1), (2) and (5).
An alternative specification of the general RV

definition (named the weighted average RV) as-
sumes that the weights increase upwardly from
the bottom support to the top support. This

weight assignment strategy is inspired by the
assumption that different odd points may have
different weights, and by observation that the
weights should reflect the significance of the
fuzzy membership values. For instance, as-
suming the weights increase upwardly from 1

2
to 1, the weight wi thus can be calculated by
wi = 1+αi

2 (where αi is the fuzzy membership
value of ai, i = {0, . . . , dn

2 e − 1}), and then be
normalized by the total of wi, i = {0, . . . , n−1}.
The RV is thus defined by

Rep(A) =

∑dn

2 e−1
i=0

1+αi

2 (ai + an−1−i)
∑dn

2 e−1
i=0

1+αi

2

. (9)

The general RV definition can be simplified if
the lengths of the bn

2 c supports S0, . . . , Sbn

2 c−1

(the index in ascending order from the bottom
to the top) are known. As an−1−i = ai + Si,
i = {0, . . . , bn

2 c − 1}, the general form of (6)
thus can be re-written as:

Rep(A) = a0(w0 + wn−1) + S0wn−1 + . . .

+ad n

2
e−1(wd n

2
e−1 + wn−d n

2
e)

+Sd n

2
e−1wn−d n

2
e

=

d n

2
e−1

∑

i=0

ai(wi + wn−1−i) + C, (10)

where C = S0wn−1 + . . . + Sdn

2 e−1wn−dn

2 e is a
constant.

In summary, the general RV definition (6)
subsumes all the RV representations defined pre-
viously in [5][6]. It provides a range of possible
choices to suit different problems. This general-
ized definition is a linear combination of all the
odd points a fuzzy set involves. Note that, non-
linear combinations of such points, such as the
one including the product of two or more points’
values, is not valid as the interpolation is itself
linear.

3 Transformation Based
Interpolation

3.1 Construct the Intermediate Rule

To be concise, the simplest case is herein used
to illustrate the underlying techniques for fuzzy
interpolation. Given two adjacent rules as fol-
lows

If X is A1 then Y is B1,

If X is A2 then Y is B2,

which are denoted as A1 ⇒ B1, A2 ⇒ B2 respec-
tively, together with an observation A∗ which is
located between fuzzy sets A1 and A2, an inter-
polation is performed to achieve the fuzzy result



B∗. In another form this simplest case can be
represented through the modus ponens interpre-
tation (11), and shown in Fig. 5.

1 A 2A

  1,n−1 bb 10

a 1,n−1 a 0 a n−1 a 2,n−1a 20

2,n−1b20bn−1bb 0

A *

1 B *B 2B

 u

a

 u

X

Y

10

Figure 5: Interpolation with arbitrarily polygo-
nal fuzzy membership functions

observation: X is A∗

rules: if X is A1, then Y is B1

if X is A2, then Y is B2

conclusion: Y is B∗?

(11)

Here, Ai = (ai0, . . . , ai,n−1), Bi =
(bi0, . . . , bi,n−1), i = {1, 2}, and A∗ =
(a0, . . . , an−1), B∗ = (b0, . . . , bn−1).

The transformation based interpolation
method begins with constructing a new fuzzy
set A′ which has the same RV as that of A∗. To
support this work, the distance between A1 and
A2 is herein defined by

d(A1, A2) = d(Rep(A1), Rep(A2)). (12)

An interpolative ratio λRep (0 ≤ λRep ≤ 1) is
introduced to represent the important impact of
A2 upon the construction of A′:

λRep =
d(A1, A

∗)

d(A1, A2)

=
d(Rep(A1), Rep(A∗))

d(Rep(A1), Rep(A2))
. (13)

That is to say, if λRep = 0, A2 plays no part in
constructing A′, while if λRep = 1, A2 plays a
full role in determining A′. Then by using the
simplest linear interpolation, a′

i, i = {0, . . . , n −
1}, of A′ are calculated as follows:

a′
i = (1 − λRep)a1i + λRepa2i, (14)

which are collectively abbreviated to

A′ = (1 − λRep)A1 + λRepA2. (15)

Now, A′ has the same representative value as
A∗.

proof 1 As Rep(A′) =
∑n−1

i=0 wia
′
i, from (14)

and (13), it follows that

Rep(A′)

=

n−1
∑

i=0

wi[(1 − λRep)a1i + λRepa2i]

= (1 − λRep)

n−1
∑

i=0

wia1i + λRep

n−1
∑

i=0

wia2i

= (1 − λRep)Rep(A1) + λRepRep(A2)

= Rep(A∗) (16)

It is worth noting that A′ is a convex fuzzy set
as the following holds given a1i ≤ a1,i+1, a2i ≤
a2,i+1, where i = {0, . . . , n−2}, and 0 ≤ λRep ≤
1:

a
′
i+1 − a

′
i

= (1 − λRep)(a1,i+1 − a1i) + λRep(a2,i+1 − a2i) ≥ 0.

Similarly, the consequent fuzzy set B′ can be
obtained by

B′ = (1 − λRep)B1 + λRepB2. (17)

In so doing, the newly derived rule A′ ⇒ B′

involves the use of only normal and convex fuzzy
sets.

As A′ ⇒ B′ is derived from A1 ⇒ B1 and
A2 ⇒ B2, it is feasible to perform fuzzy rea-
soning with this new rule without further refer-
ence to its originals. The interpolative reasoning
problem is therefore changed from (11) to the
new modus ponens interpretation:

observation: X is A∗

rule: if X is A′, then Y is B′

conclusion: Y is B∗?
(18)

This interpretation retains the same results
as (11) in dealing with the extreme cases: If
A∗ = A1, then from (13) λRep = 0, and accord-
ing to (15) and (17), A′ = A1 and B′ = B1, so
the conclusion B∗ = B1. Similarly, if A∗ = A2,
then B∗ = B2.

Other than the extreme cases, similarity
measures are used to support the application of
this new modus ponens. In particular, (18) can
be interpreted as

The more similar X to A
′
, the more similar Y to B

′
.

(19)

Suppose that a certain degree of similarity be-
tween A′ and A∗ is established, it is intuitive to
require that the consequent parts B′ and B∗ at-
tain the same similarity degree. The question is
now how to obtain an operator which can rep-
resent the similarity degree between A′ and A∗,
and to allow transforming B′ to B∗ with the
desired degree of similarity. To this end, the fol-
lowing two component transformations are pro-
posed.



3.2 Scale Transformation for
Generalized RVs

Consider applying scale transformation to an
arbitrary polygonal fuzzy membership func-
tion A = (a0, . . . , an−1) (as shown in Fig. 6)
to generate A′ = (a′

0, . . . , a
′
n−1) such that

they have the same RV, and a′
n−1−i − a′

i =
si(an−1−i − ai), where si are scale rates and
i = {0, . . . , bn

2 c − 1}. In order to achieve this,

             Move

Rep(A)

A A’

Rep(A)

A

A’

             Scale

n−1a’

n−2a’
n−3a’

a 1

2a2a’

a
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u
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u
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Figure 6: Scale and move transformations

bn
2 c equations a′

n−1−i − a′
i = si(an−1−i − ai),

i = {0, . . . , bn
2 c − 1}, are imposed to obtain the

supports with desired lengths, and (dn
2 e − 1)

equations
a′

i+1−a′

i

a′

n−1−i
−a′

n−2−i

= ai+1−ai

an−1−i−an−2−i

, i =

{0, . . . , dn
2 e − 2} are imposed to equalise the ra-

tios between the left (dn
2 e − 1) slopes’ lengths

and the right (dn
2 e − 1) slopes’ lengths of A′

to those counterparts of the original fuzzy set
A. The equation

∑n−1
i=0 wia

′
i =

∑n−1
i=0 wiai

which ensures the representative values to re-
main the same before and after the transforma-
tion is added to make up of bn

2 c+dn
2 e−1+1 = n

equations. All these n equations are collectively
written as:































a′
n−1−i − a′

i = si(an−1−i − ai) = Si

(i = {0, . . . , bn
2
c − 1})

a′

i+1−a′

i

a′

n−1−i
−a′

n−2−i

=
ai+1−ai

an−1−i−an−2−i
= Ri

(i = {0, . . . , dn
2
e − 2})

∑n−1
i=0 wia

′
i =

∑n−1
i=0 wiai

(20)

where Si is the i-th support length of the resul-
tant fuzzy set and Ri is the ratio between the left
i-th slope length and the right i-th slope length.
Solving these n equations simultaneously results
in an unique and convex fuzzy set A′ given that
the resultant set has the support lengths in a de-
scending order from the bottom to the top. This
can be proved as follows.

proof 2 As Ri ≥ 0 (i = {0, . . . , dn
2 e − 2}) and

Si ≥ Si+1 (i = {0, . . . , bn
2 c − 2}), from (20), the

conclusions below can be drawn:


































a′
i+1 − a′

i = Ri

1+Ri
(Si − Si+1) ≥ 0

i = {0, . . . , dn
2
e − 2}

a′
n−d n

2
e − a′

d n

2
e−1 = Sd n

2
e−1 ≥ 0

a′
i+1 − a′

i = 1
1+Rn−i−2

(Sn−i−2 − Sn−i−1) ≥ 0

i = {n − dn
2
e, . . . , n − 2}

From this proof, it is clear that given a fuzzy
set A and the support scale rates si, the use
of a different RV will not affect the geometrical
shape of the resultant fuzzy set. Instead, it only
affects the position of the transformed fuzzy set.

However, arbitrarily choosing the i-th sup-
port scale rate when the (i − 1)-th scale rate
is fixed may lead the i-th support to becoming
wider than the (i−1)-th support, i.e., Si > Si−1.
To avoid this, the i-th scale ratio Si, which rep-
resents the actual increase of the ratios between
the i-th supports and the i−1th supports, before
and after the transformation, normalised over
the maximal possible such increase (in the sense
it does not lead to non-convexity), is introduced
to restrict si with respect to si−1:

Si =























si(an−i−1−ai)

si−1(an−i−ai−1)
−

an−i−1−ai

an−i−ai−1

1−
an−i−1−ai

an−i−ai−1

if si ≥ si−1 ≥ 0

si(an−i−1−ai)

si−1(an−i−ai−1)
−

an−i−1−ai

an−i−ai−1
an−i−1−ai

an−i−ai−1

if si−1 ≥ si ≥ 0

(21)

If Si ∈ [0, 1] (when si ≥ si−1 ≥ 0) or Si ∈ [−1, 0]
(when si−1 ≥ si ≥ 0), then Si−1 ≥ Si. This can
be shown as follows:

proof 3 When si ≥ si−1 ≥ 0, assume Si >
Si−1, i.e, si(an−i−1 − ai) > si−1(an−i − ai−1),

∴

si(an−i−1 − ai)

si−1(an−i − ai−1)
> 1.

Also,

∵ 1 ≥
an−i−1 − ai

an−i − ai−1
≥ 0,

∴ Si > 1.

This conflicts with Si ∈ [0, 1]. The assumption
is therefore wrong. So Si−1 ≥ Si.
When si−1 ≥ si ≥ 0,

∵ an−i − ai−1 ≥ an−i−1 − ai,

∴ si−1(an−i − ai−1) ≥ si(an−i−1 − ai),

∴ Si−1 ≥ Si.

In summary, if given si (i = {0, . . . , bn
2 c−1) such

that Si ∈ [0, 1] or Si ∈ [−1, 0] (depending on
whether si >= si−1 or not), i = {1, . . . , bn

2 c−1},
the scale transformation guarantees to generate
an NCF fuzzy set.

Conversely, if two convex sets A =
(a0, . . . , an−1) and A′ = (a′

0, . . . , a
′
n−1) which



have the same RV are given, the scale rate of
the bottom support, s0, and the scale ratio of
the i-th support, Si (Si, i = {1, . . . , bn

2 c − 1})
can be calculated by:

s0 =
a′

n−1 − a′
0

an−1 − a0
(22)

Si =























































a
′

n−i−1−a
′

i

a′

n−i
−a′

i−1
−

an−i−1−ai

an−i−ai−1

1−
an−i−1−ai

an−i−ai−1

∈ [0, 1]

(if
a′

n−i−1−a′

i

an−i−1−ai

≥
a′

n−i
−a′

i−1

an−i−ai−1
≥ 0)

a
′

n−i−1−a
′

i

a′

n−i
−a′

i−1
−

an−i−1−ai

an−i−ai−1

an−i−1−ai

an−i−ai−1

∈ [−1, 0]

(if
a′

n−i
−a′

i−1

an−i−ai−1
≥

a′

n−i−1−a′

i

an−i−1−ai

≥ 0)

(23)

Given that A and A′ both are convex, the ranges
of Si as indicated above can be proved as follows.

proof 4 When
a′

n−i−1−a′

i

an−i−1−ai

≥
a′

n−i
−a′

i−1

an−i−ai−1
≥ 0,

∵ 1 ≥
a′

n−i−1 − a′
i

a′
n−i − a′

i−1

≥
an−i−1 − ai

an−i − ai−1
≥ 0,

∴ 1 ≥ Si ≥ 0.

When
a′

n−i
−a′

i−1

an−i−ai−1
≥

a′

n−i−1−a′

i

an−i−1−ai

≥ 0,

∵ 1 ≥
an−i−1 − ai

an−i − ai−1
≥

a′
n−i−1 − a′

i

a′
n−i − a′

i−1

≥ 0,

∴ 0 ≥ Si ≥ −1.

3.3 Move Transformation for
Generalized RVs

Now, consider the move transformation (also
shown in Fig. 6) applied to an arbitrary
polygonal fuzzy membership function A =
(a0, . . . , an−1) to generate A′ = (a′

0, . . . , a
′
n−1)

such that they have the same representative
value and the same lengths of supports, and
a′

i = ai + li, i = {0, . . . , dn
2 e − 2}. In order

to achieve this, the move transformation is de-
composed to (dn

2 e−1) sub-moves. The i-th sub-
move (i = {0, . . . , dn

2 e − 2}) moves the i-th sup-
port (index from the bottom to the top begin-
ning with 0) to the desired place. It moves all
the odd points on and above the i-th support,
whilst keeping unaltered for those points under
this support. To measure the degree of the i-
th sub-move, the first maximal possible move
distance (in the sense that the sub-move does
not lead to the upper non-convexity) should be
worked out first. To simplify the description of

the sub-move procedure, only the right direction
move (from ai’s point of view) is considered in
the discussion hereafter. The left direction sim-
ply mirrors this operation.

If the i-th point is supposed to move to

the right direction, the maximal position a
(i)∗
i

can be calculated as follows when
∑dn

2 e−1
j=i (wj +

wn−1−j) > 0:

a
(i)∗
i =

∑d n

2
e−1

j=i aj(wj + wn−1−j) − A
∑d n

2
e−1

j=i (wj + wn−1−j)
(24)

where A =
∑

wk+wn−1−k<0
i<k<dn

2 e

[(Sk−1 −

Sk)
∑dn

2 e−1

m=k (wm + wn−1−m)] and Sk is the
length of the k-th support (either before or after
move transformation as they are the same).

If however
∑dn

2 e−1
j=i (wj + wn−1−j) < 0, the

maximal position a
(i)∗
i is calculated similarly to

(24) except that the condition wk +wn−1−k < 0
in term A is changed to wk + wn−1−k > 0.

proof 5 As the sub-move does not change the
RV and supports’ lengths, according to (10), it
can be assumed that

dn

2 e−1
∑

i=0

a′
i(wi+wn−1−i) =

dn

2 e−1
∑

i=0

ai(wi+wn−1−i) = D

Also, as the i-th sub-move does not move the
points under the i-th support, it can be assumed
that

dn

2 e−1
∑

j=i

a′
j(wj+wn−1−j) =

dn

2 e−1
∑

j=i

aj(wj+wn−1−j) = E

Consider moving point a
(i−1)
i (ai’s new position

after the (i− 1)-th sub-move) to the right direc-

tion and
∑dn

2 e−1
j=i (wj + wn−1−j) > 0,

a′
i(wi + wn−1−i) = E −

dn

2 e−1
∑

j=i+1

a′
j(wj + wn−1−j)

≤















































E −
∑dn

2 e−2
j=i+1 a′

j(wj + wn−1−j)
−a′

dn

2 e−2(wdn

2 e−1 + wn−dn

2 e)

(if wdn

2 e−1 + wn−dn

2 e > 0)

E −
∑dn

2 e−2
j=i+1 a′

j(wj + wn−1−j)
−a′

dn

2 e−2(wdn

2 e−1 + wn−dn

2 e)

−(Sdn

2 e−2 − Sdn

2 e−1)(wdn

2 e−1 + wn−dn

2 e)
(if wdn

2 e−1 + wn−dn

2 e < 0)

where Sdn

2 e−2 and Sdn

2 e−1 are the lengths of the

(dn
2 e − 2)-th and (dn

2 e − 1)-th supports, respec-
tively. That is to say, if wdn

2 e−1 + wn−dn

2 e > 0,

in order to get the maximal value of a′
i(wi +



wn−1−i), a′
dn

2 e−1 is assigned the same value as

that of a′
dn

2 e−2. This leads to the top left slope

to being vertical. Similarly, if however wdn

2 e−1+

wn−dn

2 e < 0, a′
dn

2 e−1 = a′
dn

2 e−2+Sdn

2 e−2−Sdn

2 e−1

the top right slope will be vertical. Applying this
procedure from the top down to the i-th support
leads to the following

a′
i(wi + wn−1−i) ≤ E − a′

i

dn

2 e−1
∑

j=i+1

(wj + wn−1−j)

−
∑

wk+wn−1−k<0
i<k<dn

2 e

[(Sk−1 − Sk)

dn

2 e−1
∑

m=k

(wm + wn−1−m)],

which can therefore be rearranged to being ex-
pressed as (24). The proof for the case with
∑dn

2 e−1
j=i (wj + wn−1−j) < 0 is omitted as it sim-

ply follows the discussion. Note that it is mean-

ingless for
∑dn

2 e−1
j=i (wj + wn−1−j) = 0. With

such a weight vector, the RV cannot represent
the overall location of any given fuzzy set. This
is because the RV of a fuzzy set always remains
the same when the fuzzy set is merely moved
without changing the geometrical shape.

From the proof, the other extreme points a
(i)∗
j

(j = {i + 1, . . . , dn
2 e − 1}) which are on the left

side of the fuzzy set in the i-th sub-move can be
calculated by:

a
(i)∗
j =

{

a
(i)∗
j−1 if wj + wn−1−j > 0

a
(i)∗
j−1 + Sj−1 − Sj if wj + wn−1−j < 0

(25)

It can be shown that all the extreme points
determine an NCF fuzzy set A(i)∗ (as illustrated
in Fig. 7) which must have at least a vertical
slope between any two consecutive α-cuts above
the i-th support. This fuzzy set has the same
RV as A(i−1). That is:

d n

2
e−1

∑

j=0

a
(i)∗
j (wj+wn−1−j) =

d n

2
e−1

∑

j=0

a
(i−1)
j (wj+wn−1−j)

(26)

The proof is ignored here as it is obvious from

the calculation of the extreme point a
(i)∗
i .

The move to the left direction from the view-
point of ai is omitted as it mirrors the right di-
rection move.

From this, the first maximal move distance
can be calculated. However, the i-th sub-move
does not only need to consider the possible upper
non-convexity, but also to pay attention to the
possible lower non-convexity. Otherwise it may
still lead to non-convexity as shown in Fig. 7. To
avoid this, the second maximal move distance is

calculated as a
(i−1)
n−i − a

(i−1)
n−1−i. It is intuitive to

select the minimal of these two maximal move
distances as the actual maximal move distance
for use which will not lead to either upper or
lower non-convexity. The move ratio Mi, which
is used to measure the degree of such a sub-move,
is thus calculated by:

Mi =



































li−(a
(i−1)
i

−ai)

min{a
(i)∗
i

−a
(i−1)
i

,a
(i−1)
n−i

−a
(i−1)
n−1−i

}

(if li ≥ (a
(i−1)
i − ai))

li−(a
(i−1)
i

−ai)

min{a
(i−1)
i

−a
(i)∗
i

,a
(i−1)
i

−a
(i−1)
i−1 }

(if li ≤ (a
(i−1)
i − ai))

(27)

where the notation a
(i−1)
i represents ai’s new po-

sition after the (i − 1)-th sub-move. Initially,

a
(−1)
i = ai.

If Mi ∈ [0, 1] when li ≥ (a
(i−1)
i −ai), or Mi ∈

[−1, 0] when li ≤ (a
(i−1)
i − ai), the sub-move is

carried out as follows: The odd points under the
i-th support are not changed:

a
(i)
j = a

(i−1)
j , j = {0, . . . , i− 1, n− i, . . . , n− 1}

while the other points a
(i−1)
i , a

(i−1)
i+1 , . . . , a

(i−1)
n−1−i

are being moved. At the beginning, when i =
0, all odd points are being moved of course. If
moving to the right direction from the viewpoint

of a
(i−1)
i , i.e., Mi ∈ [0, 1], the moving distances

of a
(i−1)
j (j = {i, i+1, . . . , dn

2 e−1}) which are on

the left side of the fuzzy set A(i−1) are calculated
by multiplying M

′
i with the distances between

the extreme positions a
(i)∗
j and themselves. In

so doing, a
(i−1)
j will move the same proportion of

distances to their respective extreme positions.

Thus, a
(i)
j can be computed by:

a
(i)
j = a

(i−1)
j + M

′
i(a

(i)∗
j − a

(i−1)
j ), (28)

where

M
′
i = Mi

min{a
(i)∗
i − a

(i−1)
i , a

(i−1)
n−i − a

(i−1)
n−1−i}

a
(i)∗
i − a

(i−1)
i

.

(29)

Rep(A)

A A

n−1a

i a n−1−i
(i−1)

a n−i
(i−1)

u

0 xa 0
(0)

a i
(i−1)

(i−1)

a 1
(1)

a i
(i)*

(i )*

Figure 7: The extreme move positions in the i-th
sub-move



It represents the applied move ratio for the i-
th sub-move. If Mi ∈ [0, 1], M

′
i ∈ [0, Mi].

The adoption of applied move ratio M
′
i avoids

the potential lower non-convexity. Such a
move strategy leads to an NCF set A(i) =

{a
(i)
0 , . . . , a

(i)
n−1} which has the same representa-

tive value as A and has the new point a
(i)
i on

the desired position, i.e., Rep(A(i)) = Rep(A)

and a
(i)
i = ai + li.

proof 6 Consider the i-th point during the i-
th sub-move (i = {0, . . . , dn

2 e − 2}), substituting

(27) and (29) to (28) leads to a
(i)
i = ai + li,

which is the desired position for ai to be moved
to. As the i-th support length is fixed, an−1−i is
also moved to the desired position via this sub-
move. Initially, the 0-th sub-move moves a0 and
an−1 to the correct positions, and the first sub-
move moves a1 and an−2 to the correct positions
while keeping a0 and an−1 unchanged. Follow-
ing this by induction, the i-th sub-move moves
a0, . . . , ai, an−1−i, . . . , an−1 to the correct posi-
tions.

The distances between a
(i)
j+1 and a

(i)
j (j =

{i, i + 1, . . . , dn
2 e − 2}) are calculated as follows

according to (28):

a
(i)
j+1−a

(i)
j = (a

(i−1)
j+1 −a

(i−1)
j )(1−M

′
i)+M

′(a
(i)∗
j+1−a

(i)∗
j ).

Initially, when i = 0, a
(i−1)
j+1 − a

(i−1)
j = a

(−1)
j+1 −

a
(−1)
j = aj+1 −aj ≥ 0 and a

(i)∗
j+1 −a

(i)∗
j = a

(0)∗
j+1 −

a
(0)∗
j ≥ 0 (j = {0, 1, . . . , dn

2 e−2}) as A and A(0)∗

are convex. This leads to a
(0)
j+1 − a

(0)
j ≥ 0, j =

{0, 1, . . . , dn
2 e−2}, which in turn leads to a

(1)
j+1−

a
(1)
j ≥ 0, j = {1, . . . , dn

2 e−2}. Also, as this sub-

move causes moves to the right direction, a
(1)
1 ≥

a
(0)
0 = a

(1)
0 . So a

(1)
j+1−a

(1)
j ≥ 0, j = {0, . . . , dn

2 e−

2}. By induction, it follows that

ai
j+1 − ai

j ≥ 0, j = {0, . . . , d
n

2
e − 2 }.

The new positions of aj (j = {n − dn
2 e, . . . , n −

1 − i}) which are on the right side of A can be
calculated similarly:

a
(i)
j = a

(i−1)
j + M

′
i(a

(i)∗
n−1−j − a

(i−1)
n−1−j). (30)

Thus, the distances between a
(i)
j+1 and a

(i)
j (j =

{n − dn
2 e, . . . , n − 2 − i}) are calculated by:

a
(i)
j+1 − a

(i)
j = a

(i−1)
j+1 − a

(i−1)
j

+M
′
i(a

(i)∗
n−2−j − a

(i−1)
n−2−j − a

(i)∗
n−1−j + a

(i−1)
n−1−j).

From (25),

a
(i)∗
n−1−j =







a
(i)∗
n−2−j (if wn−1−j + wj > 0)

a
(i)∗
n−2−j + Sn−2−j − Sn−1−j

(if wn−1−j + wj < 0)

∴ a
(i)∗
n−2−j − a

(i)∗
n−1−j ≥ Sn−1−j − Sn−2−j

∴ a
(i)
j+1 − a

(i)
j ≥ a

(i−1)
j+1 − a

(i−1)
j + M

′
i(a

(i−1)
j − a

(i−1)
j+1 )

= (a
(i−1)
j+1 − a

(i−1)
j )(1 − M

′
i) ≥ 0

Initially, (a
(i−1)
j+1 − a

(i−1)
j )(1 − M

′
i) = (a

(−1)
j+1 −

a
(−1)
j )(1−M

′
i) = (aj+1 − aj)(1−M

′
i) ≥ 0 (j =

{n−dn
2 e, . . . , n−2}). This leads to a

(0)
j+1−a

(0)
j ≥

0 (j = {n−dn
2 e, . . . , n−2}), which in turn leads

to a
(1)
j+1 − a

(1)
j ≥ 0 (j = {n − dn

2 e, . . . , n − 3}).
Also, the adoption of applied move ratio ensures

a
(1)
n−1 = a

(0)
n−1 ≥ a

(1)
n−2, so a

(1)
j+1 − a

(1)
j ≥ 0 (j =

{n − dn
2 e, . . . , n − 2}). Again, by induction,

a
(i)
j+1 − a

(i)
j ≥ 0 j = {n − d

n

2
e, . . . , n − 2}.

Also, as a
(i)
n−dn

2 e − a
(i)
dn

2 e−1 = Sdn

2 e−1 ≥ 0. Thus,

it can be summarized that

a
(i)
j+1 − a

(i)
j ≥ 0 j = {0, . . . , n − 2},

i.e., A(i) is an NCF set.
The representative value of A after the i-th

sub-move, Rep(A(i)), is the same as its origi-
nal Rep(A). This is because the following holds
according to (28), (30) and (26):

dn

2 e−1
∑

j=0

a
(i)
j (wj + wn−1−j)

=

dn

2 e−1
∑

j=0

a
(i−1)
j (wj + wn−1−j)

= . . .

=

dn

2 e−1
∑

j=0

aj(wj + wn−1−j)

The proofs of these properties including mov-
ing to the desired position, preservation of both
RV and convexity for moving to the left direction
(i.e., Mi ∈ [−1, 0]) are omitted as they simply
mirror the derivations as given above.

In summary, if given move ratios Mi ∈
[−1, 1], (i = {0, . . . , dn

2 e − 2}), the (dn
2 e −

1) sub-moves transform the given NCF set
A = (a0, . . . , an−1) to a new NCF set A′ =
(a′

0, . . . , a
′
n−1) with the same lengths of supports

and the same RV.
In the converse case, where two convex fuzzy

sets A = (a0, . . . , an−1) and A′ = (a′
0, . . . , a

′
n−1)

which have the same representative value are
given, the move ratio Mi, i = {0, 1, . . . , dn

2 e−2},



are computed by:

Mi =



































a′

i
−a

(i−1)
i

min{a
(i)∗
i

−a
(i−1)
i

,a
(i−1)
n−i

−a
(i−1)
n−1−i

}

(if a′
i ≥ a

(i−1)
i )

a′

i
−a

(i−1)
i

min{a
(i−1)
i

−a
(i)∗
i

,a
(i−1)
i

−a
(i−1)
i−1 }

(if a′
i ≤ a

(i−1)
i )

(31)

where a
(i−1)
i is the ai’s new position after the (i−

1)-th sub-move. Initially, when i = 0, a
(−1)
i =

ai. This sub-move (bottom sub-move) will not
lead to underneath non-convexity as there are
no odd points below, whilst the other sub-moves
need to consider situations where non-convexity
arises both upper and lower. When i = 0,

a
(i−1)
n−i − a

(i−1)
n−1−i and a

(i−1)
i − a

(i−1)
i−1 are not de-

fined. In order to keep the expression the same
for (31), both of them take value 1 to present
the bottom case.

Given that A = (a0, . . . , an−1) and A′ =
(a′

0, . . . , a
′
n−1) are both convex, the ranges of Mi

(i.e., Mi ∈ [0, 1] when a′
i ≥ a

(i−1)
i or Mi ∈ [−1, 0]

when a′
i ≤ a

(i−1)
i ), i = {0, 1, . . . , dn

2 e − 2}, are
obvious and hence no proof is needed.

3.4 Summary

As indicated earlier, it is intuitive to main-
tain the similarity degree between the conse-
quent parts B′ = (b′0, . . . , b

′
n−1) and B∗ =

(b∗0, . . . , b
∗
n−1) to be the same as that between

the antecedent parts A′ = (a′
0, . . . , a

′
n−1) and

A∗ = (a∗
0, . . . , a

∗
n−1), in performing interpola-

tive reasoning. Now that the proposed scale and
move transformations allow the similarity degree
between two fuzzy sets to be measured by the
scale rate, scale ratios and move ratios, the de-
sired conclusion B∗ can be obtained as follows:

1. Calculate scale rates si (i = {0, 1 . . . , bn
2 c−

1}) of the i-th support from A′ to A∗ as
follows:

si =
a∗

n−1−i − a∗
i

a′
n−1−i − a′

i

. (32)

2. Calculate scale rate s0 of the bottom sup-
port (or just get from the first step) and
scale ratios Si (i = {1 . . . , bn

2 c − 1}) of the
i-th support from A′ to A∗ according to (22)

and (23):

s0 =
a∗

n−1 − a∗
0

a′
n−1 − a′

0

(33)

Si =



























































a
∗

n−i−1−a
∗

i

a∗

n−i
−a∗

i−1
−

a
′

n−i−1−a
′

i

a′

n−i
−a′

i−1

1−
a′

n−i−1
−a′

i

a′

n−i
−a′

i−1

(if
a∗

n−i−1−a∗

i

a∗

n−i
−a∗

i−1
≥

a′

n−i−1−a′

i

a′

n−i
−a′

i−1
≥ 0)

a
∗

n−i−1−a
∗

i

a∗

n−i
−a∗

i−1
−

a
′

n−i−1−a
′

i

a′

n−i
−a′

i−1

a′

n−i−1
−a′

i

a′

n−i
−a′

i−1

(if
a′

n−i−1−a′

i

a′

n−i
−a′

i−1
≥

a∗

n−i−1−a∗

i

a∗

n−i
−a∗

i−1
≥ 0)

(34)

As A′ and A∗ are both convex, Si ∈ [0, 1]
(when si ≥ si−1) or Si ∈ [−1, 0] (when
si−1 ≥ si) holds.

3. Apply scale transformation to A′ with scale
rates si (i = {0, 1 . . . , bn

2 c − 1}) calculated
in the first step to obtain A′′ by simul-
taneously solving n linear equations. As
Si ∈ [−1, 1] (i = {0, 1 . . . , bn

2 c − 1}), it en-
ables A′′ to have all its support lengths ar-
ranged in descending order from the bot-
tom to the top. This, together with the
scale transformation, guarantees A′′ to be a
unique, normal and convex fuzzy set, which
has the same representative value as A∗ and
has the same bn

2 c support lengths as those
of A∗.

4. Assign scale rate s′0 of the bottom support
of B′ to the value of s0 (i.e., s′0 = s0) as
it does not give rise to non-convexity. The
scale ratios S

′
i, (i = {1 . . . , bn

2 c − 1}) of the
i-th support of B′ are in the form

S
′
i =















































s
′

i
(b

′

n−i−1−b
′

i
)

s′
i−1

(b′
n−i

−b′
i−1

)
−

b
′

n−i−1−b
′

i

b′
n−i

−b′
i−1

1−
b′
n−i−1

−b′
i

′
∗n−i−b′

i−1

(if si ≥ si−1 ≥ 0)

s
′

i
(b

′

n−i−1−b
′
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(35)

They are required to equal Si ( i =
{1 . . . , bn

2 c − 1}) as calculated in step 2.
Solving this along with the initial status
(s′0 = s0) leads to the following scale rates



s′i (i = {0, 1 . . . , bn
2 c − 1}):

s
′
i =















































si (if i = 0)
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i−1(si−si−1)(

b
′

n−i
−b

′

i−1
b′
n−i−1

−b′
i

−1)

si−1(
a′

n−i
−a′

i−1
a′

n−i−1
−a′

i

−1)

+ s′i−1

(if si ≥ si−1 ≥ 0)

s′
i−1si

si−1

(if si−1 ≥ si ≥ 0)
(36)

5. Apply scale transformation to B′ using s′i
(i = {0, 1 . . . , bn

2 c − 1}) as calculated in
step 4 to obtain B′′ = (b′′0 , . . . , b′′n−1), by
simultaneously solving the n linear equa-
tions. As B′ is convex and S

′
i = Si ∈ [−1, 1],

it enables B′′ to have descending support
lengths from the bottom to the top. This,
together with the scale transformation, en-
sures B′′ to be a unique, normal and convex
fuzzy set.

6. Decompose the move transformation to
(dn

2 e−1) sub-moves. For i = 0, 1, . . . , dn
2 e−

2,

(a) Calculate the i-th sub-move ratio Mi

from A(i−1) to A∗ according to (31),
where A(i−1) is the fuzzy set obtained
after the (i− 1)-th sub-move. Initially,
A(−1) = A′′. As A(i−1) and A∗ are
both convex, Mi ∈ [−1, 1].

(b) Apply move transformation
to A(i−1) using Mi to obtain

A(i) = {a
(i)
0 , a

(i)
1 , . . . , a

(i)
n }. As

Mi ∈ [−1, 1] and A(i−1) is convex, A(i)

is convex and has the same RV as A′′.

(c) Apply move transformation
to B(i−1) using Mi to obtain

B(i) = {b
(i)
0 , b

(i)
1 , . . . , b

(i)
n }. Again,

it is convex and has the same RV as
B′′.

7. When the for loop of step 6 terminates, the
procedure returns that A(dn

2 e−2) = A∗ and
B(dn

2 e−2), which is the resultant fuzzy set
B∗.

Clearly, B′ and B∗ will retain the same sim-
ilarity degree as that between the antecedent
parts A′ and A∗.

The interpolation of two rules involving mul-
tiple antecedent variables is extend-able by aver-
aging the scale rate, scale ratios and move ratios.
Interested readers are referred to [5] for detailed
discussion.
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Figure 8: Example 1
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Figure 9: Example 2

4 EXPERIMENTAL RESULTS

In this section, the use of the average RV, com-
patible RV and weighted average RV to conduct
fuzzy interpolation is demonstrated and the re-
sults are compared. Note that (9) is used to
calculate weighted RV. For simplicity, both ex-
amples discussed below concern the interpola-
tion between two adjacent rules A1 ⇒ B1 and
A2 ⇒ B2.

Example 1. This example shows the use
of the proposed approach in dealing with trape-
zoidal fuzzy sets. All the conditions are given
in Table 1 and Fig. 8, which also include the
results of interpolation. The interpolations by
using three different RV representations are car-
ried out, according to the steps summarized in
Section 3.4, resulting in three unique and NCF
fuzzy sets respectively. It is interesting to note
that these three results almost have the same
geometrical shape although their positions are
slightly different. This is because all the calcu-
lations are the same except that of the RV defini-
tion. This empirically shows that although dif-
ferent RVs may be chosen for use given a specific
problem, their influence on the final interpola-
tive outcomes is not drastic. This helps ensure
the stability of the inference method employed.

Table 1: Results for example 1, with A∗ =
(6, 6, 9, 10)

Attribute Values Results
A1 = (0, 4, 5, 6) RV B∗

A2 = (11, 12, 13, 14) average (5.12, 5.12, 7.48, 8.18)
B1 = (0, 2, 3, 4) compatible (5.23, 5.23 ,7.61, 8.32)
B2 = (10, 11, 12, 13) w average (4.73, 4.73, 7.02, 7.70)

Example 2. This example shows an interpo-
lation of rules concerning hexagonal fuzzy sets,
and it also demonstrates the effect of interpo-
lation involving different shapes of fuzzy sets.
All the attribute values and results with respect



to the observation A∗ = (6, 6.5, 7, 9, 10, 10.5) are
shown in Table 2 and Fig. 9. Note that in this
example, the two intermediate points a1 and a4

of each fuzzy set involved have a membership
value of 0.5. Three unique and NCF fuzzy sets
are obtained using three RVs respectively. Simi-
lar to example 1, the resultant fuzzy sets possess
almost same geometrical shape but of slightly
deferent positions.

Table 2: Results for example 2, with A∗ =
(6, 6.5, 7, 9, 10, 10.5)

Attribute Values Results
A1 = (0, 1, 3, 4, 5, 5.5) RV B∗

A2 = (11, 11.5, 12, average (5.64, 5.98, 6.29,
13, 13.5, 14) 8.63, 9.46, 9.93)

B1 = (0, 0.5, 1, 3, 4, 4.5) w average (5.69, 6.03, 6.36,
B2 = (10.5, 11, 12, 8.69, 9.53, 10.00)

13, 13.5, 14) compatible (5.55, 5.88,6.19,
8.52, 9.34, 9.81)

5 CONCLUSIONS

This paper has proposed a generalized, scale and
move transformation-based, interpolative rea-
soning method which can handle interpolation
of arbitrarily complex polygonal fuzzy sets. It
has introduced a generalized representation of
representative values of fuzzy sets and provided
three useful specifications. This helps ensure the
uniqueness, normality, convexity of interpolated
fuzzy sets, as well as provide a degree of free-
dom to choose different RVs to meet particular
application requirements.

There is still room to improve the present
work. In particular, the analysis of the inter-
polative method’s sensitivity to changes in the
shape of membership functions is worth con-
sidering, and more comparisons to other ap-
proaches are desirable. In addition, this research
only uses two rules to conduct interpolation, but
interpolation involving more rules may be uti-
lized in fuzzy modelling. An extension of the
proposed method to cope with such a problem
is currently begin carried out. Finally, this work
does not look into the extrapolation problem,
further effort to estimate this issue seems use-
ful.
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A general interpolation technique in fuzzy
rule bases with arbitrary membership func-
tions. In Proc. IEEE Int. Conf. Syst., Man,
Cybern., pages 510–515, 1996.

[2] P. Baranyi, D. Tikk, Y. Yam, and L. T.
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