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Abstract

An approach to fuzzy rule induction inspired
by the foraging behaviour of ants is presented.
The implemented system - FRANTIC - is tested
on a real classification problem against two
other fuzzy rule induction algorithms, one with
an emphasis on rule comprehensibility, and
the other on rule accuracy. The results ob-
tained highlight FRANTIC’s ability to balance
the tradeoff often encountered between predic-
tive accuracy on the one hand, and ruleset com-
prehensibility on the other. FRANTIC’s ac-
tual and potential strength when applied to real-
world large datasets is highlighted, while its
limitations and the possible ways of overcom-
ing them are also discussed.

1 Introduction

The activities of social insects have inspired successful
applications in many areas. For instance, the cemetery
organisation and brood sorting activity of ants has led
to new clustering algorithms (e.g. graph colouring and
partitioning [9]), while their foraging behaviour has re-
sulted in a suite of optimisation algorithms - called ant
algorithms - for solving problems such as bin packing
and the travelling salesman problem [5]. It is these op-
timisation algorithms that have been adapted for rule
induction.

The appeal of ant algorithms lies in several fac-
tors: they provide a simple effective mechanism for
conducting global search by simultaneously construct-
ing multiple solutions that investigate diverse areas of
the solution space; a simplicity of implementation that
requires minimum understanding of the problem do-
main; the problem-specific elements - such as the fit-
ness function and heuristic - which may be readily bor-
rowed from existing literature on rule induction; and,
an explicit heuristic embedded in the solution construc-
tion mechanism that makes for easy insertion of do-
main knowledge.

The application of ant algorithms to rule induction
is an under explored research area. This paper fur-

ther develops work done in [6] for inducing linguis-
tic fuzzy IF-THEN rules, making a simple modifica-
tion to the original version of FRANTIC that allows it
to better deal with real-world datasets that contain an
imbalanced number of instances representing different
classes. The implementation is tested on a classifica-
tion problem, but this approach is equally applicable to
fuzzy modelling for other tasks, e.g. prediction.

In the next section the motivation and details be-
hind the Ant Colony Optimisation (ACO) metaheuris-
tic, instantiations of which result in different ant algo-
rithms, are introduced. The existing literature on the
application of ACO-based algorithms to rule induction
is also briefly reviewed. In Section 3 the FRANTIC
system is described, while Section 4 presents the ini-
tial findings of the system, comparing it with the re-
sults obtained from teo other fuzzy rule induction al-
gorithms. Section 5 highlights the advantages and lim-
itations of the current research, which in turn suggest
avenues for future work.

2 Ant Algorithms

Ant algorithms is a collective term for algorithms mo-
tivated by the way ants forage for food. Experiments
with real ant colonies have been conducted to deter-
mine how ants are able to find the shortest path be-
tween their nest and a food source. In making decisions
about which path to take ants are guided by the amount
of pheromone (a chemical substance laid by ants) on a
path - the greater the amount the higher the probability
an ant will follow that path.

When a new food source is first located there is no
pheromone to guide ants and so each will have made a
random decision when presented with different paths.
Several paths by different ants may therefore have been
taken to reach the same food source. On their return
trip to the nest ants will lay more pheromone and those
that have found the shortest path will get back to the
nest more quickly. Pheromone, however, evaporates
so unless the amount on a path is maintained by ants
that continue to use it, the path will be chosen less fre-
quently. The shortest path will however continue to



accrue more pheromone as ants are able to travel faster
along this path and can lay pheromone more quickly to
replace that which is evaporating. It has been observed
that foraging ants usually converge on the shortest path
to a food source.

2.1 Ant Colony Optimisation

ACO is an agent-based meta-heuristic motivated by
these foraging strategies of real ants. In ACO, each
artificial ant is considered a simple agent, communi-
cating with other ants indirectly by effecting changes
to a common environment. A high-level description of
an ACO-based algorithm is:
(1) while termination condition false
(2) each ant constructs a new solution
(3) evaluate new solutions
(4) update pheromone levels
(5) output best solution

The pheromone levels and a problem-specific
heuristic are what guide artificial ants in their con-
struction of a solution. Any combinatorial problem for
which the following listed elements can be defined may
be solved by an ACO algorithm [2]. These elements
are introduced briefly here in the context of rule induc-
tion, with more detail provided in Section III. The first
four elements relate to line (2) of the high-level ACO
description above, the fifth relates to line (3), and the
sixth to line (4):

1. An appropriate problem representation is required
that allows an artificial ant to incrementally build
a solution using a probabilistic transition rule.
The main idea is to model the problem as the
search for a best path through a graph. In the
context of rule induction a solution is a rule an-
tecedent and each node of the graph represents a
condition that may form part of it, such as OUT-
LOOK=Sunny, or OUTLOOK=Cloudy.

2. A local heuristic provides guidance to an ant in
choosing the next node for the path (solution)
it is building. Possible examples may be based
on fuzzy subsethood values, or a measure of the
vagueness in a fuzzy set.

3. The probabilistic transition rule determines
which node an ant should visit next. The tran-
sition rule is dependent on the heuristic value and
the pheromone level associated with a node.

4. A constraint satisfaction method forces the con-
struction of feasible rules. For instance, if simple
propositional IF-THEN rule antecedents are being
constructed, then only one fuzzy linguistic term
from each fuzzy variable may be selected.

5. A fitness function determines the quality of the so-
lution built by an ant.

6. The pheromone update rule specifies how to mod-
ify the pheromone levels of each node in the
graph. For instance, between iterations of an ACO
algorithm, the nodes (conditions) contained in the
best rule antecedent created get their pheromone
levels increased.

2.2 Rule Induction via Ant Colony Optimisation

The application of ant-inspired algorithms to rule in-
duction is an unexplored research area.

A first attempt was made by Casillas et al in [3].
However, the ACO algorithm is not used for generating
fuzzy rules, but for assigning rule conclusions. In their
problem graph the fixed number of nodes are fuzzy rule
antecedents found by a deterministic method from the
training set. An ant goes round the problem graph, vis-
iting each and every node in turn and probabilistically
assigns a rule conclusion to each.

In [11] an ACO algorithm is used for generating
crisp IF-THEN rule antecedents. In the problem graph
each node represents a condition that may be selected
as part of the crisp rule antecedent being built by an ant.
An ant goes round the graph selecting nodes according
to a constraint satisfaction method, building its rule an-
tecedent. The rule conclusion is assigned afterwards
by a deterministic method. The overall strategy used
is one of iterative rule learning - starting with a full
training set an ACO algorithm is run and the best rule
created by an ant is added to a final rule set. Instances
in the training set that are covered by this best rule are
removed before a new ACO algorithm is run. This pro-
cess is re-iterated until only a few (as pre-determined
by the user) instances remain in the training set, when
a default rule is created to cover them. The final result
is an ordered rule list with the rules being applied in
the order in which they were created, when classifying
a new instance.

FRANTIC originated by developing this work on
inducing crisp rules [? ], modifying the overall strategy
used and extending it for the induction of fuzzy rules.

3 The FRANTIC System

FRANTIC (Fuzzy Rules from ANT-Inspired Computa-
tion) implements a class-dependent iterative rule learn-
ing stategy whereby for each class that requires de-
scriptive rules to be learnt, a number of ant algorithms
are run with each one outputting one such rule. Note
that lines (4)-(8) are equivalent to the ACO-based al-
gorithm previously introduced:
(1) for each class
(2) reinstate full training set
(3) while classInstRem>classInstUncovered
(4) for noIterations
(5) each ant constructs rule
(6) evaluate all rules
(7) update pheromone levels



(8) add best rule to finalRuleSet
(9) remove covered class instances
(10) output finalRuleSet

A simplified version of this strategy is to run just
one ACO algorithm for each class, with the assump-
tion being that one rule is sufficient to describe a class.
FRANTIC may be run in this simplified mode, or carry
out a full class-dependent iterative strategy.

If a full version is run, then more than one ACO
algorithm may be run per class. From each the best
rule constructed is determined and added to the final
rule set. However, before the next ACO is run to find
another rule describing the same class, the instances
belonging to that class that are covered by the previ-
ous best rule are removed from the training set. This
process goes on until there are fewer class instances re-
maining in the training set than a value pre-defined by
the user, line (3). This parameter provides a simple and
effective mechanism for controlling over-fitting to the
training data, since continuing to run ACO algorithms
to find rules describing the last few class instances may
not necessarily produce rule sets with better classifi-
cation accuracy. Instances belonging to classes other
than the one currently being described are left in the
training set, as this helps in the evaluation of the rules
constructed.

The following subsections explain the ACO-
specific elements in more detail.

3.1 Rule Construction

FRANTIC has been designed with the flexibility to
create simple propositional rules, propositional rules
with internal disjunction (e.g. OUTLOOK=Cloudy OR

Sunny), or propositional rules that include negated
terms (e.g. OUTLOOK=NOT Sunny). The problem
graph for each is similar and differences in the rule
construction mechanism from one knowledge repre-
sentation to the other are highlighted where appropri-
ate.

When creating a rule antecedent an ant traverses a
problem graph where each node represents a term that
may be added e.g OUTLOOK=Sunny. In the case of
constructing rules with negated terms, the graph has
double the number of nodes - one extra for each orig-
inal linguistic term, e.g. OUTLOOK=NOT Sunny. The
choice of the next node to visit (next term to be added
to the current partial rule antecedent) depends on both
a heuristic value and the pheromone level associated
with the node. The choice is made probabilistically
but is biased towards terms that have relatively higher
heuristic and pheromone values.

However, after selection and before a term is added
to a rule antecedent, a check is made - this ensures that
the resultant rule antecedent covers a minimum num-
ber of instances from the training set (set by a param-

eter called minInstPerRule), and is another simple
way of avoiding over-fitting to the training. With fuzzy
sets all fuzzy rules cover all training instances, but to
varying degrees, and so what constitutes coverage of
an instance by a fuzzy rule needs clarifying. This is
defined in subsection B.

For simple propositional rules, or rules with
negated terms, if an ant does add a term to its rule an-
tecedent then it will not consider other linguistic terms
belonging to the same linguistic variable. For example,
if the linguistic variable OUTLOOK has terms Sunny,
Cloudy, Rain, and the term OUTLOOK=Sunny has just
been added to the rule antecedent, then the remaining
terms are not considered further. If this restriction is
removed, then it is possible for ants to add more than
one linguistic term from each variable, with the inter-
pretation being of a disjunctive operator between the
terms added.

3.1.1 Heuristic

The heuristic used to guide ants when selecting terms is
based on fuzzy subsethood values [8], giving a degree
to which one fuzzy set A is a subset of another fuzzy
set B:

S(A, B) =
M(A

⋂
B)

M(A)
=

∑
u∈U

Min(µA(u), µB(u))
∑

u∈U
µA(u)

where in this case u is an instance from the training
set U, A represents a class label and B a term that may
be added to a rule antecedent. The heuristic value of
a term j (ηj) therefore gives a measurement of how
important that term is in describing a specific class.
Since FRANTIC finds descriptions for each class in
turn, heuristic values for terms are calculated at the
start of each major iteration, line (1), using only those
instances in the training set which belong to the class
under consideration.

If fuzzy rules with negated terms are being con-
structed, the heuristic value for the negated term is the
complement of the heuristic value for the non-negated
term, i.e. ηNOT j = 1 − ηj

3.1.2 Pheromone Updating

At the start of an ACO run, line (4), all nodes in the
graph have an equal amount of pheromone which is set
to the inverse of the number of nodes. The pheromone
level of individual nodes, however, changes between
iterations, line (7). Towards the end of each iteration,
line (6), rules created by all ants are evaluated. The
terms in the best rule, say R, then get their pheromone
levels increased:

τj(t + 1) = τj(t) + τj(t) · Q,∀j ∈ R

i.e. at time t+1 each term j in rule R gets its pheromone
level increased in proportion to the the quality of the



rule Q. A normalisation of pheromone levels of all
terms further results in a decrease of the pheromone
levels of terms not in R.

The pheromone updating process is a reinforce-
ment mechanism - both positive and negative - for ants
constructing new rules in successive iterations: terms
that have had their pheromone levels increased have a
higher chance of being selected, while those that have
had their levels decreased have a lower chance.

3.1.3 Transition Rule

Ants select terms while constructing a rule antecedent
according to a transition rule that is probabilistic but
biased towards terms that have higher heuristic and
pheromone levels. The relative importance of the
heuristic and pheromone may be controlled by adjust-
ing the values of the parameters α and β, though they
have been kept constant and equal in these experi-
ments. The probability that a term j is selected by an
ant is given by:

Pj =
[ηj ]

α · [τj ]
β

∑n

i=1
(ηi · τi),∀i ∈ I

where i is any term within the set I of all terms, and n
is the number of terms in the graph.

The probabilistic nature of the rule is a way of in-
troducing exploration into the search for a solution, in
the expectation that a more optimal solution may well
be found rather than by adhering strictly to terms with
the highest values.

3.2 Rule Evaluation

After a rule has been constructed, it needs to be evalu-
ated. This is done by assessing how accurate the rule
is in classifying the training instances. Before the fit-
ness function is discussed, what constitutes coverage
(or matching) of a fuzzy instance by a fuzzy rule needs
to be defined.

3.2.1 Fuzzy Rule Matching

A fuzzy rule is said to cover or match a fuzzy instance
if their degree of match is equal to or greater than a
pre-defined value, here called a threshold value.

When rule R is applied to instance u it is neces-
sary to determine how well the attributes of u match
the condition part of R, and how the class of u matches
the conclusion of R. An example follows.

Consider a rule R=(1,1,0; 0,0,1; 1,1; 0,1) that rep-
resents a rule with four attributes, the last being the
class attribute with two possible values. Terms that
are present in the rule are denoted by 1, others by 0.
These rules may only classify instances into one class.
However, the condition attributes may take more than

one value (i.e. propositional rules with internal dis-
junction).

Consider a fuzzy instance u=(0.1,0.6,0; 0.1,0,0.8;
0.3,0.4; 0.2,0.7) where the representation is the same as
for rule R, though the conclusion attribute values may
be greater than 0 for more than one class.

The degree of match between R and u is given by

mRule(R, u) = Min(mCond(R, u),mConc(R, u))

where the degree of condition match between R and u
is

mCond(R, u) = Mink(mAttk(R, u))

and the degree of conclusion match is

mConc(R, u) = Max1≤L(Min(µClassj
(R), µClassj

(u)))

with L being the number of class labels, i.e. the num-
ber of terms for the class attribute. In the above defi-
nitions, mAttk measures the degree of match between
an attribute k in R and the corresponding attribute in u:

mAttk = Maxj(Min(µkj
(R), µkj

(u)))

where j is a term within the domain of attribute k. How-
ever, if the terms for an attribute are all present in a
rule, then the corresponding attribute match is equal to
1, the interpretation being that the attribute is irrele-
vant. From the rule and instance examples above the
attribute matches are: mAtt1 = 0.6, mAtt2 = 0.8,
mAtt3 = 1, with a condition match mCond(R, u) =
0.6. The conclusion match is mConc(R, u) = 0.7 and
the resulting rule match is mRule(R, u) = 0.6. If the
threshold value is set at 0.6 or below, then this rule is
considered to cover the instance. If the threshold value
is set above 0.6, then this rule is considered to not suf-
ficiently match the instance.

3.2.2 Fitness Function

The fitness function evaluates an individual rule on the
basis of how accurately it classifies all instances in the
training set. It combines a measure of the sensitivity of
a rule (its accuracy among instances of the same class
as the rule) with a measure of the specificity of the rule
(its accuracy among instances of different classes):

Q =
TP

TP + FN
·

TN

TN + FP

where

• TP (True Positives) is the number of instances
covered by the rule that have the same class label
as the rule

• FP (False Positives) is the number of instances
covered by the rule that have a different class label
from the rule



• FN (False Negatives) is the number of instances
that are not covered by the rule but have the same
class label as the rule, and

• TN (True Negatives) is the number of instances
that are not covered by the rule and do not have
the same class label as the rule.

Whether a rule covers an instance or not is determined
by a threshold value, pre-defined by the user, for the
degree of match between the rule and an instance.

3.3 Classification by Fuzzy Rules

Once a complete fuzzy rule set has been generated,
it needs to be tested for classification accuracy. The
method adopted to test the rules produced by FRAN-
TIC, and those produced by the algorithms against
which it is compared ([4, 12]), follows:

1. For each rule, calculate the condition match for
instance u, and set the conclusion match equal to
the condition match;

2. If two or more rules classify instance u into the
same class, choose the highest conclusion match
as the degree for that class;

3. Finally, select the class with the highest member-
ship degree as the class for instance u.

4 Results and Analyses

4.1 The Dataset and Other Algorithms

The problem on which FRANTIC is tested is the Wa-
ter Treatment Plant Database [1]. The database con-
tains the daily observations of 38 sensors monitoring
the operation of an urban waste water treatment plant
at various stages throughout the process, with the ob-
jective being to predict faults in the process. Obser-
vations were taken over 527 days and are real-valued.
The database is ill-conditioned, having 13 possible
classifications for each daily set of observations, but
with most classifications being assigned to only a few
records in the database. Furthermore, when faults are
reported these are generally fixed very quickly so that
the database is heavily biased by containing a dispro-
portionate number of records indicating correct opera-
tion of the plant, versus faulty operation.

The 13 classifications have therefore been col-
lapsed to two: OK and Faulty, as in [13]. Records that
have no assigned classification, and others with miss-
ing values have been removed, leaving 377 records
for training and testing the rule induction algorithms
(289 OK, 88 Faulty). Other pre-processing steps in-
cluded fuzzification of the features using trapezoidal
functions, and a feature subset selection process [7] to

Table 1: Water Treatment Plant Features
Name Sensor Description

Q-E Input to plant - flow
PH-E Input to plant - pH
DBO-E Input to plant - biological demand of oxygen
DBO-P Input to primary settler - biological demand of oxygen
SSV-P Input to primary settler - volatile suspended solids
PH-D Input to secondary settler - pH
DQO-D Input to secondary settler - chemical demand of oxygen
SSV-D Input to secondary settler - volatile suspended solids
PH-S Output - pH
SSV-S Output - volatile suspended solids
RD-SED-G Global performance, input - sediments

reduce the number of features ([13, 14] indicated bet-
ter accuracy results in their work when a reduced wa-
ter treatment dataset was used). A description of the
retained features is shown in Table 1. Each feature is
described by three linguistic terms (low, high, normal),
except for the last which uses only two (low, high).

The fuzzy rule sets generated by FRANTIC are
compared against those produced by two different
methods that are however both based on subsethood
values [4, 12]. The first uses subsethood values to de-
termine a fuzzy quantifier for each possible condition
in the rule, whilst the second uses subsethood values
to select a small number of conditions to formulate a
rule. Both algorithms are deterministic, however, [4]
requires the setting of two parameters and so may pro-
duce different rulesets depending on these parameters.
Each algorithm produces only one rule to describe each
class, and because of this, the focus here will be on
FRANTIC rulesets generated using the simplified iter-
ative rule learning approach, i.e. only one rule per class
is created.

4.2 FRANTIC Parameters

FRANTIC parameters that require setting are listed in
Table 3, together with a description of these parameters
and the values given in order to obtain the results re-
ported here. Very little parameter tuning has been done
and these values are based on a few exploratory runs of
the system that indicated reasonable results would be
obtained. The parameter values given as ’various’ are
detailed where appropriate.

It is worth noting that the concept of matching be-
tween a rule and an instance is used several times by
FRANTIC (rows 6-8). These thresholds have been im-
plemented separately for maximum flexibility. Initial
findings suggest rule sets with greater classification ac-
curacy are found if the threshold during rule construc-
tion is greater than the threshold during fitness evalu-
ation and for removal of class instances between ACO
runs (the latter threshold only relevant if full iterative
rule learning is used). Further investigation is required
to understand the dynamics between these three param-



Table 2: FRANTIC I vs FRANTIC II Predictive Accuracy

Same number of instances Same proportion of instances
Construction 50 60 70 60% 70% 80%

Threshold % (+/-) % (+/-) % (+/-) % (+/-) % (+/-) % (+/-)
0.50 44.79 (10.9) 50.88 (8.00) 55.66 (8.30) 67.60 (9.35) 70.31 (8.06) 76.12 (7.05)
0.55 53.56 (8.26) 51.96 (9.42) 60.46 (10.8) 72.44 (8.97) 73.72 (8.59) 76.12 (6.72)
0.60 55.90 (9.95) 60.43 (14.6) 60.40 (9.53) 73.22 (10.1) 71.58 (11.0) 72.96 (5.57)
0.65 65.81 (9.82) 63.65 (11.1) 63.62 (10.6) 74.30 (10.2) 76.93 (7.62) 66.84 (8.54)
0.70 59.40 (8.60) 64.44 (8.84) 67.12 (8.63) 75.38 (9.26) 76.37 (7.57) 59.17 (9.81)
0.75 63.61 (10.1) 64.70 (6.99) 67.39 (8.54) 75.35 (8.72) 75.58 (7.98) 67.67 (7.28)
0.80 62.39 (8.71) 67.93 (9.15) 63.22 (7.88) 75.64 (10.1) 75.58 (7.98) 64.99 (6.53)
0.85 64.45 (10.0) 69.46 (6.57) 62.39 (6.48) 75.62 (7.35) 76.37 (7.57) 64.99 (6.53)

eters, and it may well be possible to merge two or three
of them.

4.3 Classification Accuracy

The middle column of Table 4 indicates the average
accuracy obtained by the algorithms after performing
stratified 10-fold cross-validation (the same folds of
the dataset were used for each algorithm). The figure
in brackets is the standard deviation of the accuracies
of the 10 rulesets produced. The right column gives the
average number of terms per rule, with standard devia-
tion in brackets.

Note, that since FRANTIC is a stochastic algorithm,
the FRANTIC results presented in Table 4 are averages
of ten 10-fold cross-validations.

Table 4: Comparison of Algorithms

%Accuracy (+/-) #Terms (+/-)
WSBA [12] 81.74 (0.08) 32.00 (0.00)
FRANTIC II 76.90 (7.72) 1.90 (0.21)
Fuzzy SH [4] 69.51 (0.07) 4.45 (0.37)
FRANTIC I 69.06 (6.86) 2.29 (0.40)

WSBA [12] achieves the highest classification ac-
curacy on the water treatment data, for this particular
partitioning of the data.

Chen et al’s algorithm [4] requires the setting of
two different parameters α and β. α is a threshold used
to determine which linguistic terms should be present
in a rule antecedent describing a specific class - terms
with a subsethood value equal to or greater than α are
selected. If the subsethood values for the linguistic
terms associated with a particular class are all lower
than α, then an explicit rule can not be created for
this class. Instead, an indirect rule is formed and will
fire if the membership value of the instance to be clas-
sified is greater than β (e.g. IF Membership(OK) <

β THEN OUTCOME is FAULTY). The algorithm was
run using all combinations of the following values:
0.5,0.55,...,0.85 for α, and 0.5,0.6,...,1.0 for β. The
result produced in Table 4 is the best obtained, with

α=0.8 and β=0.5.
FRANTIC was first run as originally introduced in

[6] (FRANTIC I in Table 4, minInstPerRule=70,
constructionThreshold=0.85). The dataset used
in that work was a small artificial one with a fairly
equal distribution between the three classes. In the wa-
ter treatment dataset the number of instances per class
is very uneven and this was found to have a detrimental
impact on FRANTIC’s ability to create accurate rules.

This is due to the way one of the parameters
(minInstPerRule) has been implemented. The value
of this parameter stipulates the minimum number of in-
stances that a rule must cover in the training set. Once
set the value is the same for all classes, with the max-
imum value being bound by the number of instances
belonging to the smallest class. For the water treat-
ment data, once the dataset had been partitioned into 10
folds, within the training set there were typically 260
instances in the OK class, and 80 in the Faulty class.

A simple modification was consequently made
to FRANTIC - the user may now specify the pro-
portion of class instances that a rule must cover
(FRANTIC II in Table 4, minInstPerRule=70%,
constructionThreshold=0.65). For instance, if
minInstPerRule=70 then a rule describing OK will
cover at least 70 OK instances from the training set,
and a rule describing Faulty will cover at least 70
Faulty instances. If, however, minInstPerRule=70%
then a rule for OK will cover at least 70%*260=182 in-
stances, while a rule for Faulty will cover 70%*80=56.

A few exploratory runs of FRANTIC suggested that
rules with negated terms were more accurately descrip-
tive, so the results presented were obtained using this
form of knowledge representation. Table 2 presents
some results of stratified 10-fold cross-validations be-
fore and after the change to minInstPerRule was
effected. Although the figures are based on one 10-
fold cross-validation, they clearly indicate a general
improvement in accuracy when minInstPerRule is
not bound by the number of instances in the smallest
class, but may be tailored for individual classes.

A possible reason for the improvement is sug-



Table 3: FRANTIC Parameters

Parameter Name Description Value
noAnts Number of ants constructing a solution within an iteration, (line (5)). 10
noIterations Number of iterations per ACO run, (line (4)). 150
minInstPerRule Required during rule construction - minimum number instances in training set

that rule must cover (section 3.1).
various

constructionThreshold Used during construction of a rule - sets the value for the threshold below which
a rule is considered not to cover an instance in the training set.

various

fitnessThreshold Used during evaluation of a rule - sets the value for the threshold below which
a rule is considered not to cover an instance in the training set.

0.5

classInstUncovered Maximum number of class instances that may be left uncovered by a rule, before
descriptions for a new class are found, (line (3)). Not applicable for simplified
iterative rule learning.

n/a

removalThreshold Used during removal of class instances from the training set between ACO runs,
(line (9)) - sets the value for the threshold below which a rule is considered not
to cover an instance in the training set. Not applicable for simplified iterative
rule learning.

n/a

Table 5: FRANTIC I vs FRANTIC II Predictive Accu-
racy - Detailed Results

FRANTIC I FRANTIC II
Rule1 Rule2 Rule1 Rule2
(OK) (Faulty) (OK) (Faulty)

%Recall 0.68 0.74 0.81 0.62
%Precision 0.87 0.47 0.88 0.49

gested in Table 5. This provides a breakdown on
two of the best accuracies obtained by FRANTIC be-
fore and after the modification (results in italic in Ta-
ble 2, which are specific examples from the ten 10-
fold cross-validations averaged in Table 4). Recall
(TP/(TP + FN)) measures how accurate a rule is
in classifying instances of its own class. Precision
(TP/(TP + FP )) measures a rule’s ability to avoid
classifying instances of other classes.

It can be seen that there is a significant im-
provement in the recall value for Rule1. The im-
provement may be explained by noting that when
minInstPerRule=60, a rule is required to cover only
approximately 21% of the training instances. How-
ever, it is reasonable to suppose that if only one
rule is used to describe a class, then a more gen-
eral rule (such as one covering 70% of the class in-
stances) may perform better. This may also partly
explain why the recall value of Rule2 decreased -
when minInstPerRule=60, at least 75% of the
class instances were being covered by that singe rule,
while only 70% are reequired to be covered when
minInstPerRule=70%. However, since there are
considerably more OK instances to classify in a test
set than Faulty ones, the overall result is improved ac-
curacy. Similar changes to the recall and precision val-
ues of the rules were found when analysing the other

Table 6: FRANTIC Ruleset (89.47% Accuracy)

R1 IF SSV-D is NOT Low THEN OUTCOME is OK
R2 IF PH-E is NOT High AND SSV-P is Low AND RD-

SED-G is High THEN OUTCOME is FAULTY

Table 7: Fuzzy SH Ruleset (81.08% Accuracy)

R1 IF Q-E is NOT Low AND RD-SED-G is Low THEN
OUTCOME is OK

R2 IF Q-E is NOT High AND PH-E is NOT Low AND
SSV-P is High AND DQO-D is NOT Low AND SSV-D
is NOT Low AND SSV-S isNOT Low AND RD-SED-G
is Low THEN OUTCOME is FAULTY

results in Table 2.

4.4 Rule Comprehensibility

Rule and ruleset comprehensibility may be measured
by the number of rules in a ruleset, and the number of
conditions in a rule. Generally, the fewer the better on
both counts.

All the algorithms tested here produce just one rule
per class, so that the focus here is on the number of
conditions within a rule. There is a considerable dif-
ference in the length of the rules produced by each al-
gorithm, with FRANTIC producing the most compre-
hensible rulesets (see Table 6).

Table 7 illustrates a ruleset produced by [4]. The
rules are fairly comprehensible, though not as short as
FRANTIC rules. It should also be remembered that
this algorithm may produce rules described in terms
of other rules in the ruleset (Section 4.3), thereby re-
ducing the explanatory power of individual rules.



Table 8: WSBA Ruleset (89.47% Accuracy)

R1 IF Q-E is (0.31*Low OR 1.0*Normal OR 0.44*High) AND PH-
E is (0.80*Low OR 1.0*Normal OR 0.54*High) AND DBO-E is
(0.62*Low OR 0.47*Normal OR 1.0*High) AND DBO-P is (1.0*Low
OR 0.84*Normal OR 0.96*High) AND SSV-P is (0.64*Low OR

1.0*Normal OR 0.73*High) AND PH-D is (1.0*Low OR 0.44*Nor-
mal OR 0.40*High) AND DBO-D is (1.0*Low OR 0.56*Normal
OR 0.68*High) AND SSV-D is (1.0*Low OR 0.68*Normal OR

0.45*High) AND PH-S is (0.63*Low OR 0.91*Normal OR 1.0*High)
AND SSV-S is (0.67*Low OR 1.0*Normal OR 0.87*High) AND RD-
SED-G is (1.0*Low OR 0.44*High) THEN OUTCOME is OK

R2 IF Q-E is (0.51*Low OR 1.0*Normal OR 0.38*High) AND PH-
E is (0.31*Low OR 1.0*Normal OR 0.60*High) AND DBO-E is
(0.72*Low OR 0.57*Normal OR 1.0*High) AND DBO-P is (1.0*Low
OR 0.59*Normal OR 0.71*High) AND SSV-P is (0.00*Low OR

0.08*Normal OR 1.0*High) AND PH-D is (1.0*Low OR 0.60*Nor-
mal OR 0.50*High) AND DBO-D is (0.25*Low OR 0.51*Normal OR

1.0*High) AND SSV-D is (0.24*Low OR 0.45*Normal OR 1.0*High)
AND PH-S is (0.82*Low OR 1.0*Normal OR 0.87*High) AND SSV-
S is (0.16*Low OR 0.36*Normal OR 1.0*High) AND RD-SED-G is
(1.0*Low OR 0.35*High) THEN OUTCOME is FAULTY

Table 8 presents the ruleset produced by WSBA.
The fuzzy quantifiers attached to each condition allow
the rules to be highly accurate, but also results in rather
long rules.

5 Conclusions and Future Work

This paper has demonstrated FRANTIC’s ability to find
a good balance between ruleset predictive accuracy and
ruleset comprehensibility. Although much analysis re-
mains to be done, this ability may be partly due to
the generalisation and specialisation capabilities both
present within the rule construction mechanism. The
parameter minInstPerRule may be used for general-
isation (the higher the value, the more general a rule),
whilst the parameter constructionThreshold may
be used for specialisation (the higher the value the less
likely many rule conditions will be added to the rule).

FRANTIC may have clear advantages when induc-
ing fuzzy rules from real-world datasets. Only a minor
modification was required to enable it to deal with im-
balanced datasets, and it is expected that only a minor
modification would be required to enable FRANTIC to
use instances with missing attribute values. This would
ensure that the best possible use is made of available
data and may be accomplished by using such instances
during rule evaluation, to provide a more accurate mea-
sure of how well a rule performs.

Another advantage is the ability to operate in full
iterative rule learning mode which means that as many
rules as necessary are created to describe a class. This
is likely to be necessary with large datasets, or even im-
balanced datasets, when the assumption that one rule to
describe a class is adequate, may be an invalid one.

However, the majority of the work is expected to
lie in adopting a two-part strategy aimed at improv-
ing predictive accuracy, while maintaining comprehen-

sibility. The first part involves improving the richness
and flexibility of the knowledge representation used. In
a similar way to how the rule construction mechanism
may be adapted to produce simple propositional rules
or rules with negated terms. For instance, it may be
extended to include linguistic hedges [10]. This may
improve rule accuracy without negatively impacting on
rule comprehensibility.

The second part arises out of a potential shortcom-
ing of fuzzy rule induction using iterative rule learning,
as highlighted in [6]. This is because a final ruleset
may well have individual rules that classify correctly
within their own class, but when combained with the
rest of the ruleset may result in suboptimal classifica-
tion. In fact, when each rule describing a particular
class is created, no consideration is taken of other rules
that may already be present in the ruleset, or even of fu-
ture rules. This suggests that an approach whereby the
fuzzy rules are evolved simultaneously, and evalutated
together, might yield better results.

The authors will therefore also be working on ex-
tending FRANTIC to adopt an alternative strategy to
that of iterative rule learning - by evolving the fuzzy
rules of a ruleset simultaneously. This may be accom-
plished by running several ACO algorithms in parallel,
with each finding rules for one class.
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