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Abstraa-This paper generalises the previously proposed 
interpolative reasoning method 151 to cover interpolations in- 
volving complex polygon, Gaussian or other bell-shaped fuzzy 
membership functions. This can be achieved by the generality 
of the proposed scale and move transformations. The method 
works by first constructing a new inference rule via manipulating 
two given adjacent rules, and then by using scale and move 
transformations to convert the intermediate inference results into 
the final derived conclusions. This generalised method has two 
advantages thanks to the elegantly proposed transformations: I) 
It can easily handle interpolation of multiple antecedent variables 
with simple computation; and 2) It guarantees the uniqueness as 
well as normality and convexity of the resulting interpolated fuzzy 
sets. Numerical examples are provided to demonstrate the use of 
this method. 

1. INTRODUCTION 

The success of fuzzy modelling relies on its ability to 
approximate any complex system with human-like reasoning. 
However, the curse ofdimensionalify, which is referred to the 
exponential growth of the possible rule number as the input 
variables increase, inevitably deteriorates the transparency of 
such a fuzzy model. In order to alleviate this problem, there 
has been much work attempted such as orthogonal based 
methods 1131. similarity based methods [IO] and interpolative 
reasoning methods. As one of the simplification techniques, 
interpolation offers the potential for sparse fuzzy rule-base 
modelling. This is in contrast to the classic fuzzy modelling 
in the sense that it is capable of obtaining the results when 
the given fuzzy rule base is not complete, whilst fuzzy rules 
which may be interpolated from their neighbouring rules can 
he omitted from the rule base. 

The first published fuzzy interpolation method [6] high- 
lighted a number of important properties of the approach. 
However, it cannot guarantee convex results given antecedent 
values are normal and convex [11][16]. In order to eliminate 
this drawback and to develop more sensible interpolation 
techniques, there has been considerable work reported in the 
literature. For instance, Vas, Kaimar and Kbczy have proposed 
an algorithm [I21 that reduces the problem of non-convex 
conclusions. Qiao, Mizumoto and Yan [9] have published an 
improved method which uses similarity transfer reasoning to 
guarantee the convex results. Hsiao, Chen and Lee [4] have in- 
troduced a new interpolative method which exploits the slopes 
of the fuzzy sets. General fuzzy interpolation and extrapolation 
techniques [ I ]  and a modified a-cut based method [2] have 
also been proposed. In addition, Bouchon, Marsala and Rifqi 
have created an interpolative method by exploiting the concept 
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of graduality [3]. Yam and K k z y  [14][15] have proposed a 
fuzzy interpolative method based on Cartesian representation. 

Nevertheless, some of the existing methods may include 
complex computation. It becomes more difficult when they 
are extended to multiple variables interpolation. Some others 
may only apply to simple fuzzy membership functions limited 
to triangular or trapezoidal sets. Others may not be able to 
obtain unique as well as normal and convex fuzzy (NCF) 
results. This paper proposes a general interpolative reasoning 
method which avoids the problems mentioned above. It is 
a generalised version of the work previously presented in 
151. Intermediate fuzzy rules are constructed by their adjacent 
rules. These, together with the observations, are converted into 
the final fuzzy consequences by the proposed scale and move 
transformations, which ensure unique, normal and convex 
results in an elegant manner. 

The rest of the paper is organised as follows. Section I1 
reviews the previous work [5] which applies to antecedent vari- 
ables with triangular sets. Section 111 generalises this method 
to complex fuzzy sets such as trapezoidal, Gaussian and other 
bell-shaped membership functions. Section IV extends the 
idea to multiple variable interpolation. Examples are shown 
in Section V to demonstrate the usage of this method and to 
facilitate comparative studies. Finally, Section VI concludes 
the paper and points out some further work. 

11. SINGLE ANTECEDENT VARIABLE WITH TRIANGULAR 
FUZZY SETS 

This section reviews the method proposed in [5] which ap- 
plies to triangular fuzzy sets, followed by more complex fuzzy 
membership functions such as trapezoidal and Gaussian in the 
next section. To facilitate this discussion, the representative 
value of a triangle is defined as the average of all points’ x 
coordinate values (actually it is the x coordinate of the centre 
of gravity of such a triangle). This can be used to represent 
the overall location of a given triangular fuzzy set A denoted 
as (ao, a l ,  az), as shown in Fig. 1. In mathematical formulae 
the representative value is of the form 

In fuzzy interpolation, the simplest case is commonly used 
to demonstrate the underlying techniques without losing any 
generality. That is, given two adjacent rules as follows 

If X is AI then Y is B1, 
I f  X i s  Az then Y i s  Bz, 
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With (5H7) and (4), 

+a +a 

= (1 - X R e p ) R e P ( A I )  + X R e p R d A z )  
= Rep(A') 

Rep(A') 
= (1 - X R ~ J ) ~ ' "  i' '' + X R e p n 2 " + 0 ~ ' f n 2 2  

Also, it is worth noting that A' is a convex fuzzy set as the 
following holds given a10 5 all 5 a12, azo 5 a21 5 a22 and 
0 5 XRep 5 1: 

'-2; - a; = (1 - X R e p ) ( a l l  - al0) + XRep(aZ1 a201 2 0, 
U; - a; (1 - XRep)(alZ ~ all)  f XRep(a22 - a2l) 2 0. = 

Similarly, the consequent fuzzy set B' can he obtained by 

bb = (1 - X R ~ ~ ) ~ I O  + XRepbzol (9) 
b; = (1 - X ~ ~ ~ ) b i i  + XRepbzi:  (10) 
b; = (1 - XRep)biz  + XRepbzz ,  (1 1) 

B' (1 - X R ~ ~ ) B I  + XR,,BZ. (12) 

with abbreviated notation: 

In so doing, the newly derived rule A' + B' involves the use 
of only normal and convex fuzzy sets. 

As A' + B' is derived from AI + B1 and A2 + Bz. 
it is feasible to perform fuzzy reasoning with this new rule 
without further reference to its originals. The interpolative 
reasoning problem is therefore changed from (2) to the new 
modus ponens interpretation: 

observation: X is A* 

conclusion: Y is B'? 
rule: if X is A', then Y is B' (13) 

This interpretation retains the same results as (2) in dealing 
with the extreme cases: If A' = AI,  then from (4) X R ~ ~  = 0, 
and according to (8) and (12), A' = A1 and B' = BI, so the 
conclusion B* = B1. Similarly, if A' = Az, then B' = Bz. 

Other than the extreme cases, similarity measures are used 
to support the application of this new modus ponens as done 
in [9]. In particular, (13) can he interpreted as 

The more similar X to A', the mme similar Y to B'. 

Suppose that a certain degree of similarity between A' and A' 
is established, it is reasonable to require that the consequent 
parts B' and B' attain the same similarity degree. The 
question is now how to obtain an operator which will allow 
transforming B' to B' with the desired degree of similarity. 
To this end, the following two component transformations are 
first introduced: 

Given a scale rale s (s 2 0), in 
order to transform the current fuzzy support (a2 - ao) into a 
new support (s * (aZ - ao)) while keeping the representative 
value and the ratio of left-support (a; - ab) to right-support 
(a; - a;) of the transformed fuzzy set the same as those of 
its original, that is, Rep(A') = Rep(A) and = e, 
the new do, afl  and a'2 must satisfy (see Fig. 3. A): 

(14) 

Scale Transformation 

which are denoted as A1 + B1, A2 + Bz respectively, 
together with the observation A' which is located between 
fuzzy sets AI and Az, the interpolation is supposed to achieve 
the fuzzy result B'. In another form this simplest case can he 
represented through the modus ponens interpretation (2), and 
as illustrated in Fig. 2. 

observation: X is A* 
rules: if X is A I ,  then Y is B1 

if X is Az,  then Y is Bz 
conclusion: Y is 8'7 

(2) 

Here, Ai = (aio, ail, aiz), Bi = (bio, bil, biz), i = 1,2, and 
A' = (ao,ai,az), B' = (bo ,b i ,bz) .  

The method proposed in [ 5 ]  begins with constructing a 
new fuzzy set A' which has the same representative value 
as A*. To support the generalisation of the present work, the 
distance between A1 and A2 is herein re-represented by the 
following (which has the same mathematical interpretation as 
the distance defined in [ 5 ]  for triangular fuzzy sets, of course): 

W I , A Z )  = d(Rep(A1),Rep(Az)). (3) 
An interpolative ratio X R ~ ~  (0 5 X R ~ ~  5 1) is introduced to 
represent the important impact of A2 when constructing A': 

That is to say, if X f i e p  = 0, Az plays no part in the construction 
of A'. While if X R ~ ~  = 1, A2 plays full weight on A'. Then 
by using the simplest linear interpolation, ah, a; and a; of A' 
are calculated as follows: 

ab = (1 - XRep)alO f XRepaZO> ( 5 )  

a; = (1 - X R e p b l Z  + XRepaZZ> (7) 

(8) 
Now, A' has the same representative value as A*, this is 

a; = (1 ~ X R e p ) a l l  + X R e P a z l ,  ( 6 )  

which are collectively abbreviated to 

A' = ( 1  - X R ~ ~ ) A I  + X R ~ ~ A Z .  

because 
a; + a; + a; 

3 
Rep(A') = 

Fig. I .  Representative value of a Inangular fuzzy set 

" I  1, 

Fig. 2. Interpolation with triangular membership functions 
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(15) 
ao( l+ 2s) + a l (1 -  s )  + a z ( l  - s) 

3 
ab = 

. 

(17) 
ao(1 - S) + a l ( l  - S) +a2(1 +ZS) 

3 
This is obvious. In fact, to satisfy the conditions imposed 
over the transformation, the linear equations below must hold 
simultaneously, 

a; = 

.A+.:+.; a”+=,+=* 
3 -  3 

Solving these equations leads to the solutions as given in (15)- 
(17). The scale transformation guarantees that the transformed 
fuzzy sets are convex as the following holds given a. 5 al 5 
a2 and s 2 0: 

a; -ab = s(a1 - ao) 2 0 { a; -a‘, = s(aZ - a l )  2 0 

Given a moving distance I ,  in 
order to transform the current fuzzy set from the starting 
location an to a new starting position a. + 1 while keeping 
the representative value and the length of support (a2 - ao) 
the same, i.e., Rep(A’) = Rep(A) and a; ;ab = a2 -an, the 
new ab, a‘, and a; must be (as shown in Fig. 3. B): 

Move Transformation 

where 0 5 1 5 l,,, = (a1 - ao)/3. If 1 > l,,,,, 
the transformation generates the non-convex fuzzy sets. For 
instance, consider the extreme case where A is transformed to 
A“ where the left slope of A” becomes vertical (i.e. ob = a‘,) 
as shown in Fig. 3. B. Here, I = I,,,. Any furthcr increase 
in 1 will lead to the resulting transformed fuzzy set bcing a 
non-NCF set. To woid this, the move ratio M is introduced: 

If move ratio W E [0,1], then 1 5 I,,, holds. This ensures 
that the transformed fuzzy set A’ will he normal and convex 
if A is itself an NCF set. Note that the move transformation 
has two possible moving directions, the above discusses the 
left-direction case (from the viewpoint of a l )  with 1 > 0, the 
right direction with 1 < 0 should hold by symmetry: 

111. SINGLE ANTECEDENT VARIABLE WITH COMPLEX 
FUZZY SETS 

It is potentially very useful to extend this interpolative 
reasoning method to apply to more complex fuzzy member- 
ship functions. Consider a trapezoid fuzzy set A, denoted as 
(ao,al,  aZ,a3) as shown in Fig. 4, the support, left support, 
right support and top support of A are defined as a3 - ao, 
al - ao, a3 - a2 and a2 - al respectively. The representative 
value of this fuzzy set is defined as: 

(23) 
1 at + a2 

Rep(A) = ?(a0 + ~ + 4. 2 

There may be altemative definitions (such as Rep(A) = 

“I 

Fig. 4. Trapezoid representative value 

aa+a1:a7+a3) which are still able to represent the overall loca- 
tion of such a trapezoid. However, the adoption of (23) ensures 
the compatibility to the triangular case. This is covered by the 
situation where al and a2 in a trapezoid are collapsed into 
a l ,  thereby degenerating into a triangle. The representative 
value definitions for trapezoid (23) and triangle ( I )  remain 
the same. It is worth noting that these definitions do not affect 
the uniqueness, normality and convexity properties of resultant 
fuzzy sets. 

The calculation of the intermediate fuzzy rule A’ 3 B’ 
follows a similar process as applying to triangular membership 
functions except that A’ and 5’ here are trapezoids. It is 
straightforward to verify the extreme cases (such as if A* = 
A1 then 5’ = 5 1 )  in the same way as applying to triangles. 
To adapt the proposed method to be suitable for trapezoidal 
fuzzy sets, attention is drawn to the two transformations. 

Given two scale rates s, and st 
(ss 2 0 and st 2 0) for support scale and top support scale 
respectively, in order to transform the current fuzzy support 
a3-an) to the new support (s.* a3 ao)) ,  and the top support 

f a ~ - a , )  to the new top support [st*(a2-al)), while keeping 
the representative value and the ratio of left support (ai  -ab) 
to right support (a; - a;) of the transformed fuzzy set the 
same as those of its original, that is, Rep(A‘) = Rep(A) and 

the new alU, all ,  a’2 and af3 must satisfy a, -01, a -a 

(as tllustratea in Fig. 5. A): 

Scale Transformation 

- - e,. 

A 

Fig. 3. Triangle scale and move transformations 

Fig. 5.  Tiapemid scale and move transformations 

, (24) 

C(a0 + a3 - a1 - a,) - D(5ao + a2 - 5a, - a,) , ( 2 5 )  

C(2al + a3 - 2ao - a z )  - D(a1 + az - a. - a3) 
B 

B 

a b = A -  

a; = A -  
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If move ratio M E [0,1], then 1 5 1,,, holds. Similar to 
the triangle move transformation, there is an opposite move 
direction with 1 5 0. In this case the condition 

, (26) 
C(ao + a3 -ai - a , )  - D(ai  + 5a3 -an - 5az)  

B 
C(ao + 2az - ai - 2a3) - D ( a l +  az -an -a,)  

B 

a ; = A -  

, ; = A -  , (27) 

, B = 6(ai + - ao - az), where A = 2ao+al+a2+2oa 
6 

C = 2s,(a3 - ao) and D = st(az - a ~ ) .  

below imposed over the transformation, 
*' +a' 

These results can be achieved by solving the conditions 

+(ab + y + a$) = +(ao + * + a3) 
-=- 

a; -ab = s.(ag - ao) 
a;-.; ar-a2  I a; - a; = st(az - U l )  

Note that the scale transformation guarantees that the trans- 
formed fuzzy sets are convex, given that the support of the 
desired fuzzy set is longer than the top support. This is can 
be shown by 

I - 1.1-a~)(S1LP(A')-tOP(A') > 0 
a,+ag--ao-a* 

I - (a,-ai)(sup(A')-topla') 2 0 
a,+as-aa-az 

- a; - a. - 
a; - a; = .st(a2 - a l )  2 0 { a; - a2 - 

where sup(A') and top(A') are the length of support and 
that of top support of transformed fuzzy set A', respectively. 
However, arbitrarily choosing st when s, is fixed may lead the 
top support of the resultant fuzzy set to becoming wider than 
the support. To avoid this, the scale ratio Bt, which represents 
the actual increase of the ratios between the top supports and 
the supports, before and after the transformation, normalised 
over the maximal possible such increase (in the sense that it 
does not lead to non-convexity), is introduced to restrict st 
with respect to s,: 

Thus if Bt E [O. 11 (when st 2 sg > 0) or St E [-1.01 (when 
s, 2 st > O), ss(a3 - ao) 2 st(az - a l ) ,  i.e., sup(A') 2 
tup(A'). This constraint along with the scale transformation 
ensures that the resultant fuzzy set A' to he a unique, normal 
and convex fuzzy set. 

Given a moving distance 1, in 
order to transform the current fuzzy set from the starting 
location ao to a new starting position a0 + 1 while keeping 
the representative value, the lengths of the support (a3 - ao) 
and the top support (a2 - al) to remain the same, i.e., 
Rep(A')  = Rep(A),a$-ab = a3-ao andai-a;  = a z - a ~ .  
the new ab, a;. a i  and a; must be (as shown in Fig. 5 .  B): 

Move Transformation 

ab = a o + 4  (29) 
a; = a1 - 21, (30) 
a; = a2 -21, (31) 
a; = a s + l ,  (32) 

where 0 5 1 5 1,,, = (al  - ao)/3.  If 1 > 1,,,, the 
transformation generates the non-convex f n z q  sets. Likewise, 
the move ratio M is introduced to avoid non-convexity: 

E [-1>0] 
1 M =  

(a3 - m)/3 (341 

is imposed to ensure the convexity of transformed fuzzy sets. 
It is easy to see that trapezoidal transformations actually 

cover the triangular ones. That is, triangular interpolation is a 
specific case of the trapezoidal one. Specially, if al = a2 the 
trapezoid becomes a triangle. Substituting a1 = a2 and st = 0 
in trapezoidal transformation formulae (24)-(27) and (29)-(32) 
generate the same results as triangular transformation formulae 
(15)-(17) and (18)-(20). 

There are two specific cases worth noting when applying 
scale transformation. The first is that if A* is a singleton 
while A' IS an NCF set (triangle or trapezoid), the scale 
transformation from A' to A' is 0. This case can be easily 
handled by setting the result B' to a singleton whose value 
interpolates between Rep(B1) and Rep(B2) in the same way 
as A* does between Rep(A1) and Rep(A2). The second 
case (which only exists if both antecedents AI and Az are 
singletons) is that if A' is an NCF set (triangle or trapezoid) 
while A' is a singleton, the scale transformation from A' to 
A* is infinite. Since infinity cannot be used to generate the 
resulting fuzzy set, a modified strategy is created for this. 
The ratio between the support (and top support for trapezoid) 
length of fuzzy set A* and the distance of Rep(Al) and 
Rep(A2) is calculated in order to to compute the support 
(and top support) length of fuzzy set B' by equalising the 
corresponding ratio. Note that the fuzzy set obtained by the 
scale transformation from a singleton is an isosceles triangle 
(or trapezoid). 

Any complex polygonal fuzzy sets are readily covered by 
the proposed method following an analogous procedure to the 
extension from triangular to trapezoidal. One open issue is to 
determine the representative value for given complex polygons 
although this does not apply to symmetrical fuzzy sets, since 
in which case the symmetrical x value is naturally taken. 
For computational simplification, the average of all points' 
x coordinate values is calculated as the representative value 
for more complex polygons. Moreover, it is readily extendable 
to Gaussian and other bell-shaped membership functions. For 
instance, consider the simplest case where two rules A1 + B1, 
Az + Bz and the observation A* all involve the use of 
Gaussian fuuy  sets of the form (Fig. 6): 

-<=-<i2 

p ( x )  = e r ,  (35) 

where c and U are the mean and standard deviation respec- 
tively. The construction of the intermediate rule is slightly 
different from the polygonal fuzzy membership function case 
in the sense that the standard deviations are used to interpolate. 
Since the Gaussian shape is symmetrical, c is chosen to be 
the representative value of such a fuzzy set. In so doing, the 
antecedent value A' of the intermediate rule has the same 
representative value as that of observation A*. That means 
only scale transformation from A* to  A' as depicted in Fig. 6 
is needed to conduct interpolation. Heuristics can be employed 
to represent the scale rate s in terms of the standard deviation 
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U. One of the simplest definitions is to  calculate the ratio of 
two f u u y  sets' U values when considering transformation from 
one to the other. 

AI;" and AI,) of XI;, k = 1 ,2 , .  . . , m, are used to obtain the 
new NCF set Ai: 

A: = (1 - +XkAsT, (37) 

Fig. 6 .  Gaussian scale transformation 

On top of the scale and move transformations, an integrated 
transformation, denoted T ( A ,  A'), between two fuzzy sets A 
and A' can he introduced such that A' is the derived NCF set 
of A by applying both transformation components. Obviously, 
two integrated transformations are said to be identical if and 
only if both of their scale rate, scale ratios (for polygonal 
fuzzy sets more complex than triangular) and move ratios are 
equal. 

As indicated earlier in (14), it is intuitive to maintain the 
similarity degree between the consequent parts B' and B' to 
be the same as that between the antecedent parts A' and A*, 
in performing interpolative reasoning. Now that the integrated 
transformation allows the similarity degree between two fuzzy 
sets to he measured by the scale rate, scale ratios (for fuzzy 
polygonal sets more complex than triangular) and move ratios, 
the desired conclusion B' can be obtained by satisfying the 
following (as shown in Fig. 7 for an interpolation involving 
triangular fuzzy scts): 

T(B' ,B*)  = T(A', A*) .  (36) 

That is, the parameters of scale rate, scale ratios and move 

Clearly, the representative value of A; will remain the same 
as that of the k-th observation A;. 

The resulting A; and the given A; are used to compute the 
scale rate SI,, scale ratios S k i  (for polygonal fuzzy sets more 
complex than triangular), i = 1,. . . , p ,  and move ratios Mkj, 
j = 1 , .  . . , q, in the same way as the one variable case. Note 
that p and q are positive integers and they vary with respect to 
the complexity of the fuzzy sets involved. The combined scale 
rate s,, scale ratios Sei, i = 1 , .  . . , p ,  and move ratios M,, j = 
1,. . . , q, over the m conditional attributes are calculated as the 
arithmetic averages of SI,, S k i  and Mkj, k = 1 ,2 , .  . . , m: 

1 ,  1 ,  1 ,  
S I ; ,  S,i = - S k i ,  M, = m Mk?. S"=m m I;=1 k = l  k=1 

(38) 
Note that, other than using arithmetic average, different 

mechanisms such as the medium value operator may be 
employed for this purpose. However, the average helps to 
capture the intuition that when no particular information re- 
garding which variable has a more dominating influence upon 
the conclusion, all the variables are treated equally. If such 
information is available, it may be better to use a weighted 
average operator. 

Regarding the consequent, by analogy to (12), B' can be 
computed by 

B' = (1 - X,)Bi + X,B,. (39) 
Here, A, is deemed to he the average of XI; ,  k = 1 ,2 , .  . . , m, 
to mirror the approach taken above 

Fig. 7. Proposed interpolative method 

ratios calculated from A' to A* are used to compute B* from 
B'. Clearly, B' will then retain the same similarity degree as 
that between the antecedent parts A' and A*. 

1V. MULTIPLE ANTECEDENT VARIABLES INTERPOLATION 
The interpolations described in Sections I1 and I11 concern 

two adjacent rules with each involving one antecedent variable. 
This is readily extendable to rules with multiple antecedent 
attributes. Of course, the attributes appearing in both rules 
must he the same to make sense for interpolation. 

Without losing generality, suppose that two adjacent rules 
R, and R3 are represented by 

i f  XI i s  AIS and. .  .and X ,  i s  A,, then Y i s  B,, 

As the combined scale rate sc, combined scale ratios Sci 
(for fuzzy polygonal sets more complex than triangular), i = 
1,.  . . , p ,  and move ratios Mcj reflect the similarity degree 
between the observation vector and the values of the given 
rules, the fuzzy set B' of the conclusion can then be estimated 
by transforming B' via the application of the same s,, SCi and 

V. ILLUSTRATIVE EXAMPLES 
In this section, two examples concerning trapezoidal fuzzy 

membership functions are illustrated to demonstrate the use of 
the proposed method (denoted as HS method) and facilitate the 
comparative studies with the KH method [6]. 

Example I .  This concerns one antecedent variable. Given 
the observation A* = (6,6,9, lo), two adjacent rules A I  + 
B1, AZ Bz, and the antecedent values, the results are 

M c j .  

i f  X I  is Atj  and . .  . and X ,  i s  Amj then Y is B j .  

Thus, when a vector of observations (A;, . . . , A;, . . . , A:) is 
given, by direct analogy to the one variable case, the values 

presented in Table I and Fig. 8.A. In this case, the KH method 
generated a non-convex fuzzy set. However, the HS method 
resulted in an NCF conclusion, which still maintained the 
property of the left vertical slope. 
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This paper has proposed a generalised, scale and move 
transformation-based [SI, interpolative reasoning method. The 
method works by first constructing a new intermediate rule via 
manipulating two adjacent rules (and the given observations of 
course), and then converting the intermediate inference result 
into the final derived conclusion, using the scale and move 
transformations. This approach not only inherits the common 
advantages of fuzzy interpolative reasoning: allowing infer- 
ences to be performed with simple and sparse rule bases, but 
also has other two advantages: 1) It can easily handle multiple 
antecedent variable interpolation with simple computation; and 
2) It guarantees the uniqueness as well as normality and 
convexity of the resultant fuzzy sets. 

There is still work needed to improve this method. In 
particular, the present work only uses two rules to conduct 
interpolation. The interpolation involved with more rules may 
be utilised in fuzzy modelling. An extension of the proposed 
method to cope with such a problem is worth investigating. 
In addition, this work does not look into the extrapolation 
problem. Further effort to estimate this issue seems necessary. 
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Attribute Values 

A2 = (11,12, 13, 14) 
BI = (0,2,3,4) 

A i  = (0,4,S,G) 

B~ = ( i n ,  ii,iz,13) 

Results 

KH (5.45. 4.25. 7.5, 8.5) 
HS (5.23, 5.23 .7.61, 8.32) 

Method I E’ 

- 
Fig. 8. The reasoning results of Example I and 2 

Example 2. This example concems an interpolation of 
multiple antecedent variables with trapezoidal membership 
functions. Two rules All A A21 + B1, A12 A A22 Bz 
and the observations A i  = (6 ,7,9,  l l ) ,  A; = (6,8,10,12) 
are given to determine the result B’. Table I1 and Fig. 8.8 
summarise the results. In this case, the parameter XI for the 
first variable is 0.54 and A2 for the second is 0.44, the average 
0.49 is used to calculate the intermediate rule result B‘. Then, 
the average of two support scale rates (1.14 and 1.69) and 
that of two top support ratios (0.22 and 0.07) are computed, 
equalling 1.41 and 0.15. They are used as the combined 
support scale rate and top support scale ratio, respectively. 
These together with the combined move ratio, which is the 
average (0.35) of the two move ratios (0.53 and 0.18), are 
employed to transfer B’ to achieve the final result B‘. Both the 
KH method and the HS method resulted in an NCF set in this 
example. Interestingly, the resultant fuzzy set of the present 
work reflects better shapes of the original Observations than 
that obtained by the KH method. More investigations into the 
problem underlying reasons for this is currently being carried 
out. 

TABLE II 
RESULTS FOR EXAMPLE 2, WITH A; = (6,7,9,11) AND 

A; = ( G .  a, in ,  12) 

Annbute Values Results 

A12 = (12,14,15,16) 

Am = (1;2,3,4) 

Method 

A21 = (11,12,13,14) (4.37,5.55,7.48,9.33) 

E, = (n,z, 3> 4) 
B~ = (in>ii,iz,i3) 

VI. CONCLUSIONS 
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