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Fault Identification Through the Combination of
Symbolic Conflict Recognition and Markov

Chain-Aided Belief Revision
Finlay S. Smith and Qiang Shen

Abstract—Fault identification is a search for possible behaviors
that would explain the observed behavior of a physical system.
During this search, different possible models are considered and
information about the interaction between possible behaviors is
derived. Much of this potentially useful information is generally
ignored in conventional pure symbolic approaches to fault diag-
nosis, however. A novel approach is presented in this paper that
exploits uncertain information on the behavioral description of
system components to identify possible fault behaviors in physical
systems. The work utilizes the standard conflict recognition tech-
nique developed in the framework of the general diagnostic engine
(GDE) to support diagnostic inference through the production of
both rewarding and penalizing evidence. In particular, Markov
matrices are derived from the given evidence, thereby enabling
the use of Markov chains to implement the diagnostic process.
This work has resulted in a technique, which maximizes the use of
derived information, for identifying candidates for multiple faults
that is demonstrated to be very effective.

Index Terms—Belief updating, conflict recognition, Demp-
ster–Shafer, fault identification, general diagnostic engine (GDE),
Markov chains.

I. INTRODUCTION

THE ABILITY to successfully and efficiently diagnose
faults in physical systems is important in ensuring that

the physical systems can be repaired and returned to use as
quickly as possible. The automatic detection and diagnosis
of faults cannot only speed up this process, but also free the
human engineers to concentrate on maintaining the physical
systems (for example, the tiger system for gas turbines [1]).
A key aspect of the diagnostic process is fault identification,
which involves searching for possible faults that could explain
the observed faulty behavior of the physical system. Fault
identification is essentially a search through the search space
of all possible faults, looking for combinations of faults that
could explain the observed behavior [2]. Fault identification
techniques involve a guided search through this search space,
with the success of the technique being measured in terms of
the efficiency of the search process.
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A diagnostic process can be viewed as deriving a model,
which is consistent with all of the observed values, forming the
fault hypothesis. For many domain systems, there exists some
knowledge, both of how individual components may fail and
of how likely these failures are even though such knowledge
may well be incomplete, imprecise and/or uncertain. Many di-
agnostic systems use this information to aid the diagnostic pro-
cesses. For example, information about system behavior can
be used to compile off-line guidance using existing knowledge
[3]. However, the use of knowledge about how likely individual
components are liable to fail may be difficult [4] as not only can
the definition of failure probability make the values very sub-
jective, but also such data may not be completely available.

The work presented in this paper is based upon existing
preliminary research [5], [6], which only dealt with diagnosing
faults in very simple systems. It exploits the simplicity of a
general diagnostic engine (GDE)-style [7] candidate proposer
in utilizing an assumption-based truth maintenance system
(ATMS) [8] to recognize conflicts and makes use of the basic
principles of Markov chains [9] to identify faults by manipu-
lating beliefs in normal, faulty, or unknown behavior models.
Here, a normal behavior for a component is one where the
component behaves as it was designed, a faulty behavior is one
where the component does not behave as designed, and the
unknown behavior is a fault that is not known to the diagnostic
system.

It is well recognized that as the values of the failure prob-
abilities are unlikely to be either accurate or complete, diag-
nostic algorithms that use them must not be too dependent upon
the exact probabilistic values. The work described herein over-
comes the difficulties involved in obtaining exact data as it is
not dependent on such exact values. Having accurate and com-
plete failure probabilities would improve the overall efficiency
of the work described in this paper, however, if such comprehen-
sive and accurate data were not available the effect on the per-
formance would not be significant. For example, if for a given
component, the failure probabilities were not known, then all
of the faults would be assigned the same failure probability. If
that component then failed, the possible faults would be consid-
ered in a random order rather than considering the most likely
fault first. If some uncertain knowledge of the failure probabil-
ities were known, such as the most likely way for a component
to fail, this would improve the performance of the algorithm as
the most likely faults would be considered first. The algorithm
is therefore robust enough to cope with incomplete or inaccu-
rate failure probabilities.

1083-4427/04$20.00 © 2004 IEEE
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As with many other approaches to model-based diagnosis
[10], a complete system model in the present work consists of
a set of behavioral descriptions of the system components and
the structural description of the interactions between the compo-
nents. Each component is modeled as having one of a fixed set
of possible behaviors, which are independent from each other.
The set consists of one normal behavior and the others faulty,
including the unknown behavior that captures all previously un-
experienced faults. The belief revision method described in this
paper assumes independence. The requirement for these behav-
iors to be independent of each other is perfectly reasonable as
evidence for or against a particular behavior does not directly
refute or confirm any other behavior(s), since the evidence (re-
lating to a given component) is based upon the effect of a single
behavior and in no way discriminates between any of the other
possible behaviors (for that component).

Behavioral descriptions are herein referred to as model frag-
ments [11] of the component concerned. These model fragments
will have a belief attached, reflecting how likely a particular
fragment is of being the fragment that describes the actual be-
havior of the corresponding component. The use of Markov
chains in the revision of such beliefs provides an efficient mech-
anism that is based on rigid mathematical principles. The result
is a diagnostic process with the capability of belief management,
which can use prior knowledge where it exists without a loss of
generality and which, when linked to the detected discrepancies,
can offer important information for postulating likely fault be-
haviors.

Section II introduces the theoretical background of the
present work, including Markov chains and the symbolic con-
flict-recognition method used in GDE. This is followed by a
section that gives a method for using a form of Markov chains
to update beliefs, and another that describes a method for using
these updated beliefs in a GDE type diagnostic system. Sec-
tion VI reports on experimental results of fault identification,
while Section VII presents conclusions.

II. BACKGROUND

This section outlines both Markov chains and GDE’s conflict-
recognition procedure.

A. Fault Diagnosis

The diagnosis of faults in physical systems has been the sub-
ject of much work over recent years [12]–[14], both in static
systems and dynamic systems. This section focuses on the di-
agnosis of faults in static GDE-type systems.

1) GDE-Type Diagnostic Systems: GDE is used to diagnose
multiple faults in static electrical circuits (though applications
of GDE to other domains have also been reported e.g., [15] and
[16]). Fig. 1 shows an example of a simple circuit, which is often
used to illustrate the ideas of GDE.

The GDE makes several assumptions: 1) multiple faults can
occur; 2) the model represents the structure and behavior of the
physical system; and 3) a component either works or it does
not. GDE also assumes that faults must occur in components,
which is not as limiting as it first appears as connections (e.g.,

Fig. 1. Illustrative diagnostic problem.

wires in electrical circuits) can also be represented as simple
components.

The method employed by the GDE is to use given variable
values, typically the exogenous variables to propagate through
the model, allowing predicted values to be generated for each
of the indigenous variables. Whenever two different values are
predicted for the same variable, a conflict exists as a variable
cannot have two different values simultaneously. Subsequently,
as it is known how the two values were derived, at least one of
the components that was used to predict either of the two values
must be faulty. The combination of the two sets of components
that led to the derivation of conflicting values is called a conflict
set.

The major limiting factor with the original GDE is that it
only considered models that were either working normally or
not working normally. This can lead to obviously inappropriate
candidate sets. This limitation of the GDE was part of the mo-
tivation behind several of the improvements that were made to
the GDE [10], [12], [17], [18]. The other main motivation be-
hind these improvements to the GDE was that, in general, some
possible known fault behaviors exist. The aim of these exten-
sions was to combine these known fault behaviors with the rel-
ative simplicity and power of GDE to create more effective di-
agnostic processes.

Sherlock: A particular and successful extension to GDE
is Sherlock [12], [18]. Rather than trying to rule out fault
behaviors, Sherlock attempts to rule out all known behaviors,
including the normal behavior. This leads to the possible situ-
ation where all of the possible behaviors of a component have
been eliminated. Sherlock handles this by adding a new type
of behavior, the unknown behavior. If all of the other possible
behaviors have been eliminated, Sherlock deduces that the
component must be behaving in some previously unknown
manner. This additional behavior allows Sherlock to avoid
having to know all of the possible fault behaviors of a given
component, rather Sherlock only needs to know the most likely
fault behaviors. This greatly reduces the search space, as only
a relatively small number of possible behaviors need to be
specified.

Another feature that Sherlock uses is that of failure probabili-
ties. Each possible behavior (including the normal behavior and
the unknown one) is assigned an initial probability. These prob-
abilities are used to select fault candidates. The probabilities are
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revised based upon the observed values, this has the effect of fo-
cusing the search process to the components in the model that
are most likely to be faulty.

When Sherlock generates conflict sets, it uses them to guide
the search process by adjusting the probabilities and then dis-
posing of them. This information on conflicting observations
and predictions is never used again, though it may contain useful
information.

B. Basic Principles of Markov Chains

The fundamental principle of Markov chains is that the cur-
rent state of a variable is dependent only upon the immediately
previous state, with no dependence upon other previous states
[9]. In fault diagnosis, variables represent which behavior each
component is currently displaying and the states of the possible
behaviors (including the unknown one) of each of the compo-
nents. The transition between states in the diagnostic process
therefore represents the selection of the next fault candidate.
In this context, it is not important how the diagnostic process
reached a particular state, only how it is going to select the next
fault candidate.

Markov chains provide a powerful tool for evaluating the
probabilities of future events based only on the current state,
with the resultant probabilities indicating how likely each of the
potential successor states are. However, the way in which the
transition probabilities and the initial state-probability vector
are obtained is, in general, very domain dependent, with the
values having to be accurate to ensure that any subsequent anal-
ysis is accurate. Fortunately, in the present application, only the
beliefs, not the probabilities, of which model fragment repre-
sents the actual behavior of a component is considered, and the
evidence used is very approximate, while the accuracy is not so
important. This is acceptable as the relative values of the beliefs
relating to each component is only intended to indicate a ranking
of each possible behavior rather than an absolute probability.

Related Use of Markov Techniques in Monitoring and Di-
agnosis: There is some limited existing work in utilizing
Markov chains in fault diagnosis. In [19], a modeling language
that was developed using Markov processes and qualitative
modeling techniques has been consolidated into a diagnostic
process that includes belief revision. The use of Markov pro-
cesses in the modeling language allows for a simulation that
not only predicts the future states of a physical system, but
also measures how likely each of these future states are. The
diagnostic process uses the observations of the physical system
together with control actions to revise the beliefs in individual
states to help the process of selecting fault candidates. This
work contrasts with the work presented in this paper, in that
the Markov chains are used in the modeling and simulation of
the system, whilst the work here uses Markov chains to revise
beliefs in individual components and so aids in the process of
selecting fault candidates.

Another related approach is to use Markov processes to pre-
dict the values of unmonitored dynamic variables [20]. The out-
come is an aid for model simulation that is tolerant to noise and
shows promising results, even with fairly approximate system
models. This, again, contrasts with the belief revision process
described in this paper.

Earlier related work in model simulation used Markov chains
in a qualitative simulator [21], that used a large, sparse, Mar-
kovian matrix to predict the next state given the current one. The
difficulties with this approach are that the matrix itself could be
enormous (even allowing for it being sparse) and all possible
state transitions need to be known in advance.

III. BELIEF UPDATING

The work presented in this paper utilizes beliefs in individual
model fragments to select fault candidates. Each component
within the model of the physical system has several possible be-
haviors. Each model fragment (for each component) has a belief
associated with it, the higher the belief the more likely that the
model fragment represents the observed behavior of the com-
ponent. As the diagnostic process generates evidence for and
against individual model fragments, a method is required of up-
dating the beliefs in individual model fragments. This revision
is necessary to support that only the most likely model (based
upon all of the evidence) is selected. Note that the initial beliefs
in the model fragments may either be derived from expert ex-
perience or be set in a similar fashion to the way that Sherlock
[18] assigns initial probabilities.

During a diagnostic session, every time a model is simulated,
conflict and confirm sets are generated. A conflict set is gen-
erated when two different values of the same indigenous vari-
able can be simulated. A confirm set is generated when two
identical values of the same indigenous variable can be simu-
lated in different ways. These conflict and confirm sets are then
used to generate penalizing evidence and rewarding evidence,
respectively, for and against individual model fragments. Given
the new evidence the values of belief in individual model frag-
ments should be revised. Markov chains are ideal for handling
this problem, as the revision is only based upon the evidence
and the current beliefs. What is therefore required is a means of
converting the given evidence into a Markov matrix.

1) Updating Beliefs: To simplify the description of the be-
lief-updating process, the explanation that follows only deals
with the beliefs in a set of model fragments relating to a single
component. The process has to be repeated for every compo-
nent in the system for a complete revision of the beliefs, as
each component has its own sets of beliefs and evidence. An
important advantage of updating the beliefs in the fragments of
each component separately is that the complexity of the revi-
sion process only increases linearly with respect to the number
of components, as each component requires the same amount
of computation so doubling the number of components doubles
the complexity.

As indicated earlier, there are two types of evidence: re-
warding or penalizing. Negative evidence is effectively treated
as positive evidence for the hypothesis that the component
is not behaving as expected (in other words that one of the
other behaviors is the actual behavior). Let be evidence that
relates to fragment of a given component, , where
a positive value of signifies a piece of rewarding evidence
and a negative value represents a piece of penalizing evidence.
In particular, a value of 1 means that the fragment definitely
explains the current behavior of the physical component and
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a value of means that the fragment definitely does not
explain the current behavior. The size of a piece of evidence is
a measure of the strength of that evidence, that is the closer the
evidence is to 1 (or ) the stronger the belief in the evidence.

A piece of penalizing evidence is calculated in the diagnostic
process based upon the conflict sets that are generated during
the conflict recognition phase. Small conflict sets lead to strong
negative evidence, as usually the smaller the conflict set the
more likely that a given member of the set is faulty, therefore
fewer members in a conflict set reflect stronger evidence against
each of the members of the conflict set. If a fragment appears in
more than one conflict set the evidence against it increases. Con-
firming evidence is calculated in a similar way, based upon the
confirm sets that have been generated.

Intuitively, the revision process must reflect the strength of the
evidence so that a value closer to 1 (or ) results in a relatively
larger change in the beliefs, whilst a value closer to 0 results
in a relatively smaller change. In addition, if the evidence is
rewarding, the belief in that fragment will have to be increased
and if the evidence is penalizing, the belief in that fragment will
have to be reduced. In converting given evidence to a Markov
matrix, these two kinds of evidence are dealt with separately as
the effects of the two kinds of evidence are so different.

Explicitly representing each possible model at system level as
a possible state and calculating the probabilities of each possible
transition between such states would be an immense task for
systems of a realistic complexity. For a simple system of say,
four components, each of which has five possible behaviors,
would require 5 625 explicit representations. Even for such
a simple system, the Markov matrix is very large: 625 625. To
overcome this difficulty, a set of state transitions is defined for
each component within the model of the physical system, with
the states being represented by model fragments and the belief
in a model fragment imitating the probability that that particular
fragment is in the system model. Using the same example there
will be four matrices, each of which is of size 5 5, thus, the
complexity only increases linearly with respect to the number
of components.

The Bayesian approach could have been used to perform the
belief revision [22], however, the difficulty in calculating (or ap-
proximating) the necessary probabilities, makes their use prob-
lematic for the present problem. In particular, there would be no
specific evidence to indicate what dependencies (if any) exist
between the fragments of various components.

Spohn’s work on dynamic epistemic states [23] proposes a
method for state transitions based upon positive and negative
evidence. This work, rather than concentrating on actual beliefs
in states, records relative ordering of these states (with respect to
belief). Any penalizing, or confirming, evidence is used to move
the whole set of affected states down, or up, this ranking. The
result is a mechanism for recording the relative beliefs in states.
The difficulty with this approach is that it requires a relatively
more complex representation than the current work, as the states
are not represented by a single ordering, rather by a series of
related orderings (each of which contains a subset of states).
The overall ordering is therefore not explicit.

Rewarding Evidence: To achieve a reasonable reassignment
of belief, several criteria must be satisfied. First of all, for

any component, one of the fragments must be correct (since
unknown fault behaviors are explicitly represented by the
unknown fragment). Thus, the sum of the revised beliefs must
remain to be 1 [9] to satisfy the requirement in Markov chains.
To ensure this, it is sufficient that the values in each of the
columns in the Markov matrix sum to 1. Rewarding evidence
suggests that the fragment appears to represent the observed
behavior, consequently, the belief in that fragment should be
increased. To preserve the Markov properties, the beliefs in
some (or all) of the other fragments must be reduced. If the
relative ordering of the other fragments is to be retained (as
they are independent there is no evidence for or against any
of them), the belief acquired from each fragment should be
directly proportional to the belief in that fragment. The redis-
tribution of belief is proportional to the current belief to ensure
that the relative beliefs in the other fragments is unchanged.
This is due to the independence of these fragments and the lack
of any evidence to suggest that any of them are more (or less)
likely to represent the actual fault. This approach is, essentially,
the same as used by Spohn [23].

For the present application given rewarding evidence
, the matrix constructed using elements as defined below

satisfies the identified criteria, where is the element in the
th row and th column of the constructed matrix

Penalizing Evidence: As with the case of having a piece of
rewarding evidence, several criteria must hold to enable a rea-
sonable reassignment of belief if penalizing evidence is given.
The sum of the revised beliefs should also remain as 1 and so
each of the columns of this matrix must also sum to 1. To re-
flect the size of the evidence, the belief in the penalized frag-
ment should be reduced in direct proportion to the size of the
evidence. If the belief were assigned to the unknown behavior
category, the belief in this unknown behavior would (for those
components which are under suspicion) very quickly become
the most believed fragment. This would result in the unknown
behavior being suggested as part of a fault candidate. As it is not
possible to refute (or confirm) an unknown behavior, this frag-
ment would remain the most believed. The known faults, which
may be far more likely than an unknown fault would therefore
be overlooked due to the relatively high belief in the unknown
behavior.

The elements of a Markov matrix that satisfies all these cri-
teria are defined as follows, for given evidence ,
where is the current belief in fragment :



SMITH AND SHEN: FAULT IDENTIFICATION THROUGH SYMBOLIC CONFLICT RECOGNITION AND MARKOV CHAIN-AIDED BELIEF REVISION 653

Fig. 2. Combining pieces of evidence.

Combining Evidence: As fragments can belong in more than
one conflict or confirm set, there will be more than one piece of
evidence relating to a given model fragment. Thus, the Markov
matrices derived from individual pieces of evidence need to be
combined to form an overall matrix.

The combination of evidence must also satisfy certain basic
intuitive criteria. Firstly, two pieces of rewarding evidence must
reinforce each other so that the combined evidence is greater
than either of the two individual pieces. Similarly, two pieces
of penalizing evidence must also reinforce each other, again,
so that the overall evidence is greater than either of the orig-
inal pieces. The combination mechanism should be associative,
so that the order of combination of the evidence is not impor-
tant. An existing technique that satisfies all of these criteria is
the Dempster–Shafer theory of evidence (DST) [24]. Owing to
its sound mathematical foundations, DST is employed here to
calculate the belief in combined evidence. DST generates two
pieces of evidence (positive and negative) which need to be
combined. The simplest way to do this is to integrate the two
matrices by averaging their corresponding elements, which is
implemented herein. An alternative approach would be to mul-
tiply the two matrices together, however, this is not only com-
putationally more complex but the result is dependant on the
order of combination. The steps used in this process are shown
in Fig. 2.

This two-stage process is required to allow several pieces of
positive (or negative) evidence to reinforce each other. This re-
flects the increase in the likelihood that a particular component
is faulty as the more conflict sets a component is in, the more
likely it is to be faulty. The second stage allows any compo-
nents that have both positive and negative evidence against them
have the overall size of the evidence reduced, reflecting the con-
flicting evidence. Neither of these two steps would be sufficient
on their own. If each piece of evidence were used to create a
Markov matrix and the resulting matrices were combined by
averaging over all of the matrices, the desired properties would
not be displayed. The resulting matrix would be a Markov ma-
trix, but the effect of the matrix would not reflect the individual
pieces of evidence. If all of the evidence, both positive and neg-
ative, were to be combined together before creating a Markov
matrix a different problem would arise. The DST only works
for positive evidence. The DST could be modified to have two
propositions, however, this would result in two pieces of ev-
idence which would still need to be combined. The problem
could be avoided by using the method for combining conven-
tional certainty factors (CFs) [25], however, this method is not
associative and so the result of combining beliefs would depend
upon the order of their combination.

A simplification to the DST has been developed [26], that
simplifies some of the computational complexities associated
with the DST. In particular, the work described in that paper re-
duces the complexity, by only considering singletons (sets that
only contain a single element) rather than the full-sets allowed
on DST. This use of singletons reduces the complexity signifi-
cantly as the number of such singletons grows linearly with re-
spect to the number of hypothesis. Another feature of this work
that is of particular relevance to the present research is the com-
bination of positive and negative evidence (relating to a single
hypothesis). Its modification of DST allows for the combination
of positive and negative evidence, but still results in two pieces
of evidence, which still need to be combined.

In the present work, there are only two possible elements,
and (where represents the case of the fragment being

in the system model and represents the case of the fragment
not being in the model), and only four mutually exclusive
hypotheses are possible, , , , and

. This restriction on the values used by DST greatly
simplifies the process and results in only two values being
stored. The modified DST is in an even simpler version than
proposed in [26], as the number of hypothesis is fixed and so
complexity is not a major issue, indeed as only beliefs of a
single sign are combined the version of DST used in this paper
is more efficient.

IV. GUIDING CANDIDATE GENERATION WITH BELIEFS

Having presented the method for belief updating, this section
describes a framework (Fig. 3) that utilizes the work to develop
a diagnostic algorithm for fault identification. The diagnostic
process involves several steps as detailed below:

1) Initialize beliefs;
2) Select a system model;
3) Detect conflicts in the model;
4) If conflicts exist, then:

a) Generate evidence and evaluate its size;
b) Update beliefs;
c) Go to Step 2;

5) Else, report candidate found.

A. Initialize Beliefs

The beliefs in each of the model fragments are initially set to
their default values, which are set to their prior probabilities if
known. The search for fault candidates causes the initial beliefs
to be repeatedly revised. As a result, when a fault candidate is
found, the beliefs can be considerably different from their initial
values. These new values are a reflection of all of the models
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Fig. 3. Key stages of the algorithm.

that were considered during the search for the previous fault
candidate. If the search for the next fault candidate were to start
from these revised beliefs, the search would be focused on the
same candidates which would make it less likely that the next
most believed model (in terms of prior probability) would be
selected. If the beliefs were reset to their initial values, the search
would not be biased by the results of the previous search and so
the most believed model is more likely to be found.

B. Select a System Model

The next step involves selecting a system model that consists
of one model fragment for each system component. This is done
by choosing the model fragments that have the highest belief,
ensuring that the most believed model is selected. If there exist
more than one model fragment that are of the highest belief for
a particular component, one of such fragments is, effectively,
picked at random (as there is no justification for choosing one
over the other). In order to prevent a model that contains known
inconsistencies being selected, an ATMS is used to record the
minimal conflicts that are generated during each conflict recog-
nition step, the information in the ATMS is then used to check
potential models as they are developed, thus disallowing models
with a subset of model fragments that are known to be in con-
flict. In this way the most likely model that contains no known
inconsistencies is chosen.

The process for selecting the next model is a search through
the space of models looking for the most believed model that

is consistent with the known conflicts. The approach taken is
to perform a depth first search through the model space (any
given heuristics may of course be used to increase the search
efficiency).

C. Detect Conflicts in the Model

Once a system model has been selected, the individual frag-
ments are treated as the normal behavior model fragments in
a conventional GDE algorithm. The conflict recognition step
of the GDE algorithm is run, and any detected minimal con-
flicts represent sets of model fragments that cannot coexist in the
model that represents the actual behavior of the system under di-
agnosis. These minimal conflict sets are recorded in the ATMS
to prevent any future model being generated that contains them
as a subset.

D. If Conflicts Exist

If the previously simulated model generated conflicts a can-
didate has not been found and so the current beliefs should be
revised to facilitate the selection of the next model.

1) Generate Evidence and Evaluate Its Size: In general, ap-
plication of GDE’s conflict recognition method will lead to both
penalizing and rewarding evidence being found. The penalizing
evidence is based upon the minimal conflict sets detected at the
last step. A minimal conflict set must, by definition, contain at
least one model fragment that does not represent the actual be-
havior and therefore should not be in the required model. There
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is no explicit information about which member of the set causes
the conflict, however, the current belief in each of the fragments
is known and so the most suspect fragments are those with the
lowest belief.

As at least one fragment must be pushed out of the required
system model, so that the conflicts generated cannot recur, a
total penalizing evidence of 1 can be attached to each of the min-
imal conflict sets. In the extreme case where the conflict set con-
tains a single value, this value ensures that the fragments belief
is reduced to zero. This penalizing evidence is then distributed
amongst the model fragments within it in proportion to ,
where is the belief in fragment . The penalizing evidence

is therefore defined as:
where is the number of elements in the conflict set, clearly

. As a result, the most disbelieved model frag-
ments have the most evidence against them. Note that the ap-
proach taken in [25] is to assign negative evidence as positive
evidence for all of the other behaviors. Following this, the belief
would be equally distributed amongst all of the other fragments.
The reason that this approach was not chosen was due to the un-
known behavior fragment. If the belief was equally distributed,
then the unknown behavior would also get an equal share of the
belief. This may not seem unreasonable, but as the unknown
fragment can never be disproved (it is impossible to show that
a component is not behaving in an unknown way) the belief in
the unknown fragment cannot be reduced. As a result, if the be-
lief was distributed evenly, then the unknown fragment would
quickly become the most believed and suggested as a (or part of
a) possible fault. This description relates to the generation of the
evidence, whilst the description of the section Rewarding Evi-
dence refers to the use of this evidence to revise the beliefs.

The rewarding evidence is generated using minimal confirm
sets. From the same observed values, finding two ways to predict
the same value for a variable suggests that the model fragments
upon which the predictions were based are correctly modeling
the observed behavior. It is therefore reasonable to increase the
belief in these model fragments so that they are more likely to
be selected to be part of future models.

If the minimal confirm set only has one element, then that
element must be in the model that would explain the observed
behavior and so its belief should be increased to 1. If the set
contains more than one element, the evidence should be shared
amongst each of the elements. The evidence is shared in propor-
tion to the values of the current belief in each of the fragments
so that the most believed fragments are allocated most of the
evidence, and so

2) Update Beliefs: The final step is to update beliefs in each
of the model fragments that have evidence relating to them,
using the techniques, based upon Markov chains, described in
Section IV-C. If there is more than one piece of evidence re-
lating to a particular model fragment, the pieces of evidence
must be combined together. The fault-identification process then
selects another system model and continues until a model is
found that generates no conflict sets. This model is then returned
as a fault hypothesis.

3) Go to Step 2: Now that the beliefs have been revised, the
next model to be simulated is selected.

E. Else, Report Candidate Found

As no conflicts were detected in the current model, it is re-
turned as a fault candidate.

V. COMPARISON WITH EXISTING STATIC TECHNIQUES

To illustrate the effectiveness of the techniques, a simple
problem case will be considered (complex application examples
are to be presented later). The problem is the same as that used
in Section II when describing the GDE algorithm [7]. The GDE
algorithm is not considered here mainly because GDE only con-
siders a component to be faulty or not faulty. The comparison
will be between systems that incorporate fault models instead.
The results highlight the differences between the approaches
and reflect the relative computational complexity of each of
them.

All of the approaches compared in this section use the same
underlying technique for detecting faults (the GDE inference
engine for fault candidate generation), indeed all model-based
static diagnostic systems share the same core as do some recent
approaches to dynamic diagnosis [16], [27]. The discussion of
the complexity of each of the techniques will therefore focus on
the processes for belief revision. There are two potential sources
of increased complexity when scaling this problem to a more
realistic one.

• An increase in the number of components. This is the most
obvious complexity issue, as the number of components
increases, so does the complexity of the belief-revision
process.

• An increase in the average number of possible behav-
iors for each of the components. The relative importance
of the number of components is shown by the fact that
the number of components will generally be significantly
greater than the average number of behaviors. A physical
system may typically have several thousand components
and yet less than ten behaviors per component.

A. System Under Diagnosis

The example used here is not complex, however, the effects
of scaling the problem up to a more realistic size are addressed.
The illustrative system has been shown in Fig. 1.

B. Markov Chains for Belief Revision

The first technique that will be considered is the work pro-
posed in this paper, the use of Markov chains for belief revision.
Suppose that each of the components in the system are modeled
by seven different model fragments and, for simplicity, that all
of the components have the same set of model fragments. In par-
ticular, each component has a model fragment that corresponds
to the desired “normal” behavior , five known fault behav-
iors ( to ) and an unknown fault behavior .

The initial values of the beliefs were set to 0.99 for each
“normal” behavior fragment , 0.000 01 for each unknown
fragment and 0.001 998 for all of the other fragments ,

. These value for the “normal” behavior fragments
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TABLE I
EVIDENCE GENERATED

TABLE II
REVISED BELIEFS

is reasonable as in general most components will not fail and so
the belief in each of them should be relatively high. Similarly,
the belief in the unknown fragment is low as it is relatively un-
likely to fail in an unknown manner.

When the diagnostic process is invoked, there are no
known conflict sets yet and the most believed system model
is the “normal” behavior model. This model is selected and
analyzed using GDE’s conflict recognizer. The following
minimal conflict sets were generated: ,

, and , re-
sulting in pieces of penalizing evidence. Table I shows the
evidence generated by this system model.

The values of the beliefs are then revised, using the penalizing
evidence against each of the fragments in the system model.
Table II shows the revised values of belief in each of the frag-
ments. From these revised beliefs and the known conflicts, the
most likely model, which contains no known conflicts is se-
lected and the process iterates. In this case the selected model
contains the following fragments: , , ,
and .

After seven iterations, a fault hypothesis is found with
and being the faulty components, which correctly ex-
plains the observed behavior. The fragment was the fifth
model fragment that had been considered for component ,
and so, most of the system models that were considered were
there to evaluate the various possibilities for component .
If model fragment had represented the most likely fault
behavior for component , then the fault would have been
identified after only three iterations, as the most likely fragment
would have been considered first.

The use of conflict sets helps to significantly reduce the
number of combinations that needs to be considered. So, for
example, if components , , and had become the
focus of the search, then it would become a problem of identi-
fying the combination of fragments of these three components
that might explain the behavior. As there are five possible
behaviors for each of these components, there are 125 possible
combinations. By using the conflict sets, this number can be
significantly reduced, by omitting those areas of the search
space that contain a conflict set as a subset.

Each of the components has its belief revised independently
of the others, though the values of the beliefs are dependant on
the behavior of the other components. Additionally the cost of
revising the belief for a component is fixed (assuming that the
number of possible behaviors stays constant). Thus, the effect
of doubling the number of components is to double the effort
involved in revising the beliefs. The complexity of the belief
revision process is thus linear with respect to the number of
components in the model.

The average number of possible behaviors on the other hand
has potentially a greater complexity. The generation of the
Markov matrices used is itself linear as the matrices are sparse,
as each matrix contains nonzero elements, with being
the average number of behaviors. The complexity increases
for the application of the matrices as the process is effectively
a matrix multiplication and so rather than being linear the
complexity is . This is not a serious problem as long as

is relatively small.

C.

An existing system that utilizes a similar set of possible fault
behaviors is [17]. It starts in the same way as in the
previous example and generates the same minimal conflict sets.
The process then determines the minimal fault candidates (as
in GDE), resulting in the following: , ,

, , , , ,
. now tries to evaluate possible faults from

all the possible fault behaviors. If it is assumed that all of the
possible behaviors are as given in the previous example there
are five possible faults for each component (if the unknown be-
havior is ignored as simply cannot handle this). There
are therefore 25 possible fault combinations for each of the min-
imal candidate sets. As there are eight minimal candidate sets, a
total of 200 fault combinations need to be considered (assuming
that only two components are actually faulty). is there-
fore particularly affected by an increase in the average number
of possible behaviors.

When is applied to larger, more practical, diagnostic
problems, the complexity greatly increases. As the number of
components increases, so generally does the size of the con-
flict sets, this is because the predicted values tend to be derived
through more components. Additionally, if the system under di-
agnosis has more inputs and outputs, the number of conflict sets
also increases. While the computational complexity of
is not directly dependant on the number of components in the
system under diagnosis, this increase in the size of conflict sets
has a significant effect. As the size or number of conflict sets
increases, the number of minimal fault candidates increases and
therefore the number of fault combinations that needs
to consider also increases.

The relative number of fault combinations that needs to be
considered depends upon the number of faulty components in
the system under diagnosis. If there is only a single fault, the
number of fault combinations only increases linearly. This is
because each additional member of a conflict set only requires
a fixed increase (the number of possible faults) in the number of
fault combinations. However, when two or more faulty compo-
nents are present the complexity increases exponentially.
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D. Sherlock

Another system that uses an identical type of possible model
(including the unknown fault model) to the present work is Sher-
lock [18]. Sherlock starts in the same way as . The min-
imal conflict sets are used to focus the search for possible diag-
noses. In order to generate leading candidates it then uses ap-
proximate prior probabilities in the same form as the Markov
chain process. It only considers the most likely faults initially,
and only considers the less likely faults if the most likely ones
have been eliminated. The problem with this approach is that, in
order to find leading candidates, a considerable number of po-
tential candidates may have to be considered.

The above problem is compounded if the size and number
of the conflict sets increases, as this significantly increases
the number of possible models that need to be considered.
The process is roughly linear with respect to the number of
components primarily due to the focusing mechanism. The
complexity is more dependant on the size and number of the
conflict sets, as either of these increases so generally does the
size of the focus of the diagnosis, which subsequently increases
the complexity. The effect is similar to that observed in ,
except that as Sherlock searches for the most likely faults, the
complexity with respect to the average number of behaviors
is partially dependant on the relative probabilities of each of
the behaviors. However, as Sherlock may consider candidates
whose probability is 1/100th of the best candidate, an increase
in the number of behaviors can have a considerable detrimental
effect on the candidate selection process.

E. Summary

The process that uses Markov chains for belief revision has
complexity advantages over both and Sherlock, both in
terms of the number of components and the average number of
behaviors. In particular it uses information from each model
simulation to guide successive candidate selection processes.
In addition, as it only considers one candidate at a time, the
potential for complexity problems is considerably reduced.

The work presented in this paper could also be compared to
the existing static techniques in relation to the order in which
possible candidates are considered. All of the existing tech-
niques are guaranteed to find the most believed candidates first,
as they consider candidates in strictly decreasing order of be-
lief. The work presented here may not necessarily consider the
candidates in such a strict order. The actual effectiveness of the
current work will be discussed further in the results section.

VI. EXPERIMENTAL RESULTS

To demonstrate the utility of the present work, two sets of re-
sults are presented. The first set of results systematically tests
a nontrivial problem, in the second set of results, the present
work is applied to a significantly complex problem of identi-
fying faults.

A. Systematic Experimental Evaluation of the Approach

This section presents the results of systematically applying
the techniques described in this paper to a nontrivial diagnostic
problem. Multiple faults will be simulated in the system under

Fig. 4. Full adder.

diagnosis and then the performance of the diagnostic process
will be evaluated by its ability to identify the simulated faults in
as few attempts as possible.

1) System Under Diagnosis: The system under diagnosis is
built from full adder modules with one such module shown
in Fig. 4. These modules each consist of five individual com-
ponents (three multipliers and two adders) and have five in-
puts and two outputs. Overall, there are fifty inputs ( ,

, , , and ) and 16 out-
puts in the system. The system has a total of 90
components (54 multipliers and 36 adders) and each of the in-
puts has an effect on up to eight of the outputs. The system is
therefore reasonably complex and provides a test bed for evalu-
ating the techniques described in this paper.

Behavioral Fragments for Each Component: For each of the
components in the system model four possible model fragments
were defined, each of which could explain the behavior of the
component:

1) Normal behavior. The component behaves as it is ex-
pected to, representing the component not being faulty.
The prior probabilities, , were set to 0.99 to re-
flect the low likelihood that any individual component is
faulty.

2) Stuck at zero (denoted by s0). This fragment represents
the fact that the component returns the value zero, no
matter what the value of the inputs. The prior probabili-
ties, , were set to 0.004 999 9 as it was assumed that
known faults were more likely than unknown faults.

3) Stuck at one (denoted by s1). This time the output is 1 no
matter what the inputs are. The prior probabilities, ,
were set to the same value as , 0.004 999 9.

4) Unknown (denoted by ). This fragment represents the
case where the fault is unknown. The prior probabilities,

, were set to 0.000 000 2, as it was assumed that an
unknown fault was unlikely.

The model used has 90 components of various types, each
of which has four possible behaviors. The total number of pos-
sible models is therefore . Clearly it would be
impossible to try all possible models and find possible faults
exhaustively.

2) Experimental Methodology: To evaluate the diagnostic
method described here, it is interesting to investigate its perfor-
mance over a significant number of diagnoses. A total of 100
multiple faults were simulated for this purpose. Each of the at-
tempts at diagnosis was generated randomly. In each case, two
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TABLE III
NUMBER OF MODELS SIMULATED FOR EACH TEST

faults were simulated by randomly selecting two of the compo-
nents and then randomly allocating them one of the two known
faults ( or ). The inputs for each test were also generated
randomly to avoid any bias introduced by a single set of inputs
being used in each test. Each test ran until the actual fault was
found, if other fault candidates were proposed before the actual
fault the test continued.

To evaluate the performance of each test, two factors were
measured. First, the number of models simulated before the cor-
rect faults were found. This measurement is important, as the
aim of the diagnostic process is to find the actual fault as quickly
as possible. The second method is to consider the prior proba-
bility of each of the models that were simulated. It is important
that the models should be considered in order of prior proba-
bility, otherwise, less likely candidates may be suggested before
more likely ones.

3) Results: The results are presented in this section. The ta-
bles that show the results of individual tests only indicate those
components that are not behaving in their nonfault mode.

Number of Models Simulated: The number of models sim-
ulated for each test are summarized in Table III. The average
number of models simulated in these one hundred tests was
4.62, indicating that the process is very efficient at identifying
faults in this nontrivial physical system. In 11 cases, the cor-
rect fault was identified in the first model to be simulated. There
were thirteen tests that took ten or more models, with the largest
number of models (17) being simulated in the final test. This
compares very favorably against the total number of models that
may have to be simulated in exhaustive search. The distribu-
tion of the number of models simulated is shown in Fig. 5. This
demonstrates that the majority of the faults are correctly identi-
fied within four models, and only a few tests taking more than
11 models to correctly identify the faults.

The tests that took four or less model simulations had gener-
ally to do with the cases where the faults did not interact with
each other. These cases were effectively two single faults and the
search for fault candidates was a search for two distinct faults,
which quickly focuses on a small set of components. An example
of a test where the correct faults were detected very quickly is test
8, the details of which are shown in Table IV. In this case, one of
the faulty behaviors is correctly identified in the first model sim-
ulated (component add13 displaying fault ), the subsequent
models are then used to search for the second fault. Fig. 6 shows
that most of this kind of fault were correctly identified within four
models, and all of such faults were correctly identified within
nine models. The generally low number of models considered
in these tests confirm that such tests are simpler to diagnose.

The tests that took more than ten model simulations were gen-
erally tests where the faults did interact with each other. In these
cases, the search for fault candidates is more difficult, as a model
that contains only one of the faults does not reduce the number
of conflict sets. These tests are indicated in Table III by having a

in the Models column. An example of a test which needs more
than ten model simulations is test 5, the details of which are
shown in Table V. In this example, one of the actual faults (com-
ponent mult 31 displaying fault ) is found after only four sim-
ulations, with the remaining simulations trying to find the other
fault. These results are summarized in Fig. 7, which shows that
most of this kind of fault were correctly identified within eleven
models. All of the faults were correctly identified within seven-
teen models. These tests generally require more model simula-
tions than those where the faults do not interact, which confirms
the expected increase in complexity in diagnosing such faults.
Despite the generally poorer performance of tests where the
faults did interact, only considering an average of approximately
seven models is impressive when compared to the number of
possible models.

Single Fault Solutions: Several tests generated candidates
with only one single fault, despite two faults actually being
present. In each of theses cases, the single fault was one of the
actual faults that had been simulated. There are two reasons why
just one single fault can be suggested when two faults are known
to exist.

• A faulty component is not giving an erroneous output. If
this occurs, the component is not observed to be faulty.

• The two faults directly interact with each other. In this
case, only one of the components will appear to be faulty.

As the diagnostic process only finds minimal fault candidates,
it cannot suggest the actual faults as a fault candidate in such
cases, though it will identify one of the components as being
faulty on its own. Missing one of the underlying faults is there-
fore acceptable for such difficult situations as the missed one is
equivalently subsumed by the identified fault.

Prior Certainties of Simulated Models: In most of the one
hundred tests performed, the models were simulated in order of
decreasing prior probability. In only two tests were models of a
lower prior certainty considered before models of a higher prior
probability, namely test 37 and test 100. The results of one of
these tests is shown in Table VI.

In test 37, one of the actual faults was found in the first simu-
lated model and was in all of the subsequent models. The other
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Fig. 5. Summarized results.

TABLE IV
RESULTS OF TEST 8

faulty component was correctly identified in model 6, however,
a different model fragment was considered for this component
in model 2.

4) Discussion: The results presented in this section are gen-
erally very encouraging, the correct faults are found, on average,
in less than five models. The diagnostic process very quickly fo-
cuses the search for faults on a few components, with the slowest
test taking 17 models to correctly identify the actual faults.

In 98% of the tests, the models were simulated in decreasing
order of prior probability. In the other 2% of tests, this ordering
did not occur. The reason that these two tests did not follow the
ordering was that the beliefs had been revised to the extent that
the beliefs in some of fault behaviors rose above that of non-
fault behaviors and so models with three faults were considered
before those with only two faults. The prior probability in the
normal behavior fragment in each component was set to 0.99,
combining the certainties for the normal behavior model gave
an overall prior probability of 0.405. This suggests that 60% of
the time at least one of the components will be faulty. If the
prior probability in each of the normal behavior fragments were
increased to 0.9999, the overall prior certainty becomes 0.99,
suggesting only a 1% chance of faults occurring.

The two tests that did not follow the decreasing prior certainty
order were repeated with the prior probability in the normal be-
havior fragments increased to 0.9999 (the other prior certainties

were revised accordingly). The results of one of these additional
tests is shown in Table VII. The problem of not selecting models
in decreasing order of prior probability has been resolved for
both of these cases.

These results show that even with the initial low prior prob-
abilities in the normal behavior fragments, the technique was
98% successful in considering candidates in a decreasing order
of belief. Increasing the prior probabilites resulted in this being
increased to a success rate of 100%. While there is no guarantee
that the technique will always achieve 100% these results indi-
cate that the success rate can be very high.

B. Diagnosing Faults in an ISCAS’85 System

The domain under investigation will be described first, high-
lighting the reasons for choosing such a system in demonstrating
the utility of the present work. Results from various tests will
then be presented, and the use of the techniques on such large
systems discussed.

1) System Under Diagnosis: The system under diagnosis
was taken from a standard test suite of complex systems [28].
The circuit chosen was c1355, which contained 546 compo-
nents with 41 inputs and 32 terminals (labeled 1324gat to
1355gat). All of the variables take binary values.

Components in the Model: The model used here is built from
a range of components as summarized in Table VIII, including
and gates with two, four, and five inputs. For each of the compo-
nents in the system model, the same four possible model frag-
ments were defined, each of which could explain the behavior
of the component. Given that the system used for demonstration
has 546 components of various types, and each of which has
four possible behaviors, the total number of possible models is,
therefore, . Clearly, it would be impossible to
try all possible models and find possible faults exhaustively.
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Fig. 6. Summarized results where the faults do not interact.

TABLE V
RESULTS OF TEST 5

2) Diagnostic Performance: To demonstrate the effective-
ness of the diagnostic program on this sophisticated system,
two separate test cases are employed. In each case, the results
of several iterations of the diagnostic process will be given to
show not only the first fault that it finds, but also the subsequent
faults. This is important as there may be several possible ways
for the faulty behavior to have been caused, and the first can-
didate found may not represent the actual faults in the physical
system. Thus, allowing for the generation of multiple candidates
(each of which may itself involve multiple faults) increases the
ability to identify faults correctly.

In both tests, at least two components must be faulty to ex-
plain the observed behavior. All of the test cases given here use
the same set of inputs; each of the inputs is set to the value 1.
If there were no faults in the system, then the expected output
values (1324gat to 1355gat) would all have the value 1. To sim-
ulate faults in the model, it is therefore only necessary to set one
or more of the output values to zero.

First Result: For this example, all of the outputs were set
to the value 1, except for 1324gat and 1355gat (the first and

last outputs), which were set to the value 0. From observing the
structure of the model, it can be seen that it is not possible for a
single fault to explain both of these discrepancies and so there
must be at least two faulty components. With such an observa-
tion, the most obvious solution is that both component buff 1
and component buff 32 are faulty.

The first 20 models considered are shown in Table IX, along
with the belief in each of the models and an indication as to
whether conflicts still exist. Of these 20 models, no fewer than
12 of them are physically meaningful fault candidates. The first
model checked happens to be the most obvious candidate for
explaining the observed faults, namely buff 1 and buff 32 are
both behaving as if their output is stuck at the value 1. The use
of the conflict sets in guiding the selection of fault candidates
is clearly successful as the very first model tried contains two
potential faults that jointly explain the observed behavior.

As the two discrepancies were obtained from distinct areas of
the system, the pattern that emerges from the results is that the
diagnosis is treating each of the discrepancies as the effect of a
single fault. This means that the diagnostic process can be inter-
preted as a combination of two separate diagnostic processes,
covering a large number of the models resulting from the com-
bination of these two single faults.

Second Result: For this example, all of the outputs were set
to the value 1, except for 1354gat and 1355gat (the last two
outputs), which were set to the value 0. Again, it is not possible
for a single fault to explain both of these discrepancies and so
there must be at least two faulty components. The most obvious
solution is that both component buff 31 and component buff 32
are faulty.

The first 16 models considered are shown in Table X, along
with the belief in each of the models and an indication as to
whether conflicts still exist. The elements that contain no values
for the second Faulty Component and Behavior column, were
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Fig. 7. Summarized results where the faults interact.

TABLE VI
RESULTS OF TEST 37

TABLE VII
RESULTS OF THE REVISED TEST 37

TABLE VIII
COMPONENTS IN THE MODEL

attempts by the diagnostic program to explain the discrepancies
with a single fault. The results follow much the same pattern as
in the previous example, using the revised beliefs and conflict
sets to generate models until a “partial” solution is found and
then focusing on the rest of the model. A total of seven different
candidates were found, as summarized in Table X.

Despite the fact that a single fault cannot explain the two dis-
crepancies, there are four models tried that only contain a single

TABLE IX
RESULTS OF THE SECOND TEST

fault. The reason for this is that the conflict sets generated allow
for components 5 and 8, nand 153, and nand 154 to singly ex-
plain the fault logically. To explain the reason for this, consider
a simple model, as shown in Fig. 8.

In this simple system, there are two discrepancies (the out-
puts should be 1 and 0, not 0 and 1). The conflict recognition
phase of GDE would suggest that both of these discrepancies
could be explained by a fault in component buff 1. However, for
buff 1 to explain both faults, it would need to output the value
0 to buff 2 and the value 1 to the not gate not, which is clearly
impossible. The single fault candidates that occur in Table X are
due to this phenomenon, as they generate conflicts they are ef-
fectively eliminated from further models. The single fault frag-
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TABLE X
RESULTS OF THE THIRD TEST

Fig. 8. Two faults reflected though single candidate.

ments will have a relatively low belief, which results in most
of the negative evidence being used against them (as the nega-
tive evidence is weighted against less believed fragments). As a
result, when these single faults are proposed, large negative evi-
dence is applied during the belief revision phase, which greatly
reduces their belief and effectively eliminates them from future
models.

The reason that the unknown behavior fragment has not ap-
peared as a fault candidate in the above examples is that the
initial belief in the unknown behavior fragments is very small.
The single fault candidate that represents the unknown behavior
is thus not considered before the double faults by the diagnostic
program. If the unknown behavior was given the same belief as
the know behaviors, then it would be likely to be considered as
part of a fault candidate early in the process. Again, as there is
no way to confirm (or refute) an unknown behavior this could
give prominence to the unknown fault. It would also hinder the
known faults being selected as they can occur in conflict sets
and have their beliefs reduced (unlike the unknown behavior).

3) Discussion: The results presented in this section clearly
show that the combination of belief revision, conflict sets and
confirm sets lead to an efficient method of fault candidate gen-
eration and identification. The use of conflict sets effectively
prunes the search space so that models that can be discarded on
the basis of known conflicts are never considered again if any
subset of a known conflict has already been refuted.

The results demonstrate that the techniques developed here
are readily applicable to larger systems, indeed the complexity
of the belief revision process only increases linearly with respect

to the number of components. The use of conflict sets enables
the model selection process to eliminate large portions of the
search space and the use of belief-revision focuses the search
even more. The use of confirm sets allows the belief-revision
process to increase the beliefs of components that are not in
conflict. The combination, of the belief-revision process and the
conflict sets, effectively focuses the candidate search.

Another factor that aids the ability of the present diagnostic
process to work on scaled up systems is that a larger number
of components does not necessarily mean a larger number of
simultaneous faults. The relative infrequency of faulty com-
ponents results in the search process concentrating on specific
areas of the search space. The search for more than one faulty
components out of 500 components is only slightly more com-
plex than searching for more than one faulty components out of
100. Though the conflict sets themselves may be larger, the min-
imal candidate sets will still only contain a few components and
so the search will focus on these components. The complexity
in propagating values and selecting models, however, increases
more significantly. Further work is therefore required to improve
the model selection process.

This example shows that despite the increase in the size of
the system under diagnosis, the complexity increase has been
minimized due to the linear nature of the approach.

VII. CONCLUSION

This paper has presented a novel approach for fault identifi-
cation that integrates Markov chains and GDE-style symbolic
conflict recognition. System models are selected based upon
the current belief in the behavioral descriptions of its individual
components and the results of each model simulation are used to
revise these beliefs. This is achieved by converting the evidence,
gathered through the conflict recognition process, to Markov
matrices which facilitate the belief revision. This combination
of Markov chains with GDE-style symbolic conflict recogni-
tion, has led to an approach that extends the capabilities of GDE
type systems. The combination of belief revision and the use of
an ATMS to record conflicts allows for a reduction in the number
of possible models that need to be considered. Additionally, fur-
ther work could be undertaken to extend the approach to diag-
nose faults in dynamic systems.

The results that have been obtained so far suggest that this ap-
proach offers a great potential in performing efficient fault diag-
nosis. The systematic evaluation of the approach showed that in
98% of the tests the models were simulated in decreasing order
of prior probability and that in all cases the actual faults were
correctly identified. Using the techniques on a larger system
showed the ability of the technique to be scaled up. The main
reasons for this are that the belief revision process is linear and
that the use of conflict and confirm sets effectively prunes the
search space and focuses the search.

Further work is still required, however, for the method pro-
posed to be extended into a fully fledged diagnostic system,
rather than just a candidate proposer. The fully fledged diag-
nostic system would endeavour to distinguish between candi-
dates by suggesting additional measurements or proposing alter-
native inputs. It would be very interesting to compare the present



SMITH AND SHEN: FAULT IDENTIFICATION THROUGH SYMBOLIC CONFLICT RECOGNITION AND MARKOV CHAIN-AIDED BELIEF REVISION 663

work with other most recent approaches (e.g., [29]), which em-
ploy alternative uncertainty handling techniques for diagnosis.
In addition, the efficiency of the present work, especially the se-
lection of system models, may be further improved by the use
of dynamic flexible constraint satisfaction techniques [30].

The current system only records the conflict sets generated
at each stage of the diagnostic process. A significant improve-
ment in the performance of the process could be achieved if
all of the propagated values within the candidate proposer were
stored. This stored information could then be extracted to form
the basis of future model simulations. This improvement would
be especially significant when only a relatively few components
vary between models, as most of the value propagation would
already have been performed, thus reducing the amount of cal-
culation required. The increase in efficiency would arise from
only having to propagate values through the newly added model
fragments.
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