
Aberystwyth University

Fuzzy rules from ant-inspired computation
Shen, Qiang; Galea, Michelle

Publication date:
2004

Citation for published version (APA):
Shen, Q., & Galea, M. (2004). Fuzzy rules from ant-inspired computation. 1691-1696.

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 18. Apr. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aberystwyth Research Portal

https://core.ac.uk/display/288843075?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://pure.aber.ac.uk/portal/en/persons/qiang-shen(695ae0bf-c764-425b-9496-cca71f02cb57).html
https://pure.aber.ac.uk/portal/en/publications/fuzzy-rules-from-antinspired-computation(36ac8b6e-136a-4f3a-a02c-b381cde81c1d).html

25-29 July, 2004 Budapest, Hungary

Fuzzy Rules from Ant-Inspired Computation
Michelle Galea and Qiang Shen

School of Informatics
University of Edinburgh, U.K.

{ m.galea@sms,qiangs @inf}.ed.ac.uk

Abstract-A new approach to fuzzy rule induction from
historical data is presented. The implemented system - FRANTIC
- is tested on a simple classification problem against a fuzzy
tree induction algorithm, a genetic algorithm, and a numerical
method for inducing fuzzy rules based on fuzzy subsethood
values. The results obtained by FRANTIC indicate comparable
or better classification accuracy, superior comprehensibility, and
potentially more flexibility when applied to larger data sets. The
impact of the knowledge representation used when generating
fuzzy rules is also highlighted.

I. INTRODUCTION

The activities of social insects have inspired successful
applications in many areas. For instance, the cemetery or-
ganisation and brood sorting activity of ants has led to new
clustering algorithms (e.g. graph colouring and partitioning
[l]), while their foraging behaviour has resulted in a suite of
optimisation algorithms - called ant algorithms - for solving
problems such as bin packing and the travelling salesman
problem [2] . It is these optimisation algorithms that have been
adapted for rule induction.

The appeal of ant algorithms lies in several factors: they
provide a simple effective mechanism for conducting global
search by simultaneously constructing multiple solutions that
investigate diverse areas of the solution space; a simplicity of
implementation that requires minimum understanding of the
problem domain; the problem-specific elements - such as the
fitness function and heuristic - which may be readily borrowed
from existing literature on rule induction; and, an explicit
heuristic embedded in the solution construction mechanism
that makes for easy insertion of domain knowledge.

The application of ant algorithms to rule induction is an
unexplored research area. This paper develops work done in
[3] for inducing crisp rules, modifying the overall strategy used
and extending it for the induction of linguistic fuzzy IF-THEN
rules. The implementation is tested on a classification problem,
but this approach is equally applicable to fuzzy modelling for
other tasks, e.g. prediction.

In the next section the motivation and details behind the
Ant Colony Optimisation (ACO) metaheuristic, instantiations
of which result in different ant algorithms, are introduced. The
existing literature on the application of ACO-based algorithms
to rule induction is also briefly reviewed. In Section I11 the
FRANTIC system is described, while Section IV presents the
initial findings of the system, comparing it with the results
obtained from several other fuzzy rule induction algorithms.
Section V highlights the advantages and limitations of the

current research, which in turn suggest avenues for future
work.

11. ANT ALGORITHMS

Ant algorithms is a collective term for algorithms motivated
by the way ants forage for food. Experiments with real ant
colonies have been conducted to determine how ants are
able to find the shortest path between their nest and a food
source. In making decisions about which path to take ants are
guided by the amount of pheromone (a chemical substance
laid by ants) on a path - the greater the amount the higher the
probability an ant will follow that path.

When a new food source is first located there is no
pheromone to guide ants and so each will have made a random
decision when presented with different paths. Several paths by
different ants may therefore have been taken to reach the same
food source. On their return trip to the nest ants will lay more
pheromone and those that have found the shortest path will get
back to the nest more quickly. Pheromone, however, evaporates
so unless the amount on a path is maintained by ants that
continue to use it, the path will be chosen less frequently. The
shortest path will however continue to accrue more pheromone
as ants are able to travel faster along this path and can lay
pheromone more quickly to replace that which is evaporating.
It has been observed that foraging ants usually converge on
the shortest path to a food source.

A. Ant Coloily Optintisation

ACO is an agent-based meta-heuristic motivated by these
foraging strategies of real ants. In ACO, each artificial ant
is considered a simple agent, communicating with other ants
indirectly by effecting changes to a common environment. A
high-level description of an ACO-based algorithm is:
(1) while termination condition fa l se
(2) each ant constructs a new solution
(3) evaluate new solutions
(4) update pheromone levels
(5) output best solution

The pheromone levels and a problem-specific heuristic are
what guide artificial ants in their construction of a solution.
Any combinatorial problem for which the following listed
elements can be defined may be solved by an ACO algorithm
[4]. These elements are introduced briefly here in the context
of rule induction, with more detail provided in Section 111.
The first four elements relate to line (2) of the high-level ACO

0-7803-8353-2/04/$20.00 0 2004 IEEE 1691

mailto:inf}.ed.ac.uk

FUZZ-IEEE 2004

description above, the fifth relates to line (31, and the sixth to
line (4):

rules being applied in the order in which they were created,
when classifying a new instance.

An appropriate problem representation is required that
allows an artificial ant to incrementally build a solution
using a probabilistic transition rule. The main idea is
to model the problem as the search for a best path
through a graph. In the context of rule induction a
solution is a rule antecedent and each node of the graph
represents a condition that may form part of it, such as
OUTLOOK=Sunny, or OUTLOOK=Cloudy.
A local heuristic provides guidance to an ant in choosing
the next node for the path (solution) it is building.
Possible examples may be based on fuzzy subsethood
values, or a measure of the vagueness in a fuzzy set.
The probabilistic transition rule determines which node
an ant should visit next. The transition rule is dependent
on the heuristic value and the pheromone level associ-
ated with a node.
A constraint satisfaction method forces the construction
of feasible rules. For instance, if simple propositional IF-
THEN rule antecedents are being constructed, then only
one fuzzy linguistic term from each fuzzy variable may
be selected.
A fitness finction determines the quality of the solution
built by an ant.
The pheroniorze update rule specifies how to modify
the pheromone levels of each node in the graph. For
instance, between iterations of an ACO algorithm, the
nodes (conditions) contained in the best rule antecedent
created get their pheromone levels increased.

B. Rule Induction via Ant Colony Optimisatiorz
The application of ant-inspired algorithms to rule induction

is an unexplored research area.
A first attempt was made by Casillas et a1 in [5] . However,

the ACO algorithm is not used for generating fuzzy rules,
but for assigning rule conclusions. In their problem graph the
fixed number of nodes are fuzzy rule antecedents found by a
deterministic method from the training set. An ant goes round
the problem graph, visiting each and every node in turn and
probabilistically assigns a rule conclusion to each.

In [3] an ACO algorithm is used for generating crisp
IF-THEN rule antecedents. In the problem graph each node
represents a condition that may be selected as part of the crisp
rule antecedent being built by an ant. An ant goes round the
graph selecting nodes according to a constraint satisfaction
method, building its rule antecedent. The rule conclusion is
assigned afterwards by a deterministic method. The overall
strategy used is one of iterative rule learning - starting with
a full training set an ACO algorithm is run and the best rule
created by an ant is added to a final rule set. Instances in
the training set that are covered by this best rule are removed
before a new ACO algorithm is run. This process is re-iterated
until only a few (as pre-determined by the user) instances
remain in the training set, when a default rule is created to
cover them. The final result is an ordered rule list with the

111. THE FRANTIC SYSTEM
FRANTZC (Fuzzy Rules from ANT-Inspired Computation)

implements a class-dependent iterative rule learning stategy
whereby for each class that requires descriptive rules to be
learnt, a number of ant algorithms are run with each one
outputting one such rule. Note that lines (4)-(8) are equivalent
to the ACO-based algorithm previously introduced:

for each class
reinstate full training set
while classInstRem>classInstUncovered

f o r noIterations
each ant constructs rule
evaluate all rules
update pheromone levels

add best rule to finalRuleSet
remove covered class instances

output finalRuleSet

A simplified version of this strategy is to run just one ACO
algorithm for each class, with the assumption being that one
rule is sufficient to describe a class. FRANTIC may be run
in this simplified mode, or carry out a full class-dependent
iterative strategy.

If a full version is run, then more than one ACO algorithm
may be run per class. From each the best rule constructed is
determined and added to the final rule set. However, before
the next ACO is run to find another rule describing the same
class, the instances belonging to that class that are covered by
the previous best rule are removed from the training set. This
process goes on until there are fewer class instances remaining
in the training set than a value pre-defined by the user, line (3).
This parameter provides a simple and effective mechanism for
controlling over-fitting to the training data, since continuing to
run ACO algorithms to find rules describing the last few class
instances may not necessarily produce rule sets with better
classification accuracy. Instances belonging to classes other
than the one currently being described are left in the training
set, as this helps in the evaluation of the rules constructed.

The following subsections explain the ACO-specific ele-
ments in more detail.

A. Rule Construction
FRANTIC has been designed with the flexibility to cre-

ate simple propositional rules, propositional rules with in-
ternal disjunction (e.g. OUTLOOK=cloudy OR Sunny), or
propositional rules that include negated terms (e.g. OUT-
LOOK=NOTSunny). The problem graph for each is similar
and differences in the rule construction mechanism from one
knowledge representation to the other are highlighted where
appropriate.

When creating a rule antecedent an ant traverses a prob-
lem graph where each node represents a term that may
be added e.g OUTLOOK=Sunny. In the case of constructing
rules with negated terms, the graph has double the number
of nodes - one extra for each original linguistic term, e.g.

1692

25-29 July, 2004 Budapest. Hungary

OUTLOOK=NOTSunny. The choice of the next node to visit
(next term to be added to the current partial rule antecedent)
depends on both a heuristic value and the pheromone level
associated with the node. The choice is made probabilistically
but is biased towards terms that have relatively higher heuristic
and pheromone values.

However, after selection and before a term is added to a rule
antecedent, a check is made - this ensures that the resultant rule
antecedent covers a minimum number of instances from the
training set (set by a parameter called minInstPerRule), and
is another simple way of avoiding over-fitting to the training.
With fuzzy sets all fuzzy rules cover all training instances,
but to varying degrees, and so what constitutes coverage of an
instance by a fuzzy rule needs clarifying. This is defined in
subsection B.

For simple propositional rules, or rules with negated terms,
if an ant does add a term to its rule antecedent then it will not
consider other linguistic terms belonging to the same linguistic
variable. For example, if the linguistic variable OUTLOOK has
terms Sunny, Cloudy, Rain, and the term OUTLOOK=SUnny
has just been added to the rule antecedent, then the remaining
terms are not considered further. If this restriction is removed,
then it is possible for ants to add more than one linguistic
term from each variable, with the interpretation being of a
disjunctive operator between the terms added.

1) Heuristic: The heuristic used to guide ants when select-
ing terms is based on fuzzy subsethood values [6], giving a
degree to which one fuzzy set A is a subset of another fuzzy
set B:

where in this case U is an instance from the training set U,
A represents a class label and B a term that may be added
to a rule antecedent. The heuristic value of a term j (qj)
therefore gives a measurement of how important that term is in
describing a specific class. Since FRANTIC finds descriptions
for each class in turn, heuristic values for terms are calculated
at the start of each major iteration, line (l) , using only those
instances in the training set which belong to the class under
consideration.

If fuzzy rules with negated terms are being constructed, the
heuristic value for the negated term is the complement of the
heuristic value for the non-negated term. i.e. 7 7 ~ 0 ~ ~ = 1 - ?I:,

2) Pheromone Updating: At the start of an ACO run,
line (4), all nodes in the graph have an equal amount of
pheromone which is set to the inverse of the number of nodes.
The pheromone level of individual nodes, however, changes
between iterations, line (7). Towards the end of each iteration,
line (6), rules created by all ants are evaluated. The terms in
the best rule, say R, then get their pheromone levels increased:

T~ (t + 1) = T~ (t) + T~ (t) . Q , b'j E R

i.e. at time t+l each term j in rule R gets its pheromone level
increased in proportion to the the quality of the rule Q. A

normalisation of pheromone levels of all terms further results
in a decrease of the pheromone levels of terms not in R.

The pheromone updating process is a reinforcement mech-
anism - both positive and negative - for ants constructing
new rules in successive iterations: terms that have had their
pheromone levels increased have a higher chance of being
selected, while those that have had their levels decreased have
a lower chance.

3) Transition Rule: Ants select terms while constructing
a rule antecedent according to a transition rule that is proba-
bilistic but biased towards terms that have higher heuristic and
pheromone levels. The relative importance of the heuristic and
pheromone may be controlled by adjusting the values of the
parameters cy and ,B, though they have been kept constant and
equal in these experiments. The probability that a term j is
selected by an ant is given by:

where i is any term within the set I of all terms, and n is the
number of terms in the graph.

The probabilistic nature of the rule is a way of introducing
exploration into the search for a solution, in the expectation
that a more optimal solution may well be found rather than
by adhering strictly to terms with the highest values.

B. Rule Evaluation
After a rule has been constructed, it needs to be evaluated.

This is done by assessing how accurate the rule is in clas-
sifying the training instances. Before the fitness function is
discussed, what constitutes coverage (or matching) of a fuzzy
instance by a fuzzy rule needs to be defined. This paper adopts
similar definitions for fuzzy rule matching and classification
by fuzzy rules (subsection C below) as in [8], in order to make
comparisons with the results from that work as equitable as
possible.

1) Fuzzy Rule Matching: A fuzzy rule is said to cover or
match a fuzzy instance if their degree of match is equal to or
greater than a pre-defined value, here called a threshold value.

When rule R is applied to instance U it is necessary to
determine how well the attributes of U match the condition
part of R, and how the class of U matches the conclusion of
R . An example follows.

Consider a rule R=(1,1,0; 0,0,1; 1,l; 0,l) that represents
a rule with four attributes, the last being the class attribute
with two possible values. Terms that are present in the rule
are denoted by 1, others by 0. These rules may only classify
instances into one class. However, the condition attributes may
take more than one value (i.e. propositional rules with internal
disjunction).

Consider a fuzzy instance U=@. 1,060; 0.1,0,0.8; 0.3,0.4;
0.2,0.7) where the representation is the same as for rule R,
though the conclusion attribute values may be greater than 0
for more than one class.

The degree of match between R and U is given by

mRu.le(R, U) = Min(mCond(R, U) , mConc(R, U))

1693

where the degree of condition match between R and U is

mCOnd(r2, 'U) = Mink(mAttk(r2, 'U))

and the degree of conclusion match is

mCmc(R, U) = Mazl<L(Min(Pciass, (RI, ('U)))

with L being the number of class labels, i.e. the number of
terms for the class attribute. In the above definitions, mAttk
measures the degree of match between an attribute k in R and
the corresponding attribute in U:

mAttk = Mazj(Min(Pk3 (R) , Pk3 (U)))

where j is a term within the domain of attribute k . How-
ever, if the terms for an attribute are all present in a rule,
then the corresponding attribute match is equal to 1, the
interpretation being that the attribute is irrelevant. From the
rule and instance examples above the attribute matches are:
mAttl = 0.6, mAtt2 = 0.8, mAtt3 = 1, with a con-
dition match mCond(r2.u) = 0.6. The conclusion match
is mConc(R,u) = 0.7 and the resulting rule match is
mRuZe(R,u) = 0.6. If the threshold value is set at 0.6 or
below, then this rule is considered to cover the instance. If the
threshold value is set above 0.6, then this rule is considered
to not sufficiently match the instance.

2) Fitness Function: The fitness function evaluates an in-
dividual rule on the basis of how accurately it classifies all
instances in the training set. It combines a measure of the
sensitivity of a rule (its accuracy among instances of the same
class as the rule) with a measure of the specificity of the rule
(its accuracy among instances of different classes):

T P T N
Q = T P + F N T N + F P

where
TP (True Positives) is the number of instances covered
by the rule that have the same class label as the rule
FP (False Positives) is the number of instances covered
by the rule that have a different class label from the rule
FN (False Negatives) is the number of instances that are
not covered by the rule but have the same class label as
the rule. and
TN (True Negatives) is the number of instances that are
not covered by the rule and do not have the same class
label as the rule.

Whether a rule covers an instance or not is determined by
a threshold value, pre-defined by the user, for the degree of
match between the rule and an instance.

C. Classi$cation by FUZZY Rules
Once a complete fuzzy rule set has been generated, it needs

to be tested for classification accuracy. This is is performed in
the same way as in [71-[91:

1) For each rule, calculate the condition match for instance
11, and set the conclusion match equal to the condition
match;

Fuzz; GA isi
Fuzzy SH [7]

FUZZ-IEEE 2004

TABLE I
COMPARISON OF ALGORITHMS

87.50 5.0 3.2
93.75 3.0 2.3

] I %Accuracy I #Rules 1 #Terms 1
I Fuzzv DT 191 II 81.25 I 6.0 I 1.7 1

If two or more rules classify instance U into the same
class, choose the highest conclusion match as the degree
for that class;
Finally, select the class with the highest membership
degree as the class for instance U.

Iv. RESULTS AND ANALYSES

A. The Data Set and Other Algorithms

The problem on which FRANTIC is tested is the fuzzified
Saturday Morning data set in [9]. The data set consists of 16
instances, 4 condition attributes and 1 class attribute called
PLAN:

OUTLOOK={ Sunny,Cloudy,Rain}
TEMPERATURE={Hot,Cool,Mild}
HuMIDITY={Humid,Normd}
WIND={Windy,Not-Windy }
PLAN={ Volleyball,Swimming,Weightlifting }

The fuzzy rule sets generated by FRANTIC are compared
against those produced by a fuzzy decision tree algorithm [9],
a fuzzy genetic algorithm [8], and a method based on fuzzy
subsethood values [7]. A summary of the results produced by
these algorithms - with respect to classification accuracy on
the training set, the number of rules generated, and the average
number of conditions in a rule antecedent - is given in Table
I. Note that only the accuracy of one rule set generated by the
genetic algorithm is quoted for [8], and the assumption in this
paper is that it is the best ruleset obtained.

Tables 11, 111, and IV show the rule sets generated by these
algorithms. This is useful for comparing the rules obtained
using different knowledge representations. The decision tree
generates simple propositional rules, the genetic algorithm
generates propositional rules with internal disjunction, while
the subsethood value based method generates simple proposi-
tional rules that include negated terms. Note that the final rule
produced by this last method, in Table IV, has no explanatory
power of its own, as it is written in terms of the other rules.

B. FRANTIC Parameters

FRANTIC parameters that require setting are listed in Table
VI, together with a description and the values given in order
to obtain the results reported here. Note that the concept
of matching between a rule and an instance is used several
times by FRANTIC (rows 6-8). These thresholds have been
implemented separately for maximum flexibility. Initial find-
ings suggest rule sets with greater classification accuracy are
found if the threshold during rule construction is greater than
the threshold during fitness evaluation and for removal of class

1694

25-29 July, 2004 Budapest, Hungary

TABLE I1
RULE SET GENERATED BY A FUZZY DECISION TREE

RI IF TEMPERATURE is Hot AND OUTLOOK is Sunny THEN
Swimming

R2 IF TEMPERATURE is Hot AND OUTLOOK is Cloudy THEN
Swimming

R3 IF OUTLOOK is Rain THEN Weightlifting
R4 IF TEMPERATURE is Mild AND WIND is Windy THEN

Weightlifting
R5 IF TEMPERATURE is Cool THEN weightlifting
R6 IF TEMPERATURE is Mild AND WIND is Not-windy THEN

Volleyball

TABLE 111
RULE SET GENERATED BY A FUZZY GENETIC ALGORITHM

RI

R2
R3

R4

R5

IF OUTLOOK is Sunny OR Cloudy AND TEMPERATURE is Hot
THEN Swimming
IF OUTLOOK is Rain THEN Weightlifting
IF TEMPERATURE is Mild OR Cool AND WIND is Windy THEN
Weightlifting
IF OUTLOOK is Cloudy OR Rain AND HUMIDITY is Humid
THEN Weightlifting
IF OUTLOOK is sunny OR Cloudy AND TEMPERATURE is Mild
OR Cool AND HUMJDITY is Normal AND WIND is Not-windy
THEN Volleyball

instances between ACO runs. Lowering this last threshold may
well act as another mechanism for avoiding over-fitting to
the training data. However, further investigation is required
to understand the dynamics between these three parameters
and it may well be possible to merge two or three of them.

Very little parameter tuning has been done. The number of
ants per iteration, and the number of iterations were based
on [SI, but preliminary results suggests that for this test
problem at least, FRANTIC is able to find equally good
rulesets (to those reported in Table VII) with noAnts=15
and no1terations=20. A few experiments carried out with
changes to the values of other parameters are reported in
the following subsection. These parameters and their optimal
settings also merit further investigation.

C. FRANTIC Results

Table VI1 compares predictive accuracy of the rule sets
generated by FRANTIC using a simplified iterative strategy
and a full iterative strategy. Each result is the accuracy on
the training set, and is the average of the accuracy obtained
from 30 rule sets produced by FRANTIC. The values for the
parameters are as stated in Table VI with different values for

TABLE IV

RULE SET GENERATED B Y A METHOD BASED ON SUBSETHOOD VALUES

RI IF OUTLOOK is NoTRain AND HUMIDITY is Normal AND

R2 IF OUTLOOK is NOTRain AND TEMPERATURE is Hot THEN
WIND is Not-windy THEN Volleyball

Swimming
IF MF(R1) < p AND M F (R 2) < 0 THEN Weightlifting R3

TABLE V
FRANTICRULE SETS - SIMPLIFIED (RI-R3,93.75% ACCURACY) VS.

FULL ITERATIVE RULE LEARNING (RI -R4,87.50% ACCURACY)

RI IF OUTLOOK is NOTXain AND TEMPERATURE is NOT-CoOl
AND HUMIDITY is Normal AND WlND is Not-windy THEN
Volleyball
IF OUTLOOK is NOTRain AND TEMPERATURE is Hot THEN
Swimming
IF TEMPERATURE is Hot AND WlND is Windy 'THEN Weightlift-
ing
IF OUTLOOK is NOTSunny AND TEMPERATURE is NOTMild
THEN Weightlifting

R2

R3

R4

constructionThreshold per row. Columns 2 and 5 show
accuracy obtained when using simple propositional rules as the
knowledge representation, for the simplified iterative strategy
and the full iterative strategy respectively, columns 3 and 6
when using propositional rules with internal disjunction, and
columns 4 and 7 when using simple propositional rules that
also include negated terms of the original terms.

The number of rules generated using the simplified iterative
strategy is 3 (since there are 3 classes to be described), while
the number of rules generated using the full iterative strategy
is 4, with the fourth extra rule generally being one describing
Weightlifting. When the number of rules per class is restricted,
using a more expressive knowledge representation generally
produces more accurate rule sets (columns 3 and 4 vs. column
2) . When this restriction is removed there is less variance in
the results between the different knowledge representations,
since extra rules can compensate for the limitations of the
representation.

Note, though, that for these parameter settings the highest
accuracy is obtained using a simplified iterative strategy. This
is thought to be due to the nature of fuzzy rules and how they
interact when classifying an instance. The rule set commonly
produced using a full iterative strategy with negated terms is
the same as the rule set generally obtained using a simplified
strategy, only it has an extra rule for Weightlifting (Table V).
This extra rule blurs the distinction between the classes for
Volleyball and Weightlifting when classifying an instance in
the data set.

Though little parameter tuning has been attempted in
these early experiments, the full iterative strategy can
produce rule sets with as high a degree of accuracy.
For instance, with constructionThreshold=O . 6 and
f itnessThreshold=removalThreshold=0.4, a 4-rule set
with 93.75% accuracy is created. With the same values for
thresholds and classInstUncovered=O, a 5-rule set with
same accuracy is produced. With c 1 ass Ins t Uncove re d= 2
the rule set has 3 rules and the same accuracy.

V. CONCLUSJON
This paper has demonstrated that the application of ant

algorithms for fuzzy rule induction is a viable approach. Using
a simple data set as a test problem, FRANTIC is able to
obtain rule sets that are comparable or superior to rule sets

1695

FUZZ-IEEE 2004

Pid
% (+I-)

79.79 (2.69)

TABLE VI
FRANTIC PARAMETERS

Not
% (+/-)

79.17 (3.00)

Parameter Name Description Value
noAnts
no1 terations
min I ns t Pe r Rul e

number of ants constructing a solution within an iteration, (line (5)) 100
25
4

number of iterations per ACO run, (line (4))
required during rule construction - minimum number instances in training set
that rule must cover (section 1II.A)

Pid

classInstUncovered

constructionThreshold

fitnessThreshold

removalThreshold

maximum number of class instances that may be left uncovered by a rule,
before descriptions for a new class are found, (line (3))
used during construction of a rule - sets the value for the threshold below
which a rule is considered to not cover an instance in the training set
used during evaluation of a rule - sets the value for the threshold below which
a rule is considered to not cover an instance in the training set
used during removal of class instances from the training set between ACO
runs, (line 9) - sets the value for the threshold below which a rule is considered
to not cover an instance in the training set

1

various

0.5

0.5

Not II

TABLE VI1
FRANTIC PREDICTIVE ACCURACY - SIMPLIFIED VS. FULL ITERATIVE RULE LEARNING

Simplifi
Construction

Threshold % (+I-)
0.45 I1 56.25 (0.00)

56.25 (0.00)
75.00 (0.00)
75.00 (0.00)
8 1.25 (0.00)

0.70 81.25 (0.00)
0.75 56.25 (0.00)
0.80 56.25 (0.00)

% (+/-)
79.79 (3.15)
79.58 (3.99)
80.42 (2.98)
81.04 (3.15)
78.75 (4.95)
77.92 (5.57)
56.04 (1.14)
55.42 (2.16)

obtained by alternative approaches, in terms of the predictive
accuracy and comprehensibility. All rules have explanatory
power of their own, i.e. they are not dependent on other
rules to be able to classify instances correctly. Furthermore,
no assumption is made that one rule per class is sufficient
to describe it, which may be detrimental on larger data
sets. The simplicity of implementation for obtaining different
knowledge representations has also been illustrated.

However, much work remains to be done. In line with
the algorithms against which FRANTIC was compared, the
results on predictive accuracy were obtained using the training
set. FRANTIC now needs to be tested on larger and more
complex real-world data sets, using a separate test set to find
predictive accuracy. The dynamics of the parameters when
using the full iterative strategy also requires exploration, with
the understanding obtained not specific to any one data set,
but generalised beyond that.

Finally, the initial findings have highlighted a potential
problem of fuzzy rule induction using iterative rule learning,
where individual rules may well classify correctly within their
own class, but when combined with the rest of the rule set may
result in inferior classification abilities. This suggests that an
approach whereby the fuzzy rules are evolved simultaneously,
and evaluated together, might yield better results. The authors

80.00 (3.03j
78.54 (4.24)
80.00 (2.54)
81.25 (0.00)
81.25 (0.00)
31.25 (0.00)
31.25 (0.00)

78.54 i3.15j
87.50 (0.00)
87.50 (0.00)
87.50 (0.00)
87.50 (0.00)
62.50 (0.00)
62.50 (0.00)

will be working on extending FRANTIC to work in an alter-
native mode to that of iterative rule learning - by evolving
the fuzzy rules of a rule set simultaneously. This may be
accomplished by running several ACO algorithms in parallel,
with each finding rules for one class.

REFERENCES
[I] P. Kuntz, P. Layzell, and D. Snyers, “A colony of ant-like agents

for partitioning in VLSI technology,” in Proc. 4tl7 European C o i ~ : on
Art$ cial Life, Brighton, UK, Jul. 1997, pp. 417-424.

[2] M. Dorigo, V. Maziezzo. and A. Colomi. “Ant system: optimization
by a colony of cooperating agents,” IEEE Trans. Sysreiits. Mart, and
Cybernetics B, vol. 26, pp. 29-41, Feb. 1W6.

[3] R. Parpinelli, H. Lopes. and A. Freitas, “Data mining with an ant colony
optimization algorithm,’. IEEE Trarzs. Evol. Coinput., vol. 6, pp. 321-332,
Aug. 2002.

[4] E. Bonabeau, M. Dorigo, and G . Theranlaz, Swarm hrelligeitce: From
Natural to Art$ cial Sysreiits. New York Oxford University Press, 1999.

[SJ J. Casillas, 0. Cordon, and F. Herrera, “Leaming fuzzy rules using ant
colony optimization algorithms,” in Proc. 2nd Inreriiarional Workshop 011

Ai7t Algorithms, Brussels, Belgium, Sep. 2000, pp. 13-21.
[6] B. Kosko, “Fuzzy entropy and conditioning.” fnformarion Sciences,

vol. 40, pp. 165-174, Dec. 1986.
[7] S-M. Chen, S-H. Lee, and C-H Lee. “A new method for generating fuzzy

rules from numerical data for handling classifi cation problems,’’ Applied
Artifi cial Intelligence. vol. 15, pp. 645-664, Aug. 2001.

[8] Y. Yuan and H. Zhuang. “A genetic algorithm for generating fuzzy
classifi cation rules,” Fuzz): Sets and Systems, vol. 84, pp. 1-19, Nov.
1996.

[9] Y. Yuan and M. Shaw, “Induction of fuzzy decision trees,” Fuzzy Sets
arid Sysreins, vol. 69, pp. 125-139. Jan. 1995.

1696

