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Abstract

An overview of the application of evolutionary computation to fuzzy knowledge discovery is
presented. This is set in one of two contexts: overcoming the knowledge acquisition bottleneck in
the development of intelligent reasoning systems, and in the data mining of databases where the aim
is the discovery of new knowledge. The different strategies utilizing evolutionary algorithms for
knowledge acquisition are abstracted from the work reviewed. The simplest strategy runs an
evolutionary algorithm once, while the iterative rule learning approach runs several evolutionary
algorithms in succession, with the output from each considered a partial solution. Ensembles are
formed by combining several classifiers generated by evolutionary techniques, while co-evolution is
often used for evolving rule bases and associated membership functions simultaneously. The
associated strengths and limitations of these induction strategies are compared and discussed. Ways
in which evolutionary techniques have been adapted to satisfy the common evaluation criteria of
the induced knowledge—classification accuracy, comprehensibility and novelty value—are also
considered. The review concludes by highlighting common limitations of the experimental
methodology used and indicating ways of resolving them.

1 Introduction

Evolutionary algorithms have been successfully applied to many search and combinatorial
optimization problems. Their popularity is due in great part to their parallel development and
modification of multiple solutions in diverse areas of the solution space, discouraging convergence
to a suboptimal solution. Fuzzy rule-based systems, on the other hand, have proven successful in
many real-world applications where domain knowledge is imprecise or inexact. A common problem
with the implementation of such systems, however, is the acquisition of the production rules on
which decision-making is based. Evolutionary algorithms have been extensively applied to this
knowledge acquisition task, with the majority of initial work, including reviews of such work,
focussing on the tasks of control and function approximation (e.g. Hoffmann, 2001).Interest in this
area of research is still very high, as is evidenced by a recent special issue of the journal Fuzzy Sets
and Systems on genetic fuzzy systems (Cordon et al., 2004).Articles include new developments and
techniques for the learning and evolution of fuzzy classification systems and hierarchical fuzzy
models.

This paper examines work addressing the task of classification, presenting an overview of the
ways in which evolutionary algorithms have been used for automated fuzzy knowledge acquisition.
It does not seek to instruct the reader in the evolutionary techniques mentioned, or in the



fundamentals of fuzzy logic-based systems and fuzzy inference. Instead, it illustrates how such
techniques have been applied to knowledge acquisition within a supervised learning environment.
Where appropriate, an attempt is made to place such work within the wider contexts of specialist
machine learning and artificial intelligence subfields, such as inductive logic programming and
multi-objective optimization. It should also be noted that the utility of such work extends beyond
this specific task—classification is not only an end in itself but is also an integral part of the process
in the operation of intelligent systems designed for automated fault detection, control, and
decision-making in general.

The meaning of the term ‘knowledge acquisition’ in this paper has been broadened to include
both automated knowledge acquisition for the development of intelligent reasoning systems, and
knowledge discovery from large databases. Much of the work reviewed is within one of these
contexts and this then places an added emphasis on inducing knowledge that is comprehensible to
the user, i.e. on inducing descriptive fuzzy rules using linguistic variables as opposed to approximate
fuzzy rules whose main focus is accuracy.

Section 2 introduces the term ‘classifier systems’ and makes a distinction between their use for
solving reinforcement learning problems and supervised learning problems. Section 3 briefly
illustrates how evolutionary computation has been applied in the development of fuzzy rule-based
systems in general, while Section 4 discusses the different induction strategies that have been used
for knowledge acquisition using evolutionary algorithms. These strategies are in most cases equally
applicable to the evolution of crisp rules or decision trees, so that when fuzzy examples are sparse
they are supplemented by crisp versions in order to indicate how a solution may be developed.

Section 5 is driven by the increasing importance placed by large organizations on acquiring
comprehensible knowledge that may be validated by users, and incorporated into their decision-
making processes—it focuses on the common knowledge representations utilized in such cases, that
is decision trees and production rules. Section 6 then illustrates how evolutionary algorithms have
been adapted to satisfy the common criteria by which the acquired knowledge is evaluated. Section
7 provides a summary of this review, and Section 8 presents general comments on the current state
of research effort within the community.

2 Classifier systems

Classifier systems were introduced by Holland & Reitman (1978)and the word ‘learning’ was added
later to give the term ‘Learning Classifier System’ (LCS), emphasizing that such a system ‘learns’
how to achieve a particular goal by interacting with its environment and receiving feedback on its
actions. This feedback, in terms of a reward, is used to guide the evolutionary development of the
system’s behaviour, represented as a set of rules each one of which is called a classifier. In the
original implementation of classifier systems a complicated credit assignment procedure is used to
apportion the reward from the environment between the various rules used in the decision-making,
while a genetic algorithm (GA) (Holland, 1975)is used to evolve them.

Within the evolutionary community an LCS is often considered as a particular application of
GAs, but debate is rife on this issue, especially so within the specialist LCS community. For
instance, several researchers argue that an LCS is far more than a GA, that the rule discovery
subsystem need not be a GA, that it may be replaced by a different evolutionary approach (Tufts,
1995;Ahluwalia & Bull, 1999),or even by a non-evolutionary approach entirely (Stolzmann, 2001).
Others may consider the credit assignment subsystem of an LCS more relevant than the rule
discovery component and this then suggests the view of an LCS as primarily a reinforcement
learning system. Still others argue that solving reinforcement learning problems is only one
application area of learning classifier systems. This question of ‘what is an LCS?’ is addressed in
some detail in Holland et al. (2000)and Kovacs (2001).

Learning classifier systems have certainly been utilized in the last decade for solving both
reinforcement learning (Donnart & Meyer, 1994;Dorigo, 1995),and supervised learning problems
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(Bonelli & Parodi, 1991; Garrell i Guiu et al., 1998; Holmes, 2000; Bernado-Mansilla &
Garrell-Guiu, 2003).In reinforcement learning the specific goal is to solve sequential decision tasks
through trial and error interactions with a dynamic environment that provides minimal feedback
in the form of occasional rewards and penalties. However, in supervised learning for the purpose
of classification, the problem is often greatly simplified. As the work presented in the following
sections illustrates, the rule sets generated are composed of rules that do not form action/decision
chains and this greatly simplifies the credit assignment procedure for the classifier system.
Furthermore, the labelled training data provide considerably more feedback and often constitute a
stable learning environment. This partly explains why many of the examples discussed in this review
are simplified versions of the original classifier systems (certainly with respect to the credit
assignment procedure), though custom genetic operators tailored for the particular problem
domain are often used instead.

Because of this development arising out of the application of classifier systems to supervised
learning of non-chained rules, and because of the previously mentioned debate on what actually
constitutes a classifier system, the use of this term beyond this section is generally avoided. For an
overview tracing the development of classifier systems in the last decade the reader is directed to
Lanzi & Riolo (2000), while Bonarini (2000) provides a general introduction to learning fuzzy
classifier systems and their applications.

3 Evolutionary computation and fuzzy modelling

Evolutionary computation (EC) is the application of methods inspired by Darwinian principles of
evolution to computationally difficult problems. Evolutionary algorithms (EAs) re-iteratively apply
genetic-inspired operators to a population of solutions, modifying or replacing members of the
population so that on average each new generation tends to be better than the previous one,
according to some predefined fitness criteria.

EAs have been extensively and successfully applied to combinatorial and search problems.
Reasons for their popularity include their broad range of application (e.g. robotics, control, and
natural language processing), their relative simplicity of implementation that requires little domain
knowledge, and their development of multiple solutions that search different parts of the solution
space simultaneously. More detailed discussion of EC strengths, issues, and theoretical foundations
and aspects such as computational complexity and algorithm convergence may be found in Baeck
(1996),Fogel (1997),Whitley (2001),Kallel et al. (2001),and Yao (2003).

There are several different approaches for reasoning with imperfect or imprecise knowledge
(Parsons, 2001),including fuzzy rule-based systems that are based on fuzzy set theory and fuzzy
logic (Zadeh, 1965).At the core of a such a system are:

1. a knowledge base composed of fuzzy production (–) rules that conceptualize domain
knowledge (the rule base—RB), and the membership functions defining the fuzzy sets associated
with the linguistic terms employed in the fuzzy rules (the database—DB);

2. an inference procedure that uses this stored knowledge to formulate a mapping from a given
input (e.g. in classification, conditions denoted by attribute values) to an output (e.g. in
classification, a conclusion denoted by a class label).

Fuzzy rule-based systems capture and reason with imprecise or inexact knowledge (in fuzzy logic
everything is a measure of degree; Zadeh, 1988),and since many real-world problems contain a
measure of imprecision and noise, the application of such approximate reasoning systems in these
situations is a viable approach. This is supported by many successful applications in industry and
commerce that deal with automated classification, diagnosis, monitoring and control (Hirota, 1993;
Bardossy & Duckstein, 1995;Pedrycz, 1996).

Evolutionary techniques have been used to generate the RB of a fuzzy rule-based system, or fine
tune the membership functions, or both. Other applications of evolutionary techniques are related
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to the pre-processing and post-processing stages of the knowledge discovery process. These include
feature construction or selection (Smith & Bull, 2003),training example subset selection (Endou &
Zhao, 2002), and RB optimization (Nakashima et al., 1998; Ishibuchi & Yamamoto, 2004).
Another interesting use is found in Marin-Blazquez & Shen (2002) in which a GA is used to
transform accurate but non-descriptive approximate fuzzy rules into equally accurate descriptive
fuzzy rules, while in Gomez-Skarmeta et al. (2001)different EAs are used to select and tune fuzzy
(approximate) rules for classification, from a larger set generated by fuzzy clustering and fuzzy
neural networks. For reviews of evolutionary computation techniques that cover some of these
ancillary tasks, the reader is directed to Freitas (2003).

The focus of this review is on RB generation, but, when the membership functions are
simultaneously evolved, then relevant work is also discussed. The branches of EC that have been
mainly applied to this task are GAs and genetic programming (GP) (Koza, 1992).Other major
branches are evolutionary programming (EP) (Fogel et al., 1966)and evolution strategies (ESs)
(Rechenberg, 1973).These branches are similar to each other and differ mainly in the representation
used for the individuals in a population (e.g. binary strings vs. real-valued vectors), and in the
application of the genetic operators such as recombination and mutation of individuals.

3.1 Rule base generation

When only the RB is being induced, the membership functions are predefined either by a
human expert or some other process (e.g. clustering), and remain fixed throughout the inductive
process.

From some of the early work on classifier systems two terms have emerged that are still in
common usage today: Michigan-style (Holland & Reitman, 1978) and Pittsburgh-style (Smith,
1980),the names being in recognition of the institutions of the originators of the two approaches.
In the first approach one rule is encoded as one individual of the population, whilst in the second,
later, approach a RB is encoded as one individual of the population. These terms are still used in
discussing GAs, but within this paper their meaning has been extended to describe the encoding of
solutions within the other branches of evolutionary computation where appropriate.

If Michigan-style encoding is adopted then the EA generally evolves either a rule antecedent or
an entire rule. In the first case, at each iteration a separate deterministic procedure is used to
determine the rule consequent before evaluating the rule for fitness (e.g. Nakashima et al., 1998).
Alternatively, the rule consequent, i.e. class, may already be specified for each rule antecedent
during the entire run of the EA. This is where an iterative rule learning approach is followed and
an EA is run several times in succession, with each run concentrating on evolving rule antecedents
pertaining to a specific class (e.g. Gonzalez & Perez, 1998;Romao et al., 2002).

If a complete rule is encoded in an individual then the rule consequent may also be subject to
evolution and change by the genetic operators. A restriction may be placed on the crossover
operator to ensure that only parents belonging to the same rule consequent are combined to
produce offspring (Yuan & Zhuang, 1996;Walter & Mohan, 2000).

With a Pittsburgh-style approach, generally, both rule antecedents and associated consequents
are encoded. The genetic operators may then act on the individual rules within a RB, or on the
composition of the RB itself. An alternative is proposed in Yang et al. (2001), in which each
individual represents a fixed number of rule antecedents. The consequents of the rules are
dependent on the number of positive and negative examples they match in the training set and are
determined prior to evaluation of the rule set.

3.2 Knowledge base generation

The generation of the RB and optimization of the membership functions may be done in stages or
simultaneously.
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If the approach taken is a phased one, then generally the RB is first evolved to an acceptable state
using fixed membership functions and afterwards is used to fine tune the original membership
functions. An example of this is Cordon et al. (1998a), which is based on MOGUL (Gonzalez &
Herrera, 1997;Cordon et al., 1999),a methodology for obtaining complete knowledge bases for
fuzzy-rule based systems. MOGUL suggests three stages: generation of the RB using predefined
fuzzy partitions for the linguistic variables; RB refinement, through selection of optimal subsets,
fine-tuning of individual rules or removal of redundant ones; and finally, a genetic tuning stage that
optimizes the membership functions.

If the two components of the knowledge base (RB and DB) are evolved simultaneously, then one
of two approaches may be followed. The first approach is to encode both the RB and the
membership functions associated with the fuzzy sets of each fuzzy variable in the same individual
(Pena-Reyes & Sipper, 1999;Yuhui et al., 1999).The second approach is that of co-evolution—two
populations, one of rules and another of membership functions are evolved simultaneously within
a shared fitness environment (Mendes et al., 2001;Pena-Reyes & Sipper, 2001).

4 Induction strategies

This section illustrates how EAs have been developed into a solution strategy for automatic fuzzy
knowledge acquisition. These strategies (or approaches) are in most cases equally applicable to the
evolution of crisp rules or decision trees. However, there are certain differences that arise from the
crisp or fuzzy nature of the induced knowledge, and these are highlighted where appropriate.

The various strategies are inter-related (see Figure 1). In the simplest approach (generic
evolutionary algorithm, in Figure 1), an EA evolves a population of rules, RBs or decision trees, and
the end result is the whole of the final population or a subset of it. Note that a path of a decision
tree may be considered as an – rule, so that a complete decision tree may be considered a RB.
Another approach (iterative learning), is iterative in nature, running a basic EA several times in
succession with the result of each one being considered a partial solution to the problem. A third

Figure 1 Inter-relationships between induction strategies
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approach (co-evolution), co-evolves two or more EAs simultaneously, with each EA contributing a
component part of the solution. A final approach (ensemble), may in principle use any of the
previous strategies, but then combines several different solutions to create an ensemble of classifiers.

Iterative rule learning has generally been used for RB generation, whilst the basic strategy and
co-evolution may be used to simultaneously evolve both the RB and the DB of a fuzzy rule-based
system.

The use of ensembles is perhaps not so much a separate strategy for knowledge acquisition, as
a strategy for combining the resulting evolved classifiers. They are however discussed since the
problem addressed here is often classification, with generalization capability therefore being one of
the most common and important evaluation criteria (and ensembles of classifiers often provide
greater classification accuracy than single classifiers). Furthermore, under certain circumstances
there are similarities between the evolution of ensembles and the iterative learning strategy that
should be noted (and are discussed in Section 4.4).

4.1 Basic induction strategy

As the name suggests this is the simplest way in which an EA may be used to induce RBs or decision
trees. A high-level description of an EA is provided in Figure 2. Note that the actual genetic
operators used and the implementation-level coding of the individuals of a population are
dependent on the specific EA being implemented.

Two variants are possible depending on whether an individual represents a partial solution or a
complete solution, i.e. depending on whether an EA uses Michigan-style or Pittsburgh-style
encoding for an individual.

Fuzzy systems using Michigan-style encoding to generate rules include FGA (Yuan & Zhuang,
1996),Fuzzy-ROSA (Slawinski et al., 1999),and the learning systems described in Ishibuchi et al.
(1999b). In these systems an individual represents one rule, has an associated fitness level, and the
whole population represents the RB. A direct consequence is the necessity to maintain a population
of different rules that can represent the complete problem domain, since it is unlikely that one rule
would be able to explain the entire training set or classify all new instances.

In Fuzzy-ROSA this issue is resolved by dynamically changing parameter values of the EA.
Various indicators of how well the search for rules is progressing are calculated for each generation
and, based on these indicators, a separate fuzzy system adapts the genetic operators of the EA. The
search indicators include a diversity measure for the individuals of the population based on a
heuristic distance measure between two individuals, the best and mean fitness of individuals, and
the simplicity or complexity of the rules being generated. For instance, if the average diversity of
the population is low then the mutation rate is increased.

Another decision arising from the Michigan-style encoding scheme is whether to utilize the entire
final population of the adaptive learning algorithm as the RB, or a subset of the population. The
system FGA, for instance, uses only a subset of the rules, the aim being to end up with a compact
set of high-quality rules. The user defines an accuracy level and all rules that meet that level are
selected. The extraction process is then carried out on this smaller population based on three criteria
in descending order of importance: accuracy, coverage and fitness (the fitness measure is based on

Figure 2 Basic induction strategy—a generic evolutionary algorithm
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accuracy and coverage of the rule but also on its relative importance within the whole rule set as
defined by a uniqueness measure). The rule or rules with the highest accuracy are identified; if there
are two or more rules that have an accuracy within a predefined tolerance level, then the ones with
the greatest coverage are selected; of these the one with the highest fitness is selected and placed in
the final rule set pot. The training examples that are covered by this rule are removed from the
training data set and the second rule for the final rule set is selected in the same way. This goes on
until the training data set is empty.

In the second variant of the basic evolutionary strategy, an individual in the population generally
represents an entire RB and hence only one individual need be selected from the final population as
a solution. Early crisp rule-inducing systems for classification include GABIL (de Jong et al., 1993)
and GIL (Janikow, 1993),while Harris (2002) presents a fuzzy extension to GABIL. Since each
individual is a RB, the search space has consequently increased and the calculation of the fitness
function is generally more computationally expensive. However, this encoding does give rise to
distinct advantages: the fitness associated with each individual takes into account rule interaction
and no additional procedures are required for maintaining diversity in a population.

Ishibuchi et al. have conducted an empirical study comparing the two variants of this basic
implementation for supervised classification problems. (It should be noted that, in general, such
informative comparative studies are rare, whether making comparisons between the variants within
one induction strategy, or making comparisons between different induction strategies.) In Ishibuchi
et al. (1996),a Pittsburgh-style individual represents a set of complete fuzzy rule antecedents with
each individual having a predetermined number of rules, i.e. all individuals have the same number
of antecedents. The rule consequent and confidence factor for each rule antecedent is determined
from the training data set by a deterministic procedure. The fitness of this Pittsburgh-style
individual is determined by the number of correctly classified training examples.

In the Michigan-style algorithm, each rule is represented by a separate individual so that the
whole population corresponds to a single RB. The fitness of an individual here is dependent on the
numbers of correctly and incorrectly classified training examples. The authors Ishibuchi et al.
conclude that, for the data sets tested, the Michigan-style encoding and resulting algorithm provides
a greater classification accuracy at a lower computational cost, when compared with the
Pittsburgh-style encoded algorithm.

Ishibuchi et al. continue to experiment with these two variants and in later work make more
refined observations—the algorithm using Michigan-style encoding for individuals obtains higher
classification rates for high-dimensional problems, while the algorithm using Pittsburgh-style
encoding obtains higher classification rates on low-dimensional problems (Ishibuchi et al., 2000).
This suggests that the Michigan-style encoded algorithm may have a greater ability to find good
fuzzy rules in large search spaces. However, this algorithm cannot directly optimize a RB as it only
measures the performance of individual rules. The authors suggest that it is this indirect
optimization that leads to inferior results by the Michigan-style algorithm on low-dimensional
problems.

Other experiments with the Michigan-style approach (Ishibuchi et al., 1999a) indicate that the
classification accuracy deteriorates if the GA is changed from a steady state to a generational one.
That is, if instead of only a few of the worst individuals in a current generation being replaced by
fitter offspring in the next generation, all individuals are replaced by offspring. Ishibuchi et al.
conclude that in order to maximize performance, new rules should be generated from existing good
rules (as defined by the fitness function), good rules from previous generations should not die out,
and optimization of a complete RB should be done directly.

This results in the design of a hybrid algorithm that attempts to combine the best features from
both variants. The individuals of this new hybrid algorithm are Pittsburgh-style and may have
different lengths, i.e. different number of rules. The fitness function used in this hybrid promotes
RBs that are good at classifying the training set but also have a small number of rules. These two
elements of the fitness function may be given different emphasis by attaching a weighting factor to
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each part. The mutation operator is, however, the main change from the original Pittsburgh-style
implementation—mutation is now a single iteration of the Michigan-style algorithm and is applied
to all generated RBs after selection and crossover, i.e. the worst rules in each RB are now replaced
with new rules that have been generated from good rules in that same RB.

In Ishibuchi et al. (2000) the authors test this hybrid algorithm against their original pure
Michigan-style and Pittsburgh-style algorithms. The hybrid achieves the same or better accuracy on
all six data sets used, with, in most cases, a smaller number of rules and thereby aiding
comprehensibility of the induced knowledge. They also provide a comparison of the CPU time
taken by all three variants—the Pittsburgh-style algorithm requires more time than the Michigan-
style algorithm, and the hybrid algorithm is even more computationally expensive as it is essentially
combining the previous two variants together.

This basic induction strategy may be used to evolve the entire knowledge base of a fuzzy
rule-based system, i.e. evolve the RB and the DB simultaneously. The encoding of a Pittsburgh-
styled individual may be extended to include the membership functions associated with the fuzzy
sets of the fuzzy variables (Pena-Reyes & Sipper, 1999;Yuhui et al., 1999).In Yuhui et al. (1999),
for instance, the GA evolves the individual Mamdani-type rules (Mamdani, 1976)within the RB,
but also the number of rules within the RB. The fuzzy variables each have the same number of fuzzy
sets. This number remains fixed throughout the evolutionary process, but as each membership
function is tuned, its type (left-triangular, right-triangular, triangular, gaussian, sigmoidal, or
reverse sigmoidal) is also allowed to change.

4.2 Iterative rule learning

In this approach a basic EA (as just described in Section 4.1) is run several times in succession, with
the output from each iteration considered a partial solution to the problem.

The iterative learning strategy mirrors the separate-and-conquer approach originally applied in
deterministic rule learning algorithms such as AQ (Michalski, 1969)and CN2 (Clark & Niblett,
1989).Here, one rule is built to cover a subset of the training set and then more rules are built to
cover the remaining instances recursively. This approach is also termed a ‘covering approach’ in the
literature.

Figure 3 Iterative rule learning strategy
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When utilizing EAs as the rule discovery mechanism, there are two main variants on the iterative
theme—iteration by class where in each iteration rules describing a specific class are learnt, or
independent of class where in each iteration good rule antecedents are first found and the class is
determined afterwards.

In the induction of crisp rules using the second variant, the output of the algorithm may be
considered as a decision list, i.e. an ordered list of rules that must be applied in sequence when
classifying a new instance (Riquelme et al., 2000).These rules may be considered as a series of
–– rules. In the process of classification, if the first rule in the list does not cover the
instance, i.e. the corresponding values of the attributes in the rule and instance do not match, then
the next one is tried. If the second rule does not work then the third one down the list is tried, and
so on. Once an instance is classified by a rule no more rules are tried. If none of the rules cover the
instance then a default rule at the bottom of the decision list is used for classification.

Unordered rule sets, on the other hand, may give rise to conflicts between rules when classifying
a new instance, as there may be more than one rule covering the instance and each rule may have
a different consequent. For the crisp versions these conflicts are often resolved by a simple majority
voting scheme, i.e. the new instance is assigned the same consequent as that of the majority of
matching rules. Another common method is to use a distance measure and an instance is then
assigned the class of the nearest rule in the rule set (Venturini, 1993;Liu & Kwok, 2000).When
classifying by fuzzy rules, this overlap between rules is handled by the fuzzy inference method
implemented. Of course, there are many possible conflict-resolution strategies, such as recency and
complexity-based approaches (Davis & King, 1977;Buchanan & Duda, 1983).

A high-level description for the first variant, i.e. iteration by class, is illustrated in Figure 4. An
example system following the iteration by class sub-strategy for inducing crisp – rules is
EDRL (Kwedlo & Kretowski, 1998). At the start of each major iteration, line (1) in Figure 4,
training examples with a specific class label are indicated as positive examples whilst all other
training examples are indicated as negative. The basic EA used here line (4), is a GA using
Michigan-style encoding. It is run a number of times, until all or nearly all (as defined by the user)
of the positive training examples have been covered by a rule, line (3)—each run of the GA outputs
the best rule from its final population as determined by a fitness function that encourages larger
coverage of positive instances, minimum coverage of the negative ones, and a short rule antecedent.
The rule is added to the final rule set, and training examples it matches are removed before the next
GA is run. Once the inner iteration, line (3), has been completed, the original training set is
relabelled with examples belonging to the next class for which rules are to be generated indicated
as positive, and all others as negative.

In the case of fuzzy rule induction, what constitutes coverage (or matching) of a training instance
by a rule needs defining, as an instance may be covered by several different fuzzy rules but to
varying degrees. An example of a fuzzy system inducing rules in this manner is SLAVE, introduced
in Gonzalez et al. (1994).

A common modification to the class-dependent iterative approach is to simplify the overall
algorithm so that instead of running the basic EA several times within a class iteration, it is run only
once (see Figure 5). In Romao et al. (2002),for instance, a GA using Michigan-style encoding is run
once for each class with the best individual from each run being added to the final rule set. A main
aim here is to obtain a minimum number of fuzzy rules and the resulting RB compares well in
predictive accuracy with other algorithms.

Figure 4 Iterative rule learning—iteration by class
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Although evolutionary rule induction systems following an iterative learning approach are
generally characterized by utilizing a Michigan-style encoding, in Mendes et al. (2001) a GP
algorithm uses a hybrid Michigan–Pittsburgh-style encoding. The individual here represents a set
of rules, but not a complete RB. The GP is run once for each class and the best individual from each
GP run—here representing a set of disjunctive fuzzy rules for a particular class label—is added to
the emerging final rule set.

The second variant of the iterative learning strategy iterates independently of a class label (see
Figure 6).

Reducing the training set between iterations by removing examples covered by generated rules
appears to be the most common way of adjusting the training set (line (4) in Figure 6). However,
some authors have experimented with interesting alternatives, especially when inducing fuzzy rules.
In Hoffmann (2004),for instance, an evolution strategy (ES) is repeatedly invoked and each time
identifies the fuzzy rule that best classifies the current distribution of training examples. Each
training example has an attached weight and Hoffmann employs a mechanism to change the
distribution of the examples from one iteration to the next. Examples that have been correctly
classified by fuzzy rules generated in earlier iterations have a lower weight, while those that have
been misclassified have a higher weight. In each iteration the ES is guided to concentrate on
generating fuzzy rules that are best adapted at dealing with the previously misclassified examples.

This algorithm has been applied to the induction of fuzzy rules where each fuzzy rule has its own
definition of associated fuzzy sets that are evolved simultaneously with the rules. The resultant
fuzzy rules are tested against several other techniques, including neural networks and Bayesian
classifiers (Michie et al., 1994), and on the whole achieve comparable classification accuracy.
However, the algorithm has recently been extended to the induction of descriptive fuzzy knowledge
bases for classification, and the author indicates that preliminary results suggest similar classifica-
tion accuracy is achievable.

An earlier work following a similar approach is that of Junco & Sanchez (2000).The linguistic
partition of the input space is defined in advance and a set of descriptive fuzzy rules are generated
by a GA. Other differences from the work by Hoffmann lie in the computation of the rule weight
and the weight-update scheme for the training examples.

The iterative rule learning strategy therefore works by using different subsets or distributions of
the training set, with the aim of extracting just one good rule from each iteration. A benefit arising
from this strategy is that it avoids the need for enforcing diversity in the population of the basic EA
used.

However, Gonzalez & Perez (1999) highlight the potential shortcomings of this strategy,
especially bad when applied to the induction of fuzzy rules. In this work the authors stress the
necessity for co-operation between fuzzy rules—since fuzzy rules cover (match) all examples to
varying degrees, having a set of co-operative rules is essential to the inference process. This means
that it is important to avoid, as far as possible, a situation where an instance requiring classification
is matched by two or more rules that have different conclusions. The iterative rule learning

Figure 5 Iterative rule learning—simplified iteration by class

Figure 6 Iterative rule learning—iteration independent of class
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approach as it is generally implemented, however, is not particularly conducive to producing
co-operative rules, since the rule selection process at the end of each iteration does not take into
account the previously generated rules, or the degree of coverage they provide over the entire
training examples. In Gonzalez et al. (1994)an attempt is made to resolve this issue.

In this work (Gonzalez et al., 1994),the authors implement a significant enhancement on their
earlier work involving the SLAVE system (Gonzalez et al., 1994; Gonzalez, 1995; Gonzalez &
Perez, 1998). SLAVE follows a class-dependent iterative approach to fuzzy rule induction (as
described in Figure 4), with the EA used being a GA. In their later work, however, and in order to
encourage co-operation between the induced rules during inference, the authors retain the same
iterative approach but do not eliminate training examples between GA runs. Instead, they attach
to each example various indicators that are used in the evaluation of a rule when classifying the
training examples.

The first indicator gives a measure of the maximum degree of coverage provided by rules in the
current rule set having the same class as the example—the maximum positive covering degree of an
example.

A second indicator gives a measure of the maximum degree of coverage provided by the other
rules in the current final rule set, i.e. those rules having a different class from the example—the
maximum negative covering degree of an example. Depending on the relative values of the
maximum positive and maximum negative covering degrees of an example, and the classes of
the example and rule being evaluated, the example may be considered as either a positive or a
negative one for that particular rule.

The numbers of negative examples and positive examples covered by a rule are used in its
evaluation as an indication of its contribution to the completeness and consistency of the current
rule set. It should be noted that the values of the indicators are based on the rules already in the
final set and these values are therefore modified each time a new rule is added to the final rule
set—the new rule may well increase the maximum positive or negative covering degrees of certain
examples, and therefore the relative values of the two indicators will also be modified. This dynamic
method of keeping track of previously selected rules, and their success at classifying the training set,
provides an indication of how the current rule set as a whole acts on the entire training set.

This new version of SLAVE is tested against the original, resulting in an improvement in
generalization capability, and, a significant reduction in both the number of rules in the final rule
set and the execution time. In this newer version, however, the authors also amend the fitness
function, adding in a term to encourage rules with fewer and less complicated conditions in the rule
antecedent. Unfortunately, since it is possible that fewer and more general rules (as encouraged by
the new fitness function) lead to a final rule set with increased generalization capability, it is difficult
to judge the exact contribution of their new way of adjusting the training set towards the
improvements reported.

The enhancement to SLAVE is discussed further in Cordon et al. (1998b), as is a different
approach to encouraging the generation of a co-operative fuzzy RB. The alternative proposed is
that of adding a post-processing step that works on the generated rule set to further refine the rules
and/or remove redundant ones.

4.3 Co-evolution

From a biological perspective, co-evolution is a series of steps during which two or more interacting
species undergo reciprocal evolutionary changes—if one species changes the others respond in
order to maintain or increase their fitness and this in turn triggers a response in the first species.
Models of life that may give rise to co-evolution include predator–prey, host–parasite, symbiosis
and mutualism, i.e. variants on the competition or co-operation theme.

From an evolutionary computation perspective, co-evolution is distinguished by a fitness
evaluation of an individual that takes into account other individuals’ fitnesses. In standard
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evolutionary computation the fitness function is an objective function and outputs the same fitness
value for an individual irrespective of which generation it turns up in. In co-evolutionary
computation the fitness of an individual is also directly related to how well other individuals are
doing. This means that, strictly speaking, it is not necessary to have more than one population to
implement a competitive form of co-evolution—in evolutionary computation terms a single
population with a shared fitness function also constitutes co-evolution. When more than one
population (or species) is present the fitness of an individual is based on its behaviour in the context
of the other population/s and thus may result in either a co-operative or competitive form of
co-evolution.

Co-evolutionary computation is a relatively recent approach to solving optimization problems
with the majority of research being published in the last decade and much of it applied to
classification by cellular automata (Wolfram, 1983)or neural networks. The results reported are
mixed; for instance, a relative fitness environment may lead to consistently improving individuals
in one implementation, but in another may appear to lead to over-specialization in individuals and
degenerate to a cycling between suboptimal solutions (Watson & Pollack, 2001).

The dynamics of co-evolutionary algorithms are more complex than those of conventional EAs,
making research on the theoretical underpinnings of the approach both more difficult and essential.
Recent work on co-evolutionary computation addresses these challenges—Bucci & Pollack (2002)
attempt to provide a mathematical framework for the application of co-evolutionary algorithms;
Juille & Pollack (1998) discuss co-evolutionary learning and related issues; while Rosin & Belew
(1997), and (Potter & Jong (2000) elaborate on the nature and application of competitive and
co-operative co-evolution, respectively.

With regards to utilizing a co-evolutionary approach to fuzzy modelling for classification
purposes, several examples use a co-operative multi-population model as it seems a natural one to
consider when inducing both fuzzy RBs and associated membership functions. One such example
of a specific implementation is FuzzyCoCo (Fuzzy Cooperative Coevolution; Pena-Reyes & Sipper,

Figure 7 Co-evolution of a fuzzy knowledge base—RB and DB
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2001).This system co-evolves two populations or species, one of – rules and the other of
membership functions. Both species are evolved by means of GA. The GA evolving the rules uses
Pittsburgh-style encoding, i.e. each individual represents a set of rules. The number of rules for all
individuals is predetermined by the user and fixed throughout the GA run. The individuals of the
second GA population encode the associated membership functions.

In order to evaluate the fitness of an individual from either species it must first be combined with
an individual from the other species. Together they form a complete knowledge base of a fuzzy
system and attempt to classify the training examples—the evaluation criteria used by the authors
here are the proportion of correctly classified examples and the length of the individual rules within
the RB (the smaller the better). This forming of a knowledge base and subsequent classification of
the training examples is repeated a number of times, and the resulting fitness of the individual is
either the average or the maximum fitness value obtained from such combinations.

The authors compare the results obtained by FuzzyCoCo with those obtained from an earlier
work (of theirs) that is evolutionary but not co-evolutionary. In this earlier work an individual
encodes both a RB and associated membership functions. The authors report an increase in the
classification accuracy and, when considering the number of fitness evaluations conducted, a
decrease in the computation expenditure. FuzzyCoCo also scores better on classification accuracy
when compared with a system that extracts classification rules from neural networks (Setiono,
2000). The authors believe they have obtained the best results to date on this data set for
genetic-fuzzy and neural-network based rule systems.

CEFR-MINER (Co-Evolutionary Fuzzy Rule Miner; Mendes et al., 2001)is another system that
co-evolves two populations using different EAs. A GP algorithm evolves fuzzy trees representing
a set of rule antecedents, and an ES algorithm co-evolves the associated membership functions.
The fitness value of an ES individual is computed as the sum of the fitness values of a number
of individuals from the GP population, where each GP fitness value is based on the number
of correctly and incorrectly classified training examples, when used in conjunction with the
membership functions represented by the ES individual.

CEFR-MINER is evaluated on several data sets from the UCI data depository1 and the results
are comparable to or better than those obtained by ESIA (Liu & Kwok, 2000) and BGP
(Rouwhorst & Engelbrecht, 2000).However, though both test systems are evolutionary in nature,
they generate crisp rules and so in this case it is difficult to establish whether any improvement in
classification accuracy is due to the fuzzy nature of CEFR-MINER or to its co-evolutionary
approach.

Another example of two co-evolving species representing fuzzy rules and membership functions
is found in Casillas et al. (2002).Yet again, the results obtained suggest that co-evolution may
provide improved classification abilities when compared with both standard evolutionary and
non-evolutionary approaches, though no comparisons on computation efficiency are made.

In Jeong & Oh (1999)the rules evolved are of the Takagi–Sugeno type (Takagi & Sugeno, 1985).
This example is mentioned as it utilizes a multi-population form of co-evolution to generate just the
RB, with each population eventually contributing a component rule. The authors test the RBs
evolved by their co-evolutionary system on a fuzzy control problem under various initial
conditions. The results are compared with those obtained by RBs generated by an evolutionary (but
not co-evolutionary) system. The co-evolved fuzzy logic controllers outperform the traditionally
evolved controllers on generalization capability and computational efficiency.

4.4 Ensembles

Ensembles are collections of classifiers whose individual decisions are combined in a certain way
when classifying new instances. Note that in learning classifier system terminology, a classifier is

1 UCI Repository of Machine Learning Databases, http://www.ics.uci.edu/~mlearn/
MLRepository.html
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generally considered to be just one rule. When discussing ensembles in this review, a classifier is
considered to be a collection of rules, i.e. a complete RB.

This combination of individual classifier decisions may make interpretation and validation by
human users difficult, but research indicates that very often an ensemble performs better than any
of the individual classifiers making it up. For this to be so the classifiers constructed must be
different from each other and have uncorrelated errors each less than the error caused by a random
classification (Hansen & Salamon, 1990).A more detailed introduction to the use of ensembles
within machine learning may be found in Bauer & Kohavi (1999)and Dietterich (2000).

Several general methods that may be applied to any learning algorithm for the construction of
diverse ensembles have been developed. These include using different subsets of the training data
such as in cross-validated committees (Parmanto et al., 1996)or bagging (Breiman, 1996),using
different subsets of the input features (Guerra-Salcedo & Whitley, 1999), and reweighing the
training examples after each classifier is created as in boosting (Freund & Schapire, 1996).There are
also different ways of combining the decisions of the individual classifiers when classifying a new
instance. Common methods include simple majority voting, and weighted voting where each
classifier is assigned a weight reflecting how accurate it is considered to be. The weighted classifier
will have more or less influence on the final decision depending on its attached weight.

There are two ways in which EAs occur in the creation of ensembles:

1. an EA is used as the learning algorithm constructing the individual classifiers that eventually
form an ensemble; or

2. an EA is used to combine classifiers that may or may not have been constructed by an EA.

Examples of the second use of evolutionary algorithms include Thompson (1999), Langdon &
Buxton (2001),Kim et al. (2002),and Sirlantzis et al. (2002).However, since the main focus in this
review is fuzzy RB induction using EAs, the discussion concentrates on the first-mentioned use.

Hsu & Hsu (2002) use a class-dependent iterative approach to generate one classifier (see
Figure 8). The basic EA used in each iteration is a GA. The authors then repeat the iterative
process, without making any changes to the training data, to generate several more classifiers whose
decisions are combined in a simple majority voting scheme when classifying new instances.

Results of tests on several data sets as reported in Hsu & Hsu (2002)indicate that increasing the
number of maximum generations of the GA improves the classification accuracy of an individual
classifier. Increasing the number of classifiers in an ensemble also increases the classification
accuracy of the ensemble. However, the results also suggest that increasing the number of classifiers
in an ensemble has a greater positive impact on classification accuracy than increasing the
maximum number of generations for an individual classifier.

Yao et al. (1996)present two examples of evolved ensembles: the first is an ensemble of neural
networks and the second an ensemble of rule-based strategies (for handling the two-player iterated
prisoners’ dilemma game). A basic EA utilizing Pittsburgh-style encoding is used in both examples:
in the first EP is used and each individual is a neural network, and in the second a GA is used and
each individual is a rule-based strategy. An ensemble is created by taking a subset of the individuals
from the final population.

The methods used for integrating the decisions of the individual classifiers include simple
majority voting, various weighted linear combinations over the whole population, and a weighted

Figure 8 An approach to generating an ensemble of classifiers
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linear combination of a subset of individuals from the final population, with the subset being
determined by a GA (here, another EA is used to determine the best configuration of classifiers for
decision making, i.e. the second-mentioned use of EAs within ensembles). On the whole, the
empirical results obtained indicate that ensembles are better at classifying test instances than the
single best individual within the final generation.

Several interesting points should be noted about this work. With deterministic learning
algorithms, diversity must somehow be introduced into the individual classifiers making up the
ensemble and this may be accomplished in several ways, as indicated above. Yao et al., however,
make no changes to the training data (though this has also been noted for the work by Hsu & Hsu).
For their evolved artificial neural networks Yao et al. run their basic EP algorithm and use all or
a subset of the individuals in the final generation. They use four different combination methods for
the resulting non-symbolic classifiers with three different data sets. In nine out of the twelve
comparisons the error rate of the ensemble is better (i.e. lower) than that obtained by using the
fittest individual from the final generation, and in one other comparison the error rates are the
same. This indicates that an EA, which is stochastic in nature, introduces enough diversity into
the resulting classifiers such that no manipulation of the training data is necessary.

In inducing their rule-based game-playing strategies, Yao et al. experiment with creating more
diverse classifiers by enforcing speciation within the same population of solutions. Specifically, they
implement a fitness-sharing function that discourages individuals from staying at the same
high-fitness region. They make comparisons between the best individual from the final generation,
the best individual from the final generation where fitness sharing was used, and an ensemble
created from the final generation where fitness sharing was used. The ensemble produced the best
results. Though it might have been more informative to also compare the results of an ensemble
with fitness sharing against an ensemble of classifiers where no fitness sharing was used (and thereby
give a clearer indication as to whether it was the ensemble producing the improved accuracy, and
not the relative fitness function), their results suggest that additional diversity between classifiers for
an ensemble may be introduced by using current methods within EC for speciation and niching.

Yao et al.’s aim in enforcing more diversity between the classifiers in a population is to end up
with individuals that work well on different parts of the problem. This is in the expectation that
together these individual classifiers can integrate into a system that successfully handles the
complete problem. Note that this is similar in aim to that of the iterative rule learning approach
where a rule is learnt that deals with one part of the training set, and then other rules are iteratively
learnt that deal with other parts of the training set. Taken together, these rules form a complete
classifier capable of dealing with the whole problem.

It could be expected that an individual classifier within an ensemble, being a ‘complete’ solution
(i.e. a RB), performs better than any and each component rule produced by the iterative rule
learning strategy. However, this may not be the case if Yao et al.’s approach of enforcing diversity
within a population of complete classifiers is taken to the extreme. The only resulting differences
may then lie in the size of the component parts of the solution—in Yao et al.’s work each classifier
may then be considered as a rule set (as opposed to a complete RB) evolved to handle a particular
component of the problem, while in the iterative approach just one rule deals with each component.
It would be interesting and informative to compare these two approaches with the aim of
understanding their fundamental similarities and differences.

5 Knowledge representation

This section provides an overview of the existing literature from the perspective of the
representation of induced knowledge. Due to their inherent comprehensibility the focus is placed on
work utilizing decision trees for their solution, or various forms of – rules.

For the interested reader, neural networks are another popular hypothesis language used in
evolutionary learning; EAs have been used to define the topology of a neural network, or the
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weights of a network with a pre-defined topology, or even to define both simultaneously (Yao,
1999).As is commonly recognized, neural networks have excellent generalization capabilities but
offer little explanatory advantages to the knowledge expert. This is why a considerable amount of
research nowadays is also focused on extracting comprehensible rules from neural networks
(Andrews et al., 1995;Mayer et al., 1999).

5.1 Decision trees

Decision trees are a popular hypothesis language as they are easy to comprehend and give an
explicit model of the decision-making process.

An internal node of an induced decision tree specifies a test on an attribute of the data set
(though more complex trees may be built by specifying tests at nodes based on more than one
attribute). Each outgoing branch of the node corresponds to a possible result of the test and leaf
nodes represent the class label to be assigned to an instance. To classify an instance a path from the
root node of the decision tree is traced to a leaf node; each internal node reached specifies which
outgoing branch should be taken, depending on the value of the relevant attribute in the instance.
The instance is assigned the class label of the leaf node reached at the end of the path. Each
individual path of the tree may also be equated with an – rule.

In traditional machine learning, decision trees are induced by following a ‘divide-and-conquer’
strategy whereby, depending on the splitting criterion used, the training data are partitioned into
disjoint subsets and the algorithm is applied recursively to each subset. Examples of such algorithms
that induce decision trees are C4.5 (Quinlan, 1992)and fuzzy ID3 (Umanol et al., 1994)for crisp and
fuzzy decision trees, respectively. Such learning algorithms generally use an attribute-value
representation as the example language, i.e. each instance in the training data is described by specific
values of a given set of attributes. The domain of each attribute may be finite or nominal, or
numerical. The numerical attributes are either handled directly by the algorithm or discretized
before the induction of crisp decision trees, or they are fuzzified prior to the induction of fuzzy
decision trees. Ultimately, such attributes are translated to finite domains.

Within EC, decision trees have been used in one of two different ways:
• an EA evolves a population of decision trees; or
• a more traditional decision tree induction algorithm integrates an EA, generally as part of its

splitting mechanism for the training data.

In the former approach, GP has generally been used to evolve solutions, as it is the tree
representation utilized by GP that makes it a natural candidate for the representation of decision
trees (Koza, 1991).Work implementing this approach includes Eggermont (2002)for fuzzy decision
trees, and Rouwhorst & Engelbrecht (2000),Zorman et al. (2000),and Llora & Garrell (2001)for
crisp decision trees. An example fuzzy decision tree induced in Eggermont (2002) is illustrated in
Figure 9.

In Eggermont (2002) each continuous attribute is fuzzified by first applying a clustering
algorithm on the values, and next a membership function is defined for each cluster. GP is then used
to evolve a population of fuzzy decision trees. The function set contains conditions of the form
=, where value is either a nominal value or a linguistic term with underlying fuzzy
semantics, and the terminal set contains the different possible classes. When classifying an instance
a fuzzy membership value for each of the classes is computed and the class with the greatest value
is the one assigned to the instance.

This algorithm is tested on several benchmark datasets and the results obtained on misclassifi-
cation error rates were, on the whole, comparable with those obtained from several other
evolutionary and non-evolutionary induction algorithms.

There is little to compare with the above work on evolving fuzzy decision trees. However, more
work has been carried out on the evolutionary induction of crisp decision trees. Such work indicates
that classification performance achieved by the evolved decision trees is comparable with that
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of trees constructed by more well-known algorithms such as C4.5. However, Rouwhorst &
Engelbrecht (2000), and Zorman et al. (2000) also clearly indicate that evolved trees are
considerably smaller in size and therefore more comprehensible to humans. Reasons for this are
discussed in Section 6.1.

The second way of utilizing EAs in the induction of fuzzy decision trees is by creating a hybrid
algorithm such as in Janikow (1996),Ragot & Anquetil (2001),or Cantu-Paz & Kamath (2003)for
crisp decision tree induction.

2l-FDT (2-level Fuzzy Decision Tree; Ragot & Anquetil, 2001), for instance, creates a fuzzy
decision tree by combining two different fuzzy clustering techniques and a GA. In the first phase
partitions of the training data are recursively determined by a fuzzy C-means based clustering
algorithm (Bezdek, 1981;Gath & Geva, 1989)integrated with a GA that decides on the best feature
subspace for each partitioning. The GA fitness function evaluating each feature subspace is based
on a fuzzy adaptation of the information gain measure (Quinlan, 1986).The termination criteria for
the recursive partitioning include the number of training examples in the final partitions, the size of
the tree, and the information gain criterion itself. At this point, the second phase, a second fuzzy
clustering algorithm as reported in Krishnapuram & Keller (1993), is applied on the training
examples, one for each class in each of the final partitions or nodes resulting from the previous level;
a final leaf is added for each subclass determined. The resulting fuzzy decision tree outperforms
the decision tree produced by C4.5 on both classification accuracy on a test set, and in
comprehensibility, i.e. 2l-FDT produces trees considerably smaller in size and therefore more easily
interpretable by human experts.

In Janikow (1996) a fuzzy decision tree-building algorithm is augmented with a dynamic
optimizing procedure for the node partitioning. The basic algorithm is based on ID3 (Quinlan,
1986)while the optimizing procedure is again a GA. After all attributes’ values have been fuzzified,
this algorithm recursively partitions the training data set until a termination criterion is satisfied.
Note that the training examples within a node are not partitioned further if they all belong to the
same class, or all attributes have been used in the path leading to the node, or the information
content of the node reaches a certain threshold level. Nodes are then processed according to an
ordering measure—the node containing the greatest number of examples is processed first, and the
partitioning of the training examples is then dependent on selecting the attribute that maximizes the
information gain measure based on entropy.

Figure 9 An example fuzzy decision tree
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Once an attribute has been selected its information content, based on the specific examples in the
node, is minimized by modifying its original fuzzy sets. This dynamic redefinition of the fuzzy sets
of an attribute softens the constraint made by ID3 and its fuzzy adaptations, that real-valued
attributes must be partitioned (or fuzzified) just once prior to tree-building—it is aimed at
increasing the consistency of the fuzzy tree. It should be noted that in order to preserve the
comprehensibility of the induced tree, at the possible expense of generalization capabilities, the
number of fuzzy sets of an attribute remains fixed during tree-building and the optimization
procedure is carried out only once.

In the crisp decision tree induction example cited above (Cantu-Paz & Kamath, 2003), the
authors experiment with the induction of oblique decision trees. Many of the standard decision tree
induction algorithms are axis-parallel algorithms: the tests at each node involve only a single
attribute which makes the test equivalent to a hyperplane parallel to one of the axes in the attribute
space. Oblique decision tree induction algorithms use multivariate tests, i.e. tests based on more
than one attribute and that are not necessarily parallel to an axis. The final tree may be smaller and
more accurate, but this is sometimes at the expense of comprehensibility, since the multivariate test
at each node is more difficult to interpret. In this work, Cantu-Paz and Kamath adopt a similar
approach of integrating an evolutionary algorithm as the splitting mechanism of the oblique
decision tree induction algorithm OC1 (Murthy et al., 1994).They produce two hybrids: OC1–GA,
OC1–ES. These hybrids are tested against the original OC1 and three other axis-parallel and
oblique decision tree induction algorithms on several artificial and benchmark datasets. The
performance criteria are accuracy, tree size and execution time. The conclusions drawn by the
authors are that the evolutionary hybrids are capable of finding oblique trees with similar or higher
performance measures than the other algorithms, and the research therefore merits further
investigation.

5.2 Production rules

The majority of the work in knowledge discovery via evolutionary computation has used various
restricted forms of first-order logic as a hypothesis language. Much of this has been in the form of
simple propositional – rules, i.e. a conjunction of crisp or fuzzy conditions leading to a crisp
or fuzzy conclusion. These are generally equivalent to the rules that may be extracted from decision
trees. Slightly more expressive are propositional rules with internal disjunction between attribute
values. Work has also been carried out in encoding into solutions disjunctions between attributes
and negations of attribute values. The example language, i.e. the training data language, is generally
an attribute-value representation. The rules induced may or may not include a confidence measure
that is used in fuzzy reasoning when classifying a new instance. Examples of work inducing such
fuzzy rules include Ishibuchi et al. (1995)—simple propositional, Yuan & Zhuang (1996)—internal
disjunction, and Mendes et al. (2001)—disjunction between attributes and negation. These rules
may take the following form:

Rule Rj:IF A1 is (�11 OR �12) AND A2 is �21 AND . . . AND An is NOT(�n1) THEN Class is Cj with
CF=CFj

where A1 to An are the attributes in a data set, �ik is a specific linguistic term of attribute Ai, Cj is
the rule consequent of rule Rj ,and CFj is the rule confidence factor.

Depending on the encoding and genetic operators used within an EA, incomplete fuzzy rules
may be induced, i.e. not all attributes need be present in the rule antecedent, leading to shorter rules
that may also therefore be more comprehensible. For instance, in Yuan & Zhuang (1996)where a
dataset has four attributes (, ,  and ), rules may be generated
that do not include all four attributes, such as:

IF ( is Sunny OR Cloudy) AND  is Hot THEN Swimming.
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The particular subfield of machine learning that is concerned with learning more complex
knowledge from training data than can be represented by propositional logic is that of inductive
logic programming (ILP) Muggleton & De Raedt (1994). This type of learning is often termed
relational learning as the learned description may specify relations between parts of an object. ILP
is distinguished by the use of background knowledge (in addition to the use of concrete examples),
that acts as a model or template for the solution that must be learned by the algorithm. This
background knowledge therefore restricts the solution search space and makes the computation
more tractable.

ILP was originally focused on program synthesis in logic languages such as Prolog, but such
programs may be considered as rules and a consequent shift has occurred in research that also
emphasizes the use of ILP methods for knowledge discovery in databases. Here, a distinction is
often made between predictive ILP where the aim is the learning of classification and prediction
rules, and descriptive ILP where the aim is the learning of clausal theories and association rules. This
review concentrates on the former aim of ILP but the reader is directed to Lavrac (1998)for a more
general but detailed discussion of ILP status, issues and future trends. One of the challenges
identified here is the development of inductive logic programming algorithms for first-order fuzzy
systems. For specific examples of fuzzy logic programming environments such as fuzzy extensions
to Prolog, the reader is directed to Baldwin et al. (1995),Munakata (1998),and Ebrahim (2001).

For first-order classification rule induction the examples in the training data are commonly
described by ground facts, i.e. logical formulas that contain no variables and have exactly one
predicate that is positive. The hypothesis language is frequently a restriction of Horn clauses, i.e.
clauses containing at most one literal. Well known non-evolutionary non-fuzzy algorithms include
FOIL (Quinlan, 1990), GOLEM (Muggleton & Feng, 1990) and PROGOL (Muggleton, 1995),
which are mainly concerned with the learning of single predicates from positive and negative
examples and background knowledge. Fuzzy non-evolutionary ILP learners include Martienne &
Quafafou (1998),Leung et al. (1999),Shibata et al. (1999),and Drobics et al. (2003).The first three
examples are fuzzy extensions of the aforementioned FOIL algorithm, while the fourth example
combines rough sets with fuzzy sets for the induction of fuzzy relational descriptions. Evolutionary
non-fuzzy ILP algorithms, on the other hand, include REGAL (Giordana & Saitta, 1993),GLPS
(Wong & Leung, 1995a), SIA01 (Augier et al., 1995),DOGMA (Hekanaho, 1998),and ECL (Divina
& Marchiori, 2002).

There are far fewer examples of evolutionary fuzzy algorithms that induce logic programs.
However, with the observed convergence of learning paradigms it is expected that more work will
be carried out in this area. One example is LOGENPRO (Wong & Leung, 1995b), a generalization
and extension of GLPS mentioned previously. LOGENPRO aims to combine the expressiveness of
inductive logic programming with the global exploration strength of GP in order to evolve logic
programs. Due to the fact that in principle a program may be represented as a parse tree, the
authors emphasize that the system is flexible enough to generate programs in different program-
ming languages including Fuzzy Prolog, as formulated by Li & Liu (1990).

Figure 10 Evolving Fuzzy Prolog programs with LOGENPRO

Figure 11 A simplified example fuzzy program found by LOGENPRO
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In LOGENPRO populations of viable programs are evolved to increasing fitness levels. This
viability is ensured by the use of a logic grammar specific to the problem and target language of the
hypothesis, and is applied in the generation of the initial population and in the application of the
genetic operations. The initial population may be randomly generated, induced by other learning
systems or provided by the user. The termination criterion is met if either the maximum number of
generations have been created, or a program with the required fitness has been evolved. The authors
have also devised specialist crossover and mutation operators. In their Fuzzy Prolog program
induction example LOGENPRO is provided with positive and negative examples of the target fuzzy
relation can-reach (X, Y), background knowledge in the form of the relation linked-to (X,
Y), and a logic grammar that stipulates correct syntax of induced programs.

LOGENPRO was tested on several problems and against FOIL. The authors concluded that it
is a promising alternative and in some cases superior when inducing from imperfect and noisy
examples. In later work (Wong, 2001),the authors developed another system called GGP (Generic
Genetic Programming) that combines ILP and GP to induce knowledge from databases. Among
the representations possible for the induced knowledge are fuzzy petri nets (Chen et al., 1990)that
in turn may be used to represent fuzzy production rules of a knowledge base. The best induced fuzzy
petri net is tested and its classification accuracy is found to be slightly better than that obtained by
C4.5 on the same data set.

6 Evaluation criteria

A main requirement nowadays in automated knowledge acquisition is that the acquired knowledge
should be comprehensible to human users. Two elements that help meet this requirement are the
knowledge representation used (discussed in the preceding section), and the simplicity or size of the
induced knowledge (Section 6.1). Intuitively, the more concise the acquired knowledge, the easier
it is for humans to comprehend and validate. In addition to this, for the development of intelligent
reasoning systems, classification is generally the core problem, and hence good generalization
capabilities for the induced knowledge are essential (Section 6.2).Within data mining, however, the
discovery of novel or interesting knowledge may be considered just as important, or more so
(Section 6.3).

It should be noted that very often, authors impose more than one evaluation criterion on their
induced classifiers, effectively turning the problem into a multi-objective optimization one,
minimizing a set of objectives subject to some constraints. A common method for selecting or
evaluating individuals in a population based on multiple criteria is that of using a fitness function
that includes an element for each of the criteria, e.g. a three-objective aggregated fitness function
weighted according to user prioritization of the evaluation criteria:

fitness=�1(simplicity)+�2(accuracy)+�3(novelty).

More sophisticated techniques for multi-objective optimization have been developed. One such
method is based on the concept of a Pareto optimal solution set (Pareto, 1896),where the user is
provided with a set of potential solutions, instead of just one, with each solution offering a different
tradeoff between the set of objectives (evaluation criteria) used. This method has recently been
applied to evolutionary fuzzy modelling and two examples (for function approximation) are
Gomez-Skarmeta et al. (1998), and Jimenez et al. (2001). An example of work utilizing this
technique for evolving (non-fuzzy) classifiers is Llora et al. (2002), where the objectives are to
minimize both the accuracy of the classifier and the number of rules comprising the classifier (see
Figure 12, adapted from Llora et al., 2002).

Other evolutionary techniques for solving multi-objective optimization problems are based on
fitness sharing, niching and imposing mating restrictions. Such research is very active and several
reviews already exist, including Coello Coello (1999), and Veldhuizen & Lamont (2000). The
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following subsections will focus on issues pertaining to the individual evaluation criteria, and not
on multi-objective optimization techniques.

6.1 Simplicity of acquired knowledge

A particularly advantageous feature of decision trees and rule sets induced by evolutionary-based
induction strategies appears to be their simplicity, i.e. their relative small size when compared with
decision trees and RBs produced by many deterministic learning algorithms. This simplicity may
result in computational advantages (for instance, simpler rule sets require less storage space and less
computation), and promotes the interpretability of the induced knowledge. Furthermore, this
simplicity of the induced knowledge coupled with a fuzzy linguistic representation makes the output
particularly comprehensible. Two aspects relating to the size of the induced knowledge are
relevant—the number of rules in a RB or branches in a decision tree, and the number of conditions
in each individual rule or branch; the smaller the better in both cases.

A pre-processing step such as feature subset selection helps in generating rules and branches with
a fewer number of conditions, whilst a post-processing step such as the removal of redundant rules
or pruning of branches from decision trees helps to keep the RB or tree compact. Redundant rules
include duplicate rules and more specific rules that are covered by more general ones within the RB.
For instance, FGA (Yuan & Zhuang, 1996)and SIA (Venturini, 1993)each have a procedure (based
on different criteria) that extracts from the population the minimum number of rules required to
formulate the final RB.

Other measures to promote simplicity are integrated within the induction strategy. Many of these
are for encouraging general rules that cover as many positive training instances as possible (which
in turn may lead to RBs with a smaller number of rules). This necessitates the generation of
incomplete rules, i.e. rules that do not have a value for each antecedent attribute within the data set;
or rules with attributes that are allowed to have more than one value, cojoined by a disjunctive
operator. When using a Michigan-style encoding, for instance, a rule may be encoded by a
fixed-length bit string. This string will have several different segments, one for each of the different
predictor and conclusion attributes. Each segment (or gene) has a fixed number of bits with each

Figure 12 Set of potential solutions (classifiers) rated according to two criteria—complexity and accuracy
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bit representing one particular value from the domain of that particular attribute. If a bit is turned
on then it means that the parent attribute takes that particular value.

When the genetic operators are applied to such a string the result may be an offspring or mutated
string that has:

• more than one bit turned on for a particular attribute, and may therefore be interpreted as an
attribute with internal disjunction, e.g.  IS ( OR ); or

• all bits may be turned on (or off) and that attribute may then be considered as not relevant for
that particular rule.

If the Michigan-encoded individuals within a population are not restricted to being represented
by fixed-length strings, then operators that encourage shorter rule antecedents may be implemented.
A custom mutation operator, for instance, may simply delete the gene representing a specific
attribute, whilst a recombination operator may combine two parents of the same or different
lengths and produce offspring of the same, bigger or smaller lengths. Similar operators may be used
on Pittsburgh-encoded individuals that represent a complete RB. Here, a mutation operator may
delete an entire rule, whilst a recombination operator may lead to individuals with different
numbers of rules.

Yet a different approach to controlling the number of rules within a RB is found in Yuhui et al.
(1999). Here, a GA evolves a population of Pittsburgh-styled individuals (fixed-length integer
strings), where each represents a RB and associated membership functions. The fuzzy variables each
have the same number of fuzzy sets, which is fixed throughout the evolutionary process, but the
membership function type (e.g. triangular and sigmoidal) is allowed to evolve. The fixed-length
string therefore imposes a maximum number of rules for the individual. However, the genetic
operators evolve both the individual rules and the number of rules within the RB. The latter is
accomplished by evolving one particular bit in the string representation of an individual—this bit
indicates the number of rules that should be considered when evaluating the individual on the
training set.

As stated earlier, the fitness function is another measure often used to encourage shorter rules or
RBs. When evolving fuzzy rule-based classifiers, classification performance on the training set is
obviously an important measure of how fit an individual is, but an additional element may be added
into the fitness function that takes into consideration simplicity. With respect to Michigan-styled
individuals, this additional measure often takes into account the number of conditions in the rule
antecedent, while in Pittsburgh-styled individuals both the number of rules within the individual,
and the total number of conditions in all rules of the individual may be considered. Each element
may be weighted differently, according to user determination of the relative importance of
classification accuracy and model comprehensibility. Issues related to producing more general rules
within a fuzzy evolutionary environment, and ways of resolving them, are further discussed in Carse
& Pipe (2002).

6.2 Generalization capability

Generalization in this context is the predictive capability of an induced classifier on previously
unseen test examples. With regards to this property, classifiers induced by evolutionary-based
methods are typically at least comparable with those obtained from more well-established,
traditional methods.

The representation utilized by a learning algorithm for the training examples and induced
knowledge may impact on the quality of the resulting classifier. In particular, if the knowledge
representation language is limited and eliminates the models (decision trees or RBs) from the search
space, then any classifier produced will have poor generalization capabilities.

Other steps taken to encourage good generalization are often aimed at avoiding over-fitting of
the training data. These same steps may also result in simpler classifiers—for instance, pruning of
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an evolved decision tree may improve both its simplicity and generalization capability. In Llora
et al. (2002),for instance, Pittsburgh-style encoded evolutionary learning systems are developed,
and the problem of selecting a high-accuracy model that also has good generalization power on
unseen test cases is translated into a two-objective scenario that evaluates a model on both its
accuracy and complexity (i.e. size).

Although it may be intuitively appealing to believe that parsimonious models always encourage
greater generalization capabilities, evidence to the contrary does exist. In Cavaretta & Chellapilla
(1999), the authors’ goal is to generate models with high generalization capability, using an
algorithm with no predefined limit or bias on the size of the generated model. They use GP to design
two algorithms identical in all respects except for the fitness function—the second algorithm has an
added component in the fitness function that takes into account the complexity of each individual.
Individuals with a comparable accuracy on the training set but a lower complexity get a higher
fitness value. The two algorithms are tested on a binary classification problem. The results indicate
that the no-complexity-bias algorithm evolves models with greater generalization power. Further-
more, analyzing only the models generated by the low-complexity-bias algorithm, the more
powerful generalization models had a higher complexity. The authors conclude that their results
support their hypothesis that, for this problem at least, there is little or no relationship between
small model size (as measured by the number of nodes and leaves) and greater generalization
powers.

Specifically for GP, Bersano-Begey & Daida (1997), and Kushchu (2002) present reviews of
techniques that have been used to promote generalization. These include a fitness function that also
encourages simplicity of the solution (the premise is that a more general solution is less likely to
over-fit the training data), inserting noise in the training data (again discourages over-fitting),
evaluating solutions on different subsets of the training data in different generations (penalizes
over-specific individuals which rely on a specific subset of the training examples for their fitness
value), and co-evolution (as discussed in Section 4.3).Furthermore, as indicated in Section 4.4,an
ensemble of classifiers may result in greater classification accuracy than the single best classifier in
the group. Keijzer & Babovic (2000),for instance, provide an argument based on both theoretical
considerations and experimental evidence, that the use of ensembles of GP-created solutions can
improve generalization capability (tested on symbolic regression problems). This is attributed to the
reduction in error due to variance.

Kushchu (2000)tests the use of problem-specific functions versus more general functions in the
creation of GP trees. The reported results suggest that the use of more general functions may evolve
solutions with better generalization capabilities, at least for the relational problem tested (n parity
problem). This is attributed to the fact that using specialized non-terminals for the construction of
a GP solution may increase the representational bias too much. That is, the use of more general
non-terminals may mean that there are different ways of representing the same optimal solution and
therefore the evolutionary search process is more likely to find one of them.

A major problem, however, is that no specific guidelines exists on how to promote
generalization— though there is work supporting each of the methods presented above, there is also
work providing evidence to the contrary, i.e. the use of these methods does not always lead to
solutions with greater generalization capabilities.

Yet another concern is the testing methodology. Rowland (2003)attempts to clarify some of the
issues surrounding model selection and validation in supervised learning via evolutionary compu-
tation, but Kushchu (2002) emphasizes that the experimental methodology used is not always
consistent with testing for generalization, and stresses the need for separate training and test sets
and for following proper procedures in determining these sets.

6.3 Novelty value

Knowledge discovery from DBs involves mining large volumes of data for new knowledge that may
be utilized in the operational, managerial and strategic planning processes of an organization. In
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this context the novelty aspect of the acquired knowledge, i.e. how surprising or interesting it is to
the user, may be as important as its generalization capability.

What constitutes ‘interesting’ or ‘surprising’ knowledge in general is open to debate. Objective
measurements based on information theory or statistics have been used (see, for example, Freitas,
1998; Suzuki & Kodratoff, 1998; Hilderman & Hamilton, 1999).More subjective measurements
may also be considered that are generally based on the views of users within an organization
making use of the acquired knowledge (Silberschatz & Tuzhilin, 1996;Liu et al., 1997).Here, the
general premise is that acquired knowledge that confirms a user’s beliefs or suspicions, useful as that
may be in itself, is not novel, interesting, or surprising to the user.

Attempts to induce interesting knowledge using evolutionary computation have been made, but
this is still a relatively unexplored area. In Romao et al. (2002) fuzzy – rules are induced
where the subjective degree of interestingness of a rule is based on impressions of what a user
expects the relationship between a set of predictor attributes and a conclusion attribute to be. These
user impressions are stipulated in the same form of – rules, and are defined prior to running
the GA, and then kept fixed during the rule discovery process. At each iteration, each rule is
compared with each of the predefined user impressions (see Figure 13).

The larger the degree of similarity between the IF parts of a rule and a user impression
respectively, and the larger the degree of contradiction between the  parts, then the greater the
degree of surprise to the user. The final degree of surprise for a rule is the maximum degree obtained
between the rule and a user impression. When evaluating the fitness of the rule this degree of
surprise is used by the fitness function, which also takes into consideration the predictive accuracy
of the rule over the training set.

Freitas (1999) incorporates a more objective measurement for the degree of interestingness
into the fitness function. In this work, the algorithm GA-Nuggets evolves a population of crisp
– rules where the genetic operators are applied to the rule antecedent, but the rule consequent
is determined on the basis of goal-attribute values in the training set. The training set may
have more than one goal attribute, with each goal attribute having its own set of goal values.
However, an evolved rule is only allowed to have one rule consequent chosen from the values of
one of the goal attributes. The degree of interestingness is based on this chosen goal-attribute
value.

Figure 13 Matching between rules and user impressions
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The rationale behind this measurement of interestingness is as follows. Let Gi denote a given goal
attribute and gi denote a specific value within its domain. The greater the relative frequency of gi

in the training set, the easier it is to discover a rule predicting its value, and consequently, the less
interesting the rule may be considered to be. Accurate rules predicting a more rare goal attribute
value are therefore assigned a higher fitness value. Similar work utilizing an objective measurement
for rule interestingness in the fitness function is found in Noda et al. (1999, 2002).Here the main
aim is the discovery of interesting rules after the user specifies the goal attributes of particular
interest.

7 Summary

This paper has presented an overview of the possibilities of applying evolutionary computation to
fuzzy modelling, and illustrated how this may be achieved with respect to RB and knowledge base
generation. From these discussions it is clear that a low-level dependency exists between what an
individual represents, and the number of individuals selected from the final population. It is this
inter-dependency that gives rise to the various approaches (see Figure 14).

For instance, consider the case where an individual represents one rule. If the entire final
population or a subset of the final population is selected, then that leads to one variant of the basic
EA (utilizing Michigan-style encoding). Alternatively, if just one individual from the final
population is selected then it will be necessary to rerun the basic EA until a set of rules covering the
complete training set is generated, thereby leading to the iterative rule learning approach. If,
however, an individual represents a RB, then selecting the best of the final population as the final
solution gives rise to the second variant of the basic EA (utilizing Pittsburgh-style encoding).
Alternatively, selecting a subset or the whole population results in an ensemble of classifiers.

In RB generation, the membership functions are typically predefined. The rules may be evolved
simultaneously using a basic EA. If an individual in the population represents one rule, then
diversity in the population must be enforced to ensure a reasonable selection of different rules
covering different parts of the problem domain. If the aim is to evolve chained action/decision rules,
then the fitness calculation is especially complex and computationally expensive. If an individual
represents an entire RB, then the search space is increased significantly, though work exists that
suggests this approach produces RBs with better classification abilities for low-dimensional
problems.

Figure 14 Inter-dependency between induction strategy, representation of individuals, and number of
individuals selected
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This paper has illustrated that the iterative learning approach attempts to simultaneously resolve
a few of the issues arising from the two variants of the basic EA implementation. However, since
this approach induces rules sequentially, and possibly on different parts of the training set,
additional measures may be required to encourage co-operation between the fuzzy rules generated.
With regards to co-evolution, utilizing multiple populations where each population focuses on
evolving rules describing a particular component of the problem may alleviate the need for
enforcing diversity within the individual populations, and for additional mechanisms to encourage
co-operation between rules from different populations in the inference process. However, the
theoretical foundations of co-evolutionary computation are still in the very early stages of being
established and mixed results are not uncommon.

Ensembles comprising RBs generated by evolutionary techniques may provide better classifica-
tion accuracy and generalization capabilities, but evidence in this area is sparse and the way a
decision is reached is not always particularly comprehensible to human experts desiring to validate
the induced classifiers.

This review has indicated that, with regards to knowledge base generation, there are three main
approaches. The first is a phased method: using predefined membership functions a RB is evolved,
which in turn is used to fine tune the original membership functions. The second approach is one
variant of the basic induction strategy, where both a RB and the membership functions are encoded
in the same individual. The third approach is that of co-evolution, where two different populations,
one of RBs and the other of membership functions, are evolved simultaneously. Similar issues as for
RB generation hold. Although the major issues associated with each approach are known, little
work has so far been directed at empirically or analytically comparing these approaches.

This paper has also discussed the common representation schemes used for evolving knowledge
that is comprehensible to human users. Presented with ever more complex data generated by
both the scientific and commercial communities, more research is being expanded on learning
algorithms that use a rich representation capable of adequately describing the underlying
knowledge whilst maintaining human comprehensibility. This is evidenced by the active ILP
research, increasingly utilizing both traditional relational learning techniques and newer methods
incorporating EAs.

Furthermore, the common evaluation criteria used for induced knowledge in the context of
developing intelligent reasoning systems and data mining have been addressed. Very often more
than one (possibly conflicting) evaluation criterion may be adopted and the problem is then a
multi-objective optimization one. In general, there are several ways of encouraging an evolutionary-
based induction strategy to produce RBs or decision trees that satisfy the individual criteria. These
methods may be as part of a pre- or post-processing procedure, i.e. before or after a RB or decision
tree has been evolved; or arise out of the specific encoding used for an individual and of the genetic
operators used on them; or as part of the evaluation and selection process of an individual.

8 Conclusion

Much research effort has been directed at applying EC to fuzzy modelling, and yet it is difficult to
clearly state and justify how successful it has been. This is due mainly to the experimental
methodology employed, inadequate reporting of the pertinent facts necessary for a faithful
reproduction of the work and results presented, and an insufficient interpretation of the results that
may provide an explanation for the difference in performance. For instance, several papers reviewed
report only training error, and not generalization capability. In other cases it is difficult to identify
exactly what comparisons are being made—if a fuzzy evolutionary induction algorithm is compared
with a non-fuzzy deterministic induction algorithm, for example, to what should an improvement
in accuracy be attributed? Is it to the evolutionary-based learning approach, or to the fuzzy
set-based representation language and inference mechanism? As for comparisons of efficiency,
when CPU times are compared, how much is a performance improvement due to a different
programming environment and individual style or skill?
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Other differences in performance criteria may arise from the testing methods employed (e.g.
random 70:30 split of a data set for training and testing of one algorithm, versus 10-fold
cross-validation testing of the same data set by another algorithm), use of different de/fuzzification
processes and inference methods for classification, and whether instances with missing attribute
values are included or excluded from the training set. In short, it is not apparent that all authors
ensure similar testing conditions and environments when evaluating their new or amended
induction algorithms. In such circumstances it is difficult to make fair comparisons and draw
conclusions with any reasonable degrees of certainty.

However, some of these limitations may not be difficult to resolve, such as making the necessary
information easily accessible to all. Researchers appear to use a common pool of data sets on which
to test their algorithms, mostly available from the UCI machine learning repository. It is
conceivable that this DB, or one like it, could be extended to hold up-to-date details on
classification accuracy achieved by various learning approaches, for instance, with details of the
testing methods used to obtain them, or where to obtain such additional information. Of course,
this would necessitate researchers forwarding the relevant information about their work, and an
agent updating the DB (or providing the facilities for researchers to update it themselves). However,
it would in turn make it a quick and simple matter for researchers to obtain the information
necessary to ensure a valid comparison of their work with that of others, thereby adding credence
to new results reported. Such a proposition may be feasible in this age of constant and easy
communication technologies.

The more serious limitations relate to the experimental methodology used, and to the
interpretation and justification of the results presented. With regards to the former, research in
performance measures and statistics that should be considered when comparing learning algorithms
appears to be increasing (Alpaydin, 2001;Ling et al., 2003;Nadeau & Bengio, 2003),while other
authors aim to provide guidelines on experiment design and methodology in general, including
aspects such as the programming environment, the experimental data that should be collated, and
how the data may be analysed (Gent et al., 1997; Kainz & Kaindl, 1998; Langley, 2000). In
providing a possible justification of the reported results, a main drawback may be a lack of firm or
sufficient theoretical foundations for some of the EC branches. It appears this limitation may also
be in the process of being addressed. This is evidenced by the organizations and research
programmes that have been initiated in recent years to look into the theoretical foundations and
potential applications of EC in particular (e.g. EvoNet2), or into complex adaptive systems in
general, utilizing technologies such as fuzzy systems, neural networks, EC and swarm intelligence
(Bonabeau et al., 1999) (e.g. EUNITE3 and the Santa Fe Institute4).

The application of EC to fuzzy modelling is a very active research area drawing people from
different communities including machine learning, data mining, and fuzzy systems. Each commu-
nity has its own individual perspective and priorities, but it is conceivable that any one may learn
from the failures and successes of the others. The results reported in the literature also suggest that
the use of EC for fuzzy modelling may be a promising area of research. However, for any real
progress to be made, and for the sake of credibility of such work, it may now be imperative to
implement acceptable experimental research and reporting methods, and just as importantly, to
consolidate the available information and experience.
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