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Abstract-A new approach to fuzzy rule induction from 
historical data is presented. The implemented system - FRANTIC 
- is tested on a simple classification problem against a fuzzy 
tree induction algorithm, a genetic algorithm, and a numerical 
method for inducing fuzzy rules based on fuzzy subsethood 
values. The results obtained by FRANTIC indicate comparable 
or better classification accuracy, superior comprehensibility, and 
potentially more flexibility when applied to larger data sets. The 
impact of the knowledge representation used when generating 
fuzzy rules is also highlighted. 

I. INTRODUCTION 

The activities of social insects have inspired successful 
applications in many areas. For instance, the cemetery or- 
ganisation and brood sorting activity of ants has led to new 
clustering algorithms (e.g. graph colouring and partitioning 
[l]), while their foraging behaviour has resulted in a suite of 
optimisation algorithms - called ant algorithms - for solving 
problems such as bin packing and the travelling salesman 
problem [2 ] .  It is these optimisation algorithms that have been 
adapted for rule induction. 

The appeal of ant algorithms lies in several factors: they 
provide a simple effective mechanism for conducting global 
search by simultaneously constructing multiple solutions that 
investigate diverse areas of the solution space; a simplicity of 
implementation that requires minimum understanding of the 
problem domain; the problem-specific elements - such as the 
fitness function and heuristic - which may be readily borrowed 
from existing literature on rule induction; and, an explicit 
heuristic embedded in the solution construction mechanism 
that makes for easy insertion of domain knowledge. 

The application of ant algorithms to rule induction is an 
unexplored research area. This paper develops work done in 
[3] for inducing crisp rules, modifying the overall strategy used 
and extending it for the induction of linguistic fuzzy IF-THEN 
rules. The implementation is tested on a classification problem, 
but this approach is equally applicable to fuzzy modelling for 
other tasks, e.g. prediction. 

In the next section the motivation and details behind the 
Ant Colony Optimisation (ACO) metaheuristic, instantiations 
of which result in different ant algorithms, are introduced. The 
existing literature on the application of ACO-based algorithms 
to rule induction is also briefly reviewed. In Section I11 the 
FRANTIC system is described, while Section IV presents the 
initial findings of the system, comparing it with the results 
obtained from several other fuzzy rule induction algorithms. 
Section V highlights the advantages and limitations of the 

current research, which in turn suggest avenues for future 
work. 

11. ANT ALGORITHMS 

Ant algorithms is a collective term for algorithms motivated 
by the way ants forage for food. Experiments with real ant 
colonies have been conducted to determine how ants are 
able to find the shortest path between their nest and a food 
source. In making decisions about which path to take ants are 
guided by the amount of pheromone (a chemical substance 
laid by ants) on a path - the greater the amount the higher the 
probability an ant will follow that path. 

When a new food source is first located there is no 
pheromone to guide ants and so each will have made a random 
decision when presented with different paths. Several paths by 
different ants may therefore have been taken to reach the same 
food source. On their return trip to the nest ants will lay more 
pheromone and those that have found the shortest path will get 
back to the nest more quickly. Pheromone, however, evaporates 
so unless the amount on a path is maintained by ants that 
continue to use it, the path will be chosen less frequently. The 
shortest path will however continue to accrue more pheromone 
as ants are able to travel faster along this path and can lay 
pheromone more quickly to replace that which is evaporating. 
It has been observed that foraging ants usually converge on 
the shortest path to a food source. 

A. Ant Coloily Optintisation 

ACO is an agent-based meta-heuristic motivated by these 
foraging strategies of real ants. In ACO, each artificial ant 
is considered a simple agent, communicating with other ants 
indirectly by effecting changes to a common environment. A 
high-level description of an ACO-based algorithm is: 
(1) while termination condition fa l se  
( 2 )  each ant constructs a new solution 
( 3 )  evaluate new solutions 
( 4 )  update pheromone levels 
( 5 )  output best solution 

The pheromone levels and a problem-specific heuristic are 
what guide artificial ants in their construction of a solution. 
Any combinatorial problem for which the following listed 
elements can be defined may be solved by an ACO algorithm 
[4]. These elements are introduced briefly here in the context 
of rule induction, with more detail provided in Section 111. 
The first four elements relate to line (2) of the high-level ACO 
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description above, the fifth relates to line (31, and the sixth to 
line (4): 

rules being applied in the order in which they were created, 
when classifying a new instance. 

An appropriate problem representation is required that 
allows an artificial ant to incrementally build a solution 
using a probabilistic transition rule. The main idea is 
to model the problem as the search for a best path 
through a graph. In the context of rule induction a 
solution is a rule antecedent and each node of the graph 
represents a condition that may form part of it, such as 
OUTLOOK=Sunny, or OUTLOOK=Cloudy. 
A local heuristic provides guidance to an ant in choosing 
the next node for the path (solution) it is building. 
Possible examples may be based on fuzzy subsethood 
values, or a measure of the vagueness in a fuzzy set. 
The probabilistic transition rule determines which node 
an ant should visit next. The transition rule is dependent 
on the heuristic value and the pheromone level associ- 
ated with a node. 
A constraint satisfaction method forces the construction 
of feasible rules. For instance, if simple propositional IF- 
THEN rule antecedents are being constructed, then only 
one fuzzy linguistic term from each fuzzy variable may 
be selected. 
A fitness finction determines the quality of the solution 
built by an ant. 
The pheroniorze update rule specifies how to modify 
the pheromone levels of each node in the graph. For 
instance, between iterations of an ACO algorithm, the 
nodes (conditions) contained in the best rule antecedent 
created get their pheromone levels increased. 

B. Rule Induction via Ant Colony Optimisatiorz 
The application of ant-inspired algorithms to rule induction 

is an unexplored research area. 
A first attempt was made by Casillas et a1 in [5 ] .  However, 

the ACO algorithm is not used for generating fuzzy rules, 
but for assigning rule conclusions. In their problem graph the 
fixed number of nodes are fuzzy rule antecedents found by a 
deterministic method from the training set. An ant goes round 
the problem graph, visiting each and every node in turn and 
probabilistically assigns a rule conclusion to each. 

In [3 ]  an ACO algorithm is used for generating crisp 
IF-THEN rule antecedents. In the problem graph each node 
represents a condition that may be selected as part of the crisp 
rule antecedent being built by an ant. An ant goes round the 
graph selecting nodes according to a constraint satisfaction 
method, building its rule antecedent. The rule conclusion is 
assigned afterwards by a deterministic method. The overall 
strategy used is one of iterative rule learning - starting with 
a full training set an ACO algorithm is run and the best rule 
created by an ant is added to a final rule set. Instances in 
the training set that are covered by this best rule are removed 
before a new ACO algorithm is run. This process is re-iterated 
until only a few (as pre-determined by the user) instances 
remain in the training set, when a default rule is created to 
cover them. The final result is an ordered rule list with the 

111. THE FRANTIC SYSTEM 
FRANTZC (Fuzzy Rules from ANT-Inspired Computation) 

implements a class-dependent iterative rule learning stategy 
whereby for each class that requires descriptive rules to be 
learnt, a number of ant algorithms are run with each one 
outputting one such rule. Note that lines (4)-(8) are equivalent 
to the ACO-based algorithm previously introduced: 

for each class 
reinstate full training set 
while classInstRem>classInstUncovered 

f o r  noIterations 
each ant constructs rule 
evaluate all rules 
update pheromone levels 

add best rule to finalRuleSet 
remove covered class instances 

output finalRuleSet 

A simplified version of this strategy is to run just one ACO 
algorithm for each class, with the assumption being that one 
rule is sufficient to describe a class. FRANTIC may be run 
in this simplified mode, or carry out a full class-dependent 
iterative strategy. 

If a full version is run, then more than one ACO algorithm 
may be run per class. From each the best rule constructed is 
determined and added to the final rule set. However, before 
the next ACO is run to find another rule describing the same 
class, the instances belonging to that class that are covered by 
the previous best rule are removed from the training set. This 
process goes on until there are fewer class instances remaining 
in the training set than a value pre-defined by the user, line (3). 
This parameter provides a simple and effective mechanism for 
controlling over-fitting to the training data, since continuing to 
run ACO algorithms to find rules describing the last few class 
instances may not necessarily produce rule sets with better 
classification accuracy. Instances belonging to classes other 
than the one currently being described are left in the training 
set, as this helps in the evaluation of the rules constructed. 

The following subsections explain the ACO-specific ele- 
ments in more detail. 

A. Rule Construction 
FRANTIC has been designed with the flexibility to cre- 

ate simple propositional rules, propositional rules with in- 
ternal disjunction (e.g. OUTLOOK=cloudy OR Sunny), or 
propositional rules that include negated terms (e.g. OUT- 
LOOK=NOTSunny). The problem graph for each is similar 
and differences in the rule construction mechanism from one 
knowledge representation to the other are highlighted where 
appropriate. 

When creating a rule antecedent an ant traverses a prob- 
lem graph where each node represents a term that may 
be added e.g OUTLOOK=Sunny. In the case of constructing 
rules with negated terms, the graph has double the number 
of nodes - one extra for each original linguistic term, e.g. 
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OUTLOOK=NOTSunny. The choice of the next node to visit 
(next term to be added to the current partial rule antecedent) 
depends on both a heuristic value and the pheromone level 
associated with the node. The choice is made probabilistically 
but is biased towards terms that have relatively higher heuristic 
and pheromone values. 

However, after selection and before a term is added to a rule 
antecedent, a check is made - this ensures that the resultant rule 
antecedent covers a minimum number of instances from the 
training set (set by a parameter called minInstPerRule), and 
is another simple way of avoiding over-fitting to the training. 
With fuzzy sets all fuzzy rules cover all training instances, 
but to varying degrees, and so what constitutes coverage of an 
instance by a fuzzy rule needs clarifying. This is defined in 
subsection B. 

For simple propositional rules, or rules with negated terms, 
if an ant does add a term to its rule antecedent then it will not 
consider other linguistic terms belonging to the same linguistic 
variable. For example, if the linguistic variable OUTLOOK has 
terms Sunny, Cloudy, Rain, and the term OUTLOOK=SUnny 
has just been added to the rule antecedent, then the remaining 
terms are not considered further. If this restriction is removed, 
then it is possible for ants to add more than one linguistic 
term from each variable, with the interpretation being of a 
disjunctive operator between the terms added. 

1) Heuristic: The heuristic used to guide ants when select- 
ing terms is based on fuzzy subsethood values [6], giving a 
degree to which one fuzzy set A is a subset of another fuzzy 
set B: 

where in this case U is an instance from the training set U, 
A represents a class label and B a term that may be added 
to a rule antecedent. The heuristic value of a term j (qj) 
therefore gives a measurement of how important that term is in 
describing a specific class. Since FRANTIC finds descriptions 
for each class in turn, heuristic values for terms are calculated 
at the start of each major iteration, line (l) ,  using only those 
instances in the training set which belong to the class under 
consideration. 

If fuzzy rules with negated terms are being constructed, the 
heuristic value for the negated term is the complement of the 
heuristic value for the non-negated term. i.e. 7 7 ~ 0 ~ ~  = 1 - ?I:, 

2 )  Pheromone Updating: At the start of an ACO run, 
line (4), all nodes in the graph have an equal amount of 
pheromone which is set to the inverse of the number of nodes. 
The pheromone level of individual nodes, however, changes 
between iterations, line (7). Towards the end of each iteration, 
line (6),  rules created by all ants are evaluated. The terms in 
the best rule, say R, then get their pheromone levels increased: 

T~ ( t  + 1) = T~ ( t )  + T~ ( t )  . Q ,  b'j E R 

i.e. at time t+l each term j in rule R gets its pheromone level 
increased in proportion to the the quality of the rule Q. A 

normalisation of pheromone levels of all terms further results 
in a decrease of the pheromone levels of terms not in R. 

The pheromone updating process is a reinforcement mech- 
anism - both positive and negative - for ants constructing 
new rules in successive iterations: terms that have had their 
pheromone levels increased have a higher chance of being 
selected, while those that have had their levels decreased have 
a lower chance. 

3) Transition Rule: Ants select terms while constructing 
a rule antecedent according to a transition rule that is proba- 
bilistic but biased towards terms that have higher heuristic and 
pheromone levels. The relative importance of the heuristic and 
pheromone may be controlled by adjusting the values of the 
parameters cy and ,B, though they have been kept constant and 
equal in these experiments. The probability that a term j is 
selected by an ant is given by: 

where i is any term within the set I of all terms, and n is the 
number of terms in the graph. 

The probabilistic nature of the rule is a way of introducing 
exploration into the search for a solution, in the expectation 
that a more optimal solution may well be found rather than 
by adhering strictly to terms with the highest values. 

B. Rule Evaluation 
After a rule has been constructed, it needs to be evaluated. 

This is done by assessing how accurate the rule is in clas- 
sifying the training instances. Before the fitness function is 
discussed, what constitutes coverage (or matching) of a fuzzy 
instance by a fuzzy rule needs to be defined. This paper adopts 
similar definitions for fuzzy rule matching and classification 
by fuzzy rules (subsection C below) as in [8], in order to make 
comparisons with the results from that work as equitable as 
possible. 

1) Fuzzy Rule Matching: A fuzzy rule is said to cover or 
match a fuzzy instance if their degree of match is equal to or 
greater than a pre-defined value, here called a threshold value. 

When rule R is applied to instance U it is necessary to 
determine how well the attributes of U match the condition 
part of R,  and how the class of U matches the conclusion of 
R .  An example follows. 

Consider a rule R=(1,1,0; 0,0,1; 1,l; 0,l)  that represents 
a rule with four attributes, the last being the class attribute 
with two possible values. Terms that are present in the rule 
are denoted by 1, others by 0. These rules may only classify 
instances into one class. However, the condition attributes may 
take more than one value (i.e. propositional rules with internal 
disjunction). 

Consider a fuzzy instance U=@. 1,060; 0.1,0,0.8; 0.3,0.4; 
0.2,0.7) where the representation is the same as for rule R, 
though the conclusion attribute values may be greater than 0 
for more than one class. 

The degree of match between R and U is given by 

mRu.le(R, U )  = Min(mCond(R, U ) ,  mConc(R, U ) )  
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where the degree of condition match between R and U is 

mCOnd(r2, 'U) = Mink(mAttk(r2, 'U)) 

and the degree of conclusion match is 

mCmc(R, U )  = Mazl<L(Min(Pciass, (RI, ('U))) 

with L being the number of class labels, i.e. the number of 
terms for the class attribute. In the above definitions, mAttk 
measures the degree of match between an attribute k in R and 
the corresponding attribute in U: 

mAttk = Mazj(Min(Pk3 ( R ) ,  Pk3 ( U ) ) )  

where j is a term within the domain of attribute k .  How- 
ever, if the terms for an attribute are all present in a rule, 
then the corresponding attribute match is equal to 1, the 
interpretation being that the attribute is irrelevant. From the 
rule and instance examples above the attribute matches are: 
mAttl = 0.6, mAtt2 = 0.8, mAtt3 = 1, with a con- 
dition match mCond(r2.u) = 0.6. The conclusion match 
is mConc(R,u) = 0.7 and the resulting rule match is 
mRuZe(R,u) = 0.6. If the threshold value is set at 0.6 or 
below, then this rule is considered to cover the instance. If the 
threshold value is set above 0.6, then this rule is considered 
to not sufficiently match the instance. 

2)  Fitness Function: The fitness function evaluates an in- 
dividual rule on the basis of how accurately it classifies all 
instances in the training set. It combines a measure of the 
sensitivity of a rule (its accuracy among instances of the same 
class as the rule) with a measure of the specificity of the rule 
(its accuracy among instances of different classes): 

T P  T N  
Q =  T P +  F N  T N  + F P  

where 
TP (True Positives) is the number of instances covered 
by the rule that have the same class label as the rule 
FP (False Positives) is the number of instances covered 
by the rule that have a different class label from the rule 
FN (False Negatives) is the number of instances that are 
not covered by the rule but have the same class label as 
the rule. and 
TN (True Negatives) is the number of instances that are 
not covered by the rule and do not have the same class 
label as the rule. 

Whether a rule covers an instance or not is determined by 
a threshold value, pre-defined by the user, for the degree of 
match between the rule and an instance. 

C. Classi$cation by FUZZY Rules 
Once a complete fuzzy rule set has been generated, it needs 

to be tested for classification accuracy. This is is performed in 
the same way as in [71-[91: 

1) For each rule, calculate the condition match for instance 
11, and set the conclusion match equal to the condition 
match; 

Fuzz; GA isi 
Fuzzy SH [7] 
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TABLE I 
COMPARISON OF ALGORITHMS 

87.50 5.0 3.2 
93.75 3.0 2.3 

] I  %Accuracy I #Rules 1 #Terms 1 
I Fuzzv DT 191 II 81.25 I 6.0 I 1.7 1 

If two or more rules classify instance U into the same 
class, choose the highest conclusion match as the degree 
for that class; 
Finally, select the class with the highest membership 
degree as the class for instance U. 

Iv. RESULTS AND ANALYSES 

A. The Data Set and Other Algorithms 

The problem on which FRANTIC is tested is the fuzzified 
Saturday Morning data set in [9]. The data set consists of 16 
instances, 4 condition attributes and 1 class attribute called 
PLAN: 

OUTLOOK={ Sunny,Cloudy,Rain} 
TEMPERATURE={Hot,Cool,Mild} 
HuMIDITY={Humid,Normd} 
WIND={Windy,Not-Windy } 
PLAN={ Volleyball,Swimming,Weightlifting } 

The fuzzy rule sets generated by FRANTIC are compared 
against those produced by a fuzzy decision tree algorithm [9], 
a fuzzy genetic algorithm [8], and a method based on fuzzy 
subsethood values [7]. A summary of the results produced by 
these algorithms - with respect to classification accuracy on 
the training set, the number of rules generated, and the average 
number of conditions in a rule antecedent - is given in Table 
I. Note that only the accuracy of one rule set generated by the 
genetic algorithm is quoted for [8], and the assumption in this 
paper is that it is the best ruleset obtained. 

Tables 11, 111, and IV show the rule sets generated by these 
algorithms. This is useful for comparing the rules obtained 
using different knowledge representations. The decision tree 
generates simple propositional rules, the genetic algorithm 
generates propositional rules with internal disjunction, while 
the subsethood value based method generates simple proposi- 
tional rules that include negated terms. Note that the final rule 
produced by this last method, in Table IV, has no explanatory 
power of its own, as it is written in terms of the other rules. 

B. FRANTIC Parameters 

FRANTIC parameters that require setting are listed in Table 
VI, together with a description and the values given in order 
to obtain the results reported here. Note that the concept 
of matching between a rule and an instance is used several 
times by FRANTIC (rows 6-8). These thresholds have been 
implemented separately for maximum flexibility. Initial find- 
ings suggest rule sets with greater classification accuracy are 
found if the threshold during rule construction is greater than 
the threshold during fitness evaluation and for removal of class 
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TABLE I1 
RULE SET GENERATED BY A FUZZY DECISION TREE 

RI IF TEMPERATURE is Hot AND OUTLOOK is Sunny THEN 
Swimming 

R2 IF TEMPERATURE is Hot AND OUTLOOK is Cloudy THEN 
Swimming 

R3 IF OUTLOOK is Rain THEN Weightlifting 
R4 IF TEMPERATURE is Mild AND WIND is Windy THEN 

Weightlifting 
R5 IF TEMPERATURE is Cool THEN weightlifting 
R6 IF TEMPERATURE is Mild AND WIND is Not-windy THEN 

Volleyball 

TABLE 111 
RULE SET GENERATED BY A FUZZY GENETIC ALGORITHM 

RI 

R2 
R3 

R4 

R5 

IF OUTLOOK is Sunny OR Cloudy AND TEMPERATURE is Hot 
THEN Swimming 
IF OUTLOOK is Rain THEN Weightlifting 
IF TEMPERATURE is Mild OR Cool AND WIND is Windy THEN 
Weightlifting 
IF OUTLOOK is Cloudy OR Rain AND HUMIDITY is Humid 
THEN Weightlifting 
IF OUTLOOK is sunny OR Cloudy AND TEMPERATURE is Mild 
OR Cool AND HUMJDITY is Normal AND WIND is Not-windy 
THEN Volleyball 

instances between ACO runs. Lowering this last threshold may 
well act as another mechanism for avoiding over-fitting to 
the training data. However, further investigation is required 
to understand the dynamics between these three parameters 
and it may well be possible to merge two or three of them. 

Very little parameter tuning has been done. The number of 
ants per iteration, and the number of iterations were based 
on [SI, but preliminary results suggests that for this test 
problem at least, FRANTIC is able to find equally good 
rulesets (to those reported in Table VII) with noAnts=15 
and no1terations=20. A few experiments carried out with 
changes to the values of other parameters are reported in 
the following subsection. These parameters and their optimal 
settings also merit further investigation. 

C. FRANTIC Results 

Table VI1 compares predictive accuracy of the rule sets 
generated by FRANTIC using a simplified iterative strategy 
and a full iterative strategy. Each result is the accuracy on 
the training set, and is the average of the accuracy obtained 
from 30 rule sets produced by FRANTIC. The values for the 
parameters are as stated in Table VI with different values for 

TABLE IV 

RULE SET GENERATED B Y  A METHOD BASED ON SUBSETHOOD VALUES 

RI IF OUTLOOK is NoTRain AND HUMIDITY is Normal AND 

R2 IF OUTLOOK is NOTRain  AND TEMPERATURE is Hot THEN 
WIND is Not-windy THEN Volleyball 

Swimming 
IF MF(R1)  < p AND M F ( R 2 )  < 0 THEN Weightlifting R3 

TABLE V 
FRANTICRULE SETS - SIMPLIFIED (RI-R3,93.75% ACCURACY) VS. 

FULL ITERATIVE RULE LEARNING (RI -R4,87.50% ACCURACY) 

RI IF OUTLOOK is NOTXain AND TEMPERATURE is NOT-CoOl 
AND HUMIDITY is Normal AND WlND is Not-windy THEN 
Volleyball 
IF OUTLOOK is NOTRain AND TEMPERATURE is Hot THEN 
Swimming 
IF TEMPERATURE is Hot AND WlND is Windy 'THEN Weightlift- 
ing 
IF OUTLOOK is NOTSunny AND TEMPERATURE is NOTMild 
THEN Weightlifting 

R2 

R3 

R4 

constructionThreshold per row. Columns 2 and 5 show 
accuracy obtained when using simple propositional rules as the 
knowledge representation, for the simplified iterative strategy 
and the full iterative strategy respectively, columns 3 and 6 
when using propositional rules with internal disjunction, and 
columns 4 and 7 when using simple propositional rules that 
also include negated terms of the original terms. 

The number of rules generated using the simplified iterative 
strategy is 3 (since there are 3 classes to be described), while 
the number of rules generated using the full iterative strategy 
is 4, with the fourth extra rule generally being one describing 
Weightlifting. When the number of rules per class is restricted, 
using a more expressive knowledge representation generally 
produces more accurate rule sets (columns 3 and 4 vs. column 
2) .  When this restriction is removed there is less variance in 
the results between the different knowledge representations, 
since extra rules can compensate for the limitations of the 
representation. 

Note, though, that for these parameter settings the highest 
accuracy is obtained using a simplified iterative strategy. This 
is thought to be due to the nature of fuzzy rules and how they 
interact when classifying an instance. The rule set commonly 
produced using a full iterative strategy with negated terms is 
the same as the rule set generally obtained using a simplified 
strategy, only it has an extra rule for Weightlifting (Table V). 
This extra rule blurs the distinction between the classes for 
Volleyball and Weightlifting when classifying an instance in 
the data set. 

Though little parameter tuning has been attempted in 
these early experiments, the full iterative strategy can 
produce rule sets with as high a degree of accuracy. 
For instance, with constructionThreshold=O . 6  and 
f itnessThreshold=removalThreshold=0.4, a 4-rule set 
with 93.75% accuracy is created. With the same values for 
thresholds and classInstUncovered=O, a 5-rule set with 
same accuracy is produced. With c 1 ass Ins t Uncove re d= 2 
the rule set has 3 rules and the same accuracy. 

V. CONCLUSJON 
This paper has demonstrated that the application of ant 

algorithms for fuzzy rule induction is a viable approach. Using 
a simple data set as a test problem, FRANTIC is able to 
obtain rule sets that are comparable or superior to rule sets 
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Pid 
% (+I-) 

79.79 (2.69) 

TABLE VI 
FRANTIC PARAMETERS 

Not 
% (+/-) 

79.17 (3.00) 

Parameter Name Description Value 
noAnts 
no1 terations 
min I ns t Pe r Rul e 

number of ants constructing a solution within an iteration, (line (5)) 100 
25 
4 

number of iterations per ACO run, (line (4)) 
required during rule construction - minimum number instances in training set 
that rule must cover (section 1II.A) 

Pid 

classInstUncovered 

constructionThreshold 

fitnessThreshold 

removalThreshold 

maximum number of class instances that may be left uncovered by a rule, 
before descriptions for a new class are found, (line (3)) 
used during construction of a rule - sets the value for the threshold below 
which a rule is considered to not cover an instance in the training set 
used during evaluation of a rule - sets the value for the threshold below which 
a rule is considered to not cover an instance in the training set 
used during removal of class instances from the training set between ACO 
runs, (line 9) - sets the value for the threshold below which a rule is considered 
to not cover an instance in the training set 

1 

various 

0.5 

0.5 

Not II 

TABLE VI1 
FRANTIC PREDICTIVE ACCURACY - SIMPLIFIED VS. FULL ITERATIVE RULE LEARNING 

Simplifi 
Construction 

Threshold % (+I-) 
0.45 I1  56.25 (0.00) 

56.25 (0.00) 
75.00 (0.00) 
75.00 (0.00) 
8 1.25 (0.00) 

0.70 81.25 (0.00) 
0.75 56.25 (0.00) 
0.80 56.25 (0.00) 

% (+/-) 
79.79 (3.15) 
79.58 (3.99) 
80.42 (2.98) 
81.04 (3.15) 
78.75 (4.95) 
77.92 (5.57) 
56.04 (1.14) 
55.42 (2.16) 

obtained by alternative approaches, in terms of the predictive 
accuracy and comprehensibility. All rules have explanatory 
power of their own, i.e. they are not dependent on other 
rules to be able to classify instances correctly. Furthermore, 
no assumption is made that one rule per class is sufficient 
to describe it, which may be detrimental on larger data 
sets. The simplicity of implementation for obtaining different 
knowledge representations has also been illustrated. 

However, much work remains to be done. In line with 
the algorithms against which FRANTIC was compared, the 
results on predictive accuracy were obtained using the training 
set. FRANTIC now needs to be tested on larger and more 
complex real-world data sets, using a separate test set to find 
predictive accuracy. The dynamics of the parameters when 
using the full iterative strategy also requires exploration, with 
the understanding obtained not specific to any one data set, 
but generalised beyond that. 

Finally, the initial findings have highlighted a potential 
problem of fuzzy rule induction using iterative rule learning, 
where individual rules may well classify correctly within their 
own class, but when combined with the rest of the rule set may 
result in inferior classification abilities. This suggests that an 
approach whereby the fuzzy rules are evolved simultaneously, 
and evaluated together, might yield better results. The authors 

80.00 (3.03j 
78.54 (4.24) 
80.00 (2.54) 
81.25 (0.00) 
81.25 (0.00) 
31.25 (0.00) 
31.25 (0.00) 

78.54 i3.15j 
87.50 (0.00) 
87.50 (0.00) 
87.50 (0.00) 
87.50 (0.00) 
62.50 (0.00) 
62.50 (0.00) 

will be working on extending FRANTIC to work in an alter- 
native mode to that of iterative rule learning - by evolving 
the fuzzy rules of a rule set simultaneously. This may be 
accomplished by running several ACO algorithms in parallel, 
with each finding rules for one class. 
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