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Abstract— Fuzzy interpolation offers the potential to model
problems with sparse rule bases, as opposed to dense rule
bases deployed in traditional fuzzy systems. It thus supports the
simplification of complex fuzzy models and facilitates inferences
when only limited knowledge is available. This paper first
introduces the general concept of representative values (RVs),
and then uses it to present an interpolative reasoning method
which can be used to interpolate fuzzy rules involving arbitrary
polygonal fuzzy sets, by means of scale and move transformations.
Various interpolation results over different RV implementations
are illustrated to show the flexibility and diversity of this
method. A realistic application shows that the interpolation-based
inference can outperform the conventional inferences.

I. INTRODUCTION

Fuzzy rule interpolation helps reduce the complexity of

fuzzy models and supports inference in systems that employ

sparse rule sets [8][9]. Despite these significant advantages,

earlier work in fuzzy interpolative reasoning does not guar-

antee the convexity of the derived fuzzy sets [10], which is

often a crucial requirement of fuzzy reasoning to attain more

easily interpretable practical results. Significant work has been

reported in the literature [1][4][10][11] in an effort to eliminate

this non-convexity drawback.

However, almost all existing methods lack the flexibility to

generate results that meet different application requirements.

This paper, based on the initial work carried out by the

authors [5][6], introduces a general RV definition (which

covers the RV notions previously used, of course) and presents

an enhanced interpolation method based on this generalized

definition. The enhanced method offers a degree of freedom

to provide a variety of unique, normal and convex results.

The rest of the paper is organized as follows: Section II

introduces the general representative value definition for arbi-

trarily complex polygonal fuzzy sets. Section III describes the

scale and move transformations used to perform interpolative

inference and summarizes the interpolation procedure. Section

IV compares the interpolation results obtained by employing

different RV definitions. Section V demonstrates the usage of

the interpolation in a real world problem. Finally, Section VI

concludes the paper.

II. GENERAL REPRESENTATIVE VALUE

To facilitate the discussion of the transformation based

interpolation method, the representative value (RV) of the

(polygonal) fuzzy sets involved must be defined first. This

value captures important information such as the overall

location of a fuzzy set, and will be used as the guide to perform

transformations. Consider an arbitrary polygonal fuzzy set

with n odd points, A = (a0, . . . , an−1), as shown in Fig. 1.

It has �n
2
� supports (horizontal intervals between every pair

of odd points which have the same membership value) and

2(�n
2
�−1) slopes (non-horizontal intervals between every pair

of consecutive odd points). Note that two top points (of the

membership value 1) do not have to be different. Although

this figure explicitly assumes that evenly paired odd points are

given at each α-cut level, this does not affect the generality of

the fuzzy set as artificial odd points can be created to construct

evenly paired odd points. Given such an arbitrary polygonal

fuzzy set its general RV is defined by

Rep(A) =
n−1∑
i=0

wiai, (1)

where wi is the weight assigned to point ai.

Specifying the weights is necessary for a given application.

The simplest case (which is called the average RV hereafter)

is that all points take the same weight value, i.e., wi = 1

n
.

Note that [5] uses this RV definition.

An alternative definition named the weighted average RV
assumes that the weights increase upwards from the bottom

support to the top support, to reflect the significance of the

fuzzy membership values. For instance, assuming the weights

increase upwards from 1

2
to 1, such an RV is defined by

Rep(A) =

∑�n

2
�−1

i=0

1+αi

2
(ai + an−1−i)∑�n

2
�−1

i=0

1+αi

2

. (2)

One of the most widely used defuzzification methods – the

center of core can also be used to define the center of core
RV. In this case, the RV is solely determined by those points

with a fuzzy membership value of 1:

Rep(A) =
1

2
(a�n

2
�−1 + an−�n

2
�). (3)

Note that the general RV definition can be simplified if the

lengths of the �n
2
� supports S0, . . . , S�n

2
�−1 (with the indices

arranged in ascending order from the bottom to the top) are
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known. Indeed, as an−1−i = ai + Si, i = {0, . . . , �n
2
� − 1},

the general form of (1) can be re-written as:

Rep(A) =

�n

2
�−1∑

i=0

ai(wi + wn−1−i) + C, (4)

where C = S0wn−1 + . . . + S�n

2
�−1wn−�n

2
� is a constant.

III. TRANSFORMATION BASED INTERPOLATION

A. Construct the Intermediate Rule

To be concise, the simplest case is herein used to illustrate

the underlying techniques for fuzzy interpolation. Given two

adjacent rules as follows

If X is A1 then Y is B1,

If X is A2 then Y is B2,

which are denoted as A1 ⇒ B1, A2 ⇒ B2 respectively,

together with an observation A∗ which is located between

fuzzy sets A1 and A2, an interpolation is performed to achieve

the fuzzy result B∗. In another form this simplest case can be

represented through the modus ponens interpretation (5).

observation: X is A∗

rules: if X is A1, then Y is B1

if X is A2, then Y is B2

conclusion: Y is B∗?

(5)

Here, Ai = (ai0, . . . , ai,n−1), Bi = (bi0, . . . , bi,n−1), i =
{1, 2}, and A∗ = (a0, . . . , an−1), B∗ = (b0, . . . , bn−1).

The transformation based interpolation begins with con-

structing a new fuzzy set A′ which has the same RV as that

of A∗. To support this work, the distance between A1 and A2

is herein defined by

d(A1, A2) = d(Rep(A1), Rep(A2)), (6)

where the actual scheme adopted to compute RVs is fixed for

both A1 and A2 of course. A ratio λRep (0 ≤ λRep ≤ 1) is

introduced to represent the important impact of A2 upon the

construction of A′ with respect to A1:

λRep =
d(A1, A

∗)

d(A1, A2)
. (7)

That is to say, if λRep = 0, A2 plays no part in constructing

A′, while if λRep = 1, A2 plays a full role in determining

A′. Then by using the simplest linear interpolation, the a′
i,

i = {0, . . . , n − 1}, of A′ are calculated as follows:

a′
i = (1 − λRep)a1i + λRepa2i. (8)

It can be proved 1 that A′ has the same representative

value as A∗ and that A′ is convex and normal. Similarly, the

consequent fuzzy set B′ can be obtained by B1, B2 and λRep.

In so doing, the newly derived rule A′ ⇒ B′ involves the use

of only normal and convex fuzzy sets.

1Proofs are omitted, interested readers may contact the authors for more
details.

As A′ ⇒ B′ is derived from A1 ⇒ B1 and A2 ⇒ B2,

when A∗ is given it is feasible to perform fuzzy reasoning

with this new rule without further reference to its originals.

The interpolative reasoning problem is therefore changed from

(5) to the new modus ponens interpretation:

observation: X is A∗

rule: if X is A′, then Y is B′

conclusion: Y is B∗?

(9)

This interpretation retains the same results as (5) in dealing

with the extreme cases: If A∗ = A1, then from (7) λRep = 0,

and according to (8), A′ = A1, and similarly B′ = B1, so the

conclusion B∗ = B1. Likewise, if A∗ = A2, then B∗ = B2.

Other than the extreme cases, similarity measures are used

to support the application of this new modus ponens. In

particular, (9) can be interpreted as

The more similar X to A′, the more similar Y to B′. (10)

Suppose that a certain degree of similarity between A′ and A∗

is established, it is intuitive to require that the consequent parts

B′ and B∗ attain the same similarity degree. The question is

now how to obtain an operator which can capture the similarity

degree between A′ and A∗, and to allow transforming B′ to B∗

with the desired degree of similarity. To this end, the following

two component transformations are proposed.

B. Scale Transformation for Generalized RVs

Consider applying scale transformation to an arbitrary

polygonal fuzzy membership function A = (a0, . . . , an−1)
(as shown in Fig. 1) to generate A′ = (a′

0
, . . . , a′

n−1
) such

that A and A′ will have the same RV, and a′
n−1−i − a′

i =
si(an−1−i−ai), where si are scale rates and i = {0, . . . , �n

2
�−

1}. In order to achieve this, �n
2
� equations a′

n−1−i − a′
i =

Move

Rep(A)

A A’

Rep(A)

A

A’

             Scale

n−1a’

n−2a’
n−3a’

a 1

2a2a’

a

1 n−2a
n−3a

u

0 x

u

0 x

a’

0 n−1a
m0

m1

m2

n−1a’

n−2a
2a’

a’1a 1

2a n−3a n−3a’
n−2a’

a’0a 0 n−1a
s 0

s 1

s 2

a’0

Fig. 1. Scale and move transformations

si(an−1−i − ai), i = {0, . . . , �n
2
�− 1}, are imposed to obtain

the supports with desired lengths, and (�n
2
� − 1) equations

a′
i+1

−a′
i

a′
n−1−i

−a′
n−2−i

= ai+1−ai

an−1−i−an−2−i
, i = {0, . . . , �n

2
� − 2} are

imposed to equalize the ratios between the left (�n
2
� − 1)

slopes’ lengths and the right (�n
2
�−1) slopes’ lengths of A′ to

the ratio counterparts of the original fuzzy set A. The equation∑n−1

i=0
wia

′
i =

∑n−1

i=0
wiai which ensures the representative

values to remain the same before and after the transformation
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is added to make up of �n
2
� + (�n

2
� − 1) + 1 = n equations.

For clarity, these n equations are collectively written as:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a′
n−1−i − a′

i = si(an−1−i − ai) = Si

(i = {0, . . . , �n
2
� − 1})

a′
i+1

−a′
i

a′
n−1−i

−a′
n−2−i

= ai+1−ai

an−1−i−an−2−i
= Ri

(i = {0, . . . , �n
2
� − 2})∑n−1

i=0
wia

′
i =

∑n−1

i=0
wiai

(11)

where Si is the i-th support length of the resultant fuzzy set

and Ri is the ratio between the i-th left slope length and the i-
th right slope length. Solving these n equations simultaneously

results in a unique and convex fuzzy set A′ given that the

resultant set has the support lengths in a descending order

from the bottom to the top. The proof of this is omitted due

to space limit. It can also be shown that given a fuzzy set A
and the support scale rates si, the use of a different RV will not

affect the geometrical shape of the resultant fuzzy set. Instead,

it only affects the position of the transformed fuzzy set.
However, arbitrarily choosing the i-th support scale rate

when the (i−1)-th scale rate is fixed may lead the i-th support

to becoming wider than the (i−1)-th support, i.e., Si > Si−1.

To avoid this, the i-th scale ratio Si, which represents the

actual increase of the ratios between the i-th supports and

the (i − 1)-th supports, before and after the transformation,

normalized over the maximal of such an increase (in the sense

that it does not lead to non-convexity), is introduced to restrict

si with respect to si−1:

Si =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

si(an−i−1−ai)

si−1(an−i−ai−1)
−

an−i−1−ai

an−i−ai−1

1−
an−i−1−ai

an−i−ai−1

(if si ≥ si−1 ≥ 0)

si(an−i−1−ai)

si−1(an−i−ai−1)
−

an−i−1−ai

an−i−ai−1

an−i−1−ai

an−i−ai−1

(if si−1 ≥ si ≥ 0)

(12)

If Si ∈ [0, 1] (when si ≥ si−1 ≥ 0) or Si ∈ [−1, 0] (when

si−1 ≥ si ≥ 0), then Si−1 ≥ Si. Again, the proof is omitted.

In summary, if given si (i = {0, . . . , �n
2
� − 1) such that Si ∈

[0, 1] or Si ∈ [−1, 0] (depending on whether si >= si−1 or

not), i = {1, . . . , �n
2
�−1}, the scale transformation guarantees

to produce a normal and convex fuzzy set.
Conversely, if two convex sets A = (a0, . . . , an−1) and

A′ = (a′
0
, . . . , a′

n−1
) which have the same RV are given, the

scale rate of the bottom support, s0, and the scale ratio of the

i-th support, Si (Si, i = {1, . . . , �n
2
� − 1}) can be calculated

by:

s0 =
a′

n−1
− a′

0

an−1 − a0

(13)

Si =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a
′
n−i−1

−a
′
i

a′
n−i

−a′
i−1

−
an−i−1−ai

an−i−ai−1

1−
an−i−1−ai

an−i−ai−1

∈ [0, 1]

(if
a′

n−i−1
−a′

i

an−i−1−ai
≥

a′
n−i

−a′
i−1

an−i−ai−1

≥ 0)

a
′
n−i−1

−a
′
i

a′
n−i

−a′
i−1

−
an−i−1−ai

an−i−ai−1

an−i−1−ai

an−i−ai−1

∈ [−1, 0]

(if
a′

n−i
−a′

i−1

an−i−ai−1

≥
a′

n−i−1
−a′

i

an−i−1−ai
≥ 0)

(14)

Since A and A′ are both convex, Si must be within the range

as given in (14). Again the proof is omitted.

C. Move Transformation for Generalized RVs

Now, consider the move transformation (also shown in Fig.

1) applied to an arbitrary polygonal fuzzy membership func-

tion A = (a0, . . . , an−1) to generate A′ = (a′
0
, . . . , a′

n−1
),

such that A and A′ have the same RV and the same lengths

of supports, and a′
i = ai+li, i = {0, . . . , �n

2
�−2}. In order to

achieve this, the move transformation is decomposed to (�n
2
�−

1) sub-moves. The i-th sub-move (i = {0, . . . , �n
2
� − 2})

moves the i-th support (indexed from bottom to top beginning

with 0) to a desired place. This operator moves all the odd

points on and above the i-th support, whilst unalter those

points under this support. To measure the degree of the i-
th sub-move, the first possible maximal move distance (in the

sense that the corresponding sub-move does not lead to the

above part of the fuzzy set becoming non-convexity) should

be worked out first. To simplify the description of the sub-

move procedure, only the move on the right side (from ai’s

point of view) is considered in the discussion hereafter. The

left direction simply mirrors this operation.

If the i-th point is supposed to move to the right direction,

the maximal position a
(i)∗
i can be calculated as follows when∑�n

2
�−1

j=i (wj + wn−1−j) > 0:

a
(i)∗
i =

∑�n

2
�−1

j=i aj(wj + wn−1−j) − A∑�n

2
�−1

j=i (wj + wn−1−j)
(15)

where A =
∑

wk+wn−1−k<0

i<k<�n

2
�

[(Sk−1 − Sk)
∑�n

2
�−1

m=k (wm +

wn−1−m)] and Sk is the length of the k-th support (either

before or after move transformation as they are the same). If

however
∑�n

2
�−1

j=i (wj + wn−1−j) < 0, the maximal position

a
(i)∗
i is calculated similarly to (15) except that the condition

wk +wn−1−k < 0 in term A is changed to wk +wn−1−k > 0.

Once again, the proofs are omitted here. It can be shown that

the other extreme moving points a
(i)∗
j (j = {i + 1, . . . , �n

2
�−

1}) which are on the left side of the fuzzy set in the i-th
sub-move can be computed by:

a
(i)∗
j =

{
a
(i)∗
j−1

if wj + wn−1−j > 0

a
(i)∗
j−1

+ Sj−1 − Sj if wj + wn−1−j < 0
(16)

Also, it can be seen that all the extreme points determine a

normal and convex fuzzy set A(i)∗ (as illustrated in Fig. 2)

which must have at least a vertical slope between any two

consecutive α-cuts above the i-th support. This fuzzy set

will have the same RV as A(i−1) with respect to the move

transformation. That is:

�n

2
�−1∑

j=0

a
(i)∗
j (wj + wn−1−j) =

�n

2
�−1∑

j=0

a
(i−1)

j (wj + wn−1−j)

(17)

From (15), the first maximal move distance can be calcu-

lated. However, the i-th sub-move should not only consider
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above non-convexity, but also ensure the avoidance of below

non-convexity (i.e., the part of the fuzzy set below i-th sup-

port). Otherwise it may still lead to non-convexity as illustrated

in Fig. 2. For this, the second maximal move distance is

calculated as (a
(i−1)

n−i − a
(i−1)

n−1−i). It is intuitive to select the

minimal of these two maximal move distances to act as the

actual maximal move distance for use to avoid either above

or below non-convexity. The move ratio Mi, which is used to

measure the degree of such a sub-move, is thus calculated by:

Mi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

li−(a
(i−1)

i
−ai)

min{a
(i)∗
i

−a
(i−1)

i
,a

(i−1)

n−i
−a

(i−1)

n−1−i
}

(if li ≥ (a
(i−1)
i − ai))

li−(a
(i−1)

i
−ai)

min{a
(i−1)

i
−a

(i)∗
i

,a
(i−1)

i
−a

(i−1)

i−1
}

(if li ≤ (a
(i−1)
i − ai))

(18)
where the notation a

(i−1)

i represents ai’s new position after

the (i − 1)-th sub-move. Initially, a
(−1)

i = ai.

If Mi ∈ [0, 1] when li ≥ (a
(i−1)

i − ai), or Mi ∈ [−1, 0]

when li ≤ (a
(i−1)

i − ai), the sub-move is carried out as

follows. The odd points under the i-th support are not changed:

a
(i)
j = a

(i−1)

j (j = {0, . . . , i − 1, n − i, . . . , n − 1}) while

the other points a
(i−1)

i , a
(i−1)

i+1
, . . . , a

(i−1)

n−1−i are being moved.

At the beginning, when i = 0, all odd points are moved

of course. If moving to the right side from the viewpoint

of a
(i−1)

i , i.e., Mi ∈ [0, 1], the moving distances of a
(i−1)

j

(j = {i, i + 1, . . . , �n
2
�− 1}) which are on the left side of the

fuzzy set A(i−1) are calculated by multiplying M
′
i with the

distances between the extreme positions a
(i)∗
j and themselves.

In so doing, a
(i−1)

j will move the same proportion of distances

to their respective extreme positions. That is:

a
(i)
j = a

(i−1)

j + M
′
i(a

(i)∗
j − a

(i−1)

j ), (19)

where

M
′
i = Mi

min{a
(i)∗
i − a

(i−1)

i , a
(i−1)

n−i − a
(i−1)

n−1−i}

a
(i)∗
i − a

(i−1)

i

. (20)

This represents the applied move ratio for the i-th sub-move. If

Mi ∈ [0, 1], M
′
i ∈ [0, Mi]. The adoption of applied move ratio

M
′
i avoids the potential below non-convexity. Such a move

strategy leads to a fuzzy set A(i) = {a
(i)
0

, . . . , a
(i)
n−1

} which is

convex, has the same RV as A, and has the new point a
(i)
i on

the desired position, i.e., a
(i)
j+1

−a
(i)
j ≥ 0 (j = {0, . . . , n−2}),

Rep(A(i)) = Rep(A), and a
(i)
i = ai + li. These properties

have been proved but details are omitted here.

Rep(A)

A A

n−1a

i a n−1−i
(i−1)

a n−i
(i−1)

u

0 xa 0
(0)

a i
(i−1)

(i−1)

a 1
(1)

a i
(i)*

(i )*

Fig. 2. The extreme move positions in the i-th sub-move

In summary, if given move ratios Mi ∈ [−1, 1], (i =
{0, . . . , �n

2
�−2}), the (�n

2
�−1) sub-moves transform a given

normal and convex set A = (a0, . . . , an−1) to a new normal

and convex set A′ = (a′
0
, . . . , a′

n−1
) with the same lengths of

supports and the same RV.

In the converse case, where two convex fuzzy sets A =
(a0, . . . , an−1) and A′ = (a′

0
, . . . , a′

n−1
) of the same rep-

resentative value are given, the move ratio as Mi, i =
{0, 1, . . . , �n

2
� − 2}, are computed by:

Mi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a′
i
−a

(i−1)

i

min{a
(i)∗
i

−a
(i−1)

i
,a

(i−1)

n−i
−a

(i−1)

n−1−i
}

(if a′
i ≥ a

(i−1)

i )

a′
i
−a

(i−1)

i

min{a
(i−1)

i
−a

(i)∗
i

,a
(i−1)

i
−a

(i−1)

i−1
}

(if a′
i ≤ a

(i−1)

i )

(21)

where a
(i−1)

i is the ai’s new position after the (i− 1)-th sub-

move. Initially, when i = 0, a
(−1)

i = ai. This (bottom) sub-

move will not lead to any below non-convexity as there are

no odd points underneath, whilst the other sub-moves need to

consider situations where non-convexity may arise both above

and underneath. When i = 0, a
(i−1)

n−i − a
(i−1)

n−1−i and a
(i−1)

i −

a
(i−1)

i−1
are not defined. In order to keep the expression the

same for (21), both of them take value 1 to represent the

bottom case.

Since A = (a0, . . . , an−1) and A′ = (a′
0
, . . . , a′

n−1
) are

both convex, the ranges of Mi (i.e., Mi ∈ [0, 1] when

a′
i ≥ a

(i−1)

i or Mi ∈ [−1, 0] when a′
i ≤ a

(i−1)

i ), i =
{0, 1, . . . , �n

2
�−2}, are obvious and hence no proof is needed.

D. Algorithm Outline

As indicated earlier, it is intuitive to maintain the similarity

degree between the consequent parts B′ = (b′
0
, . . . , b′n−1

) and

B∗ = (b∗
0
, . . . , b∗n−1

) to be the same as that between the an-

tecedent parts A′ = (a′
0
, . . . , a′

n−1
) and A∗ = (a∗

0
, . . . , a∗

n−1
),

in performing interpolative reasoning. The proposed scale

and move transformations can be used to entail this by the

following algorithm:

1) Calculate scale rates si (i = {0, 1 . . . , �n
2
� − 1}) of the

i-th support from A′ to A∗ by si =
a∗

n−1−i
−a∗

i

a′
n−1−i

−a′
i

.

2) Calculate scale rate s0 of the bottom support (or just get

from the first step) and scale ratios Si (i = {1 . . . , �n
2
�−

1}) of the i-th support from A′ to A∗ by (13) and (14).

3) Apply scale transformation to A′ with scale rates si

calculated in the first step to obtain A′′.

4) Assign scale rate s′
0

of the bottom support of B′ to

the value of s0 (i.e., s′
0

= s0), with the scale ratios

S
′
i, (i = {1 . . . , �n

2
� − 1}) of the i-th support of B′

calculated as per (14) under the condition that they equal

to Si ( i = {1 . . . , �n
2
� − 1}) as calculated in step 2:

s′i =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

si (i = 0)

s′
i−1

(si−si−1)(
b
′
n−i

−b
′
i−1

b′
n−i−1

−b′
i

−1)

si−1(
a′

n−i
−a′

i−1

a′
n−i−1

−a′
i

−1)

+ s′i−1(si ≥ si−1 ≥ 0)

s′
i−1

si

si−1

(si−1 ≥ si ≥ 0)

(22)

The 2005 IEEE International Conference on Fuzzy Systems824



5) Apply scale transformation to B′ using s′i (i =
{0, 1 . . . , �n

2
� − 1}) as calculated in step 4 to obtain

B′′ = (b′′
0
, . . . , b′′n−1

).
6) Decompose the move transformation to (�n

2
� − 1) sub-

moves. For i = 0, 1, . . . , �n
2
� − 2,

a) Calculate the i-th sub-move ratio Mi from A(i−1)

to A∗ by (21), where A(i−1) is the fuzzy set

obtained after the (i − 1)-th sub-move with ini-

tialization A(−1) = A′′.

b) Apply move transformation to A(i−1) using Mi to

obtain A(i) = {a
(i)
0

, a
(i)
1

, . . . , a
(i)
n }.

c) Apply move transformation to B(i−1) using Mi to

obtain B(i) = {b
(i)
0

, b
(i)
1

, . . . , b
(i)
n }.

7) Return A(�n

2
�−2) = A∗ and B(�n

2
�−2), which is the

required resultant fuzzy set B∗, once the for loop of

step 6 terminates.

Note that the interpolation of two rules involving multiple

antecedent variables is easily extendable by averaging the scale

rate, scale ratios and move ratios [5].

The fuzzy interpolation technique is required to give prompt

response when it is used to handle time critical applications.

Therefore, the complexity of time is an important issue for the

present method. With respect to n (the largest number of odd

points for any fuzzy sets involved), the transformation-based

interpolation needs O(n2) computation time mainly owing to

step 6 in subsection III-D. This is acceptable given that n
is not significantly large in most cases, and that high-speed

processors are more and more popularly used.

IV. IMPACT OF RV DEFINITION

The example discussed in this section concerns the interpo-

lation between two adjacent rules A1 ⇒ B1 and A2 ⇒ B2,

each involving the use of hexagonal fuzzy sets. Interpola-

tions are carried out using three different RV representa-

tions (namely, average RV, weighted average RV and center

of core RV), resulting in three unique, normal and convex

fuzzy sets respectively when given an observation A∗ =
(6, 6.5, 7, 9, 10, 10.5). All the attribute values of the given two

rules and the results (B∗) are shown in Table I and Fig. 3. It

is interesting to note that these three results have almost the

same geometrical shape although their positions are slightly

different. This is because all the calculations involved are

the same except the calculation of the RV. This empirically

shows that although different RVs may be chosen for use given

a specific problem, their influence on the final interpolative

outcomes is not significant. This helps ensure the stability of

the inference method developed.

V. AN REALISTIC APPLICATION

This section shows the usage of the interpolation-based

inference in a real-world prediction problem, based on the

comp-activ database [2]. This database consists of a collection

of computer activity measures such as the number of system

read calls per second. The task is to predict the portion of time

that CPUs run in user mode from all measured activities. The

data set includes 8192 cases, with each having 22 continuous

numeric attributes. The whole data set is divided into a training

set and a test set. The training set has approximately 2/3 of the

whole data (5462) and test set takes the rest (2730). Consider

there may exist redundant or less relevant information in the

initial 22 attributes, a process of attribute selection is carried

out to choose the most informative ones. For simplicity, the

correlation-based feature subset selection [3] is used for this,

resulting 11 selected attributes.

The well-known fuzzy ID3 training scheme [7] is adopted

here to form the fuzzy rules. Again, for simplicity, the trian-

gular fuzzy sets are used and they are assumed to be evenly

distributed over each attribute domain. Fuzzy ID3 trainings

with different configurations (in terms of the number of fuzzy

sets and the minimal leaf objects) are carried out and the

relative squared error (relative to the simple average predictor)

are given in Fig. 4. This reveals a general trend in that the

more fuzzy sets used in the training, the better performance

the resulting rules have. However, the number of rules may
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Fig. 3. Interpolation with different RV definitions

TABLE I

INTERPOLATION RESULTS WITH A∗ = (6, 6.5, 7, 9, 10, 10.5)

A1 (0, 1, 3, 4, 5, 5.5)
A2 (11, 11.5, 12, 13, 13.5, 14)
B1 (0, 0.5, 1, 3, 4, 4.5)
B2 (10.5, 11, 12, 13, 13.5, 14)
B∗(average) (5.64, 5.98, 6.29, 8.63, 9.46, 9.93)
B∗(w average) (5.61, 5.95, 6.26, 8.59, 9.42, 9.89)
B∗(core center) (5.47, 5.79, 6.08, 8.42, 9.23, 9.70)
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become very large at the same time. For instance, with the

number of the minimal leaf objects 0, the resulting rule base

size increases from 55 to 477 if the number of fuzzy sets

increases from 3 to 7. In order to provide a platform to

compare the interpolation-based inference with the well known

Mamdani inference, both the rule base size and the prediction

error have to be considered. For this, a particular resultant

rule base, which has 47 rules and an error rate of 13.29% is

chosen (where the number of fuzzy sets is 6 and the number

of minimal leaf objects is 480). Note that in this rule base, 4

among the 2730 test data are not fired by any of the 47 rules.

That is, the obtained rule base is in fact a sparse rule base.

Now the interpolation-based inference is tested over this

rule base and the test data. The first step is to compute the

intermediate rule. This is not as straightforward as the way

discussed in subsection III-A. The distance between a rule

and a data object (with crisp or fuzzy values taken by the

attributes) is defined as the average of the distances between

their individual values (or sets) with regard to each attribute

(see (6)). The nearest n (n ≥ 2) rules are then selected and be

used to construct the intermediate rule. In particular, for each

input attribute, the weights of the fuzzy sets within the nearest

n rules regarding that attribute are computed inversely to the

distances between the sets and the test object’s value of the

corresponding attribute. By using these weights, the calculated

intermediate fuzzy set on this attribute may not have the same

representative value as the test object’s value. A δ is therefore

introduced for each input attribute to measure how much move

(in proportion to the whole domain space) is needed to move

the intermediate fuzzy set to the desired position so that it

will have the same representative value as the test object.

Note that a positive/negative δ indicates right/left move. The

averaged weights and the δs corresponding to all the input

attributes are used to determine the intermediate output fuzzy

set. In so doing, an intermediate rule which has the same

representative value as the test object’s value on each input

attribute is determined.

The second step is carried out in the same way as described

in subsection III-D. Consider that the test data may not be

accurate due to measurement noise, a fuzzification for each

test data is hence introduced prior to performing interpolation.

That is, a vector of crisp values is fuzzified to a vector of fuzzy

sets for each test data. The fuzzification of the crisp value on

each attribute leads to an isosceles triangular set which has

a certain support length. Different versions of such a length

(including 0, 1/8 and 1/4, with 0 indicating the fuzzification

is not performed) are used, and the results with respect to the

average, the weighted average, and the center of core RVs

are shown in Table II. Note that the error is calculated as the

average of the errors in interpolating two or three nearest rules.

These results clearly show that the interpolation-based in-

ference generally obtains better performance than the error

rate 13.29% (produced by Mamdani inference). The other

advantage is that all the test data are fired by the interpolation-

based inference. It is worth noting that the fuzzification of the

test data with different support lengths does not significantly

affect the prediction error. This ensures the stability of the

interpolation-based inference. In particular, if the average RV

is used, the results are exactly the same across different

support lengths. This is because the value of the average RV

over a fuzzy set is exactly the same as the fuzzified crisp

value created from the defuzzification method used (center of

gravity) over the same fuzzy set.

TABLE II

RELATIVE SQUARED ERROR OF THE INTERPOLATION-BASED INFERENCE

portion =0 portion =1/8 portion =1/4
average 6.92% 6.92% 6.92%

w average 6.22% 6.25% 6.28%
core center 8.05% 7.58% 7.20%

VI. CONCLUSIONS

This paper has proposed a generalized, scale and move

transformation-based, interpolative reasoning method. It first

introduces the general definition of representative values (RVs)

and then uses this notion to develop the interpolative reasoning

method. The work allows interpolating fuzzy rules involving

arbitrary polygonal fuzzy sets, by means of scale and move

transformations. The main advantage of this method is its

flexibility and diversity: it can choose different RVs to obtain

suitable results for different application requirements. The

paper has also presented a realistic application of the proposed

method.
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[1] Baranyi, P., Gedeon, T. D. and Kóczy, L. T., “A general interpolation
technique in fuzzy rule bases with arbitrary membership functions,” in
Proc. IEEE Int. Conf. Syst., Man, Cybern., pp. 510-515, 1996.

[2] Data for Evaluating Learning in Valid Experiments (DELVE), available:
http://www.cs.toronto.edu/delve/.

[3] Hall, M. A., “Correlation-based feature subset selection for machine
learning,” PhD thesis, 1999.

[4] Hsiao, W. H., Chen, S. M. and Lee, C. H., “A new interpolative reasoning
method in sparse rule-based systems,” Fuzzy Set and Systems, vol. 93,
pp. 17-22, 1998.

[5] Huang, Z. H. and Shen, Q., “A new fuzzy interpolative reasoning method
based on center of gravity,” in Proc. IEEE Int. Conf. on Fuzzy Systems,
vol. 1, pp. 25-30, 2003.

[6] Huang, Z. H. and Shen, Q., “Scale and move transformation-based fuzzy
interpolative reasoning: a revisit,” in Proc. IEEE Int. Conf. on Fuzzy
Systems, vol. 2, pp. 623-628, 2004.

[7] Janikow, C. Z., “Fuzzy decision trees: issues and methods,” IEEE Trans-
action on Systems, Man and Cybernetics, Part B, vol. 28, no. 1, pp. 1 -
14, 1998.
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