PRIFYSGOL

B9 ABERYSTWYTH

Aberystwyth University

Iterative vs Simultaneous Fuzzy Rule Induction
Galea, Michelle; Shen, Qiang

DOI:
10.1109/FUZZY.2005.1452491

Publication date:
2005

Citation for published version (APA):
Galea, M., & Shen, Q. (2005). Iterative vs Simultaneous Fuzzy Rule Induction. 767-772.
https://doi.org/10.1109/FUZZY.2005.1452491

General rights

Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 18. Apr. 2020

https://doi.org/10.1109/FUZZY.2005.1452491
https://pure.aber.ac.uk/portal/en/persons/qiang-shen(695ae0bf-c764-425b-9496-cca71f02cb57).html
https://pure.aber.ac.uk/portal/en/publications/iterative-vs-simultaneous-fuzzy-rule-induction(7d98ac1f-fe5d-4449-ac69-854f9516a7b5).html
https://doi.org/10.1109/FUZZY.2005.1452491

Iterative vs Simultaneous Fuzzy Rule Induction

Michelle Galea
School of Informatics
University of Edinburgh, U.K.
Email: m.galea@sms.ed.ac.uk

Abstract—Iterative rule learning is a common strategy for
fuzzy rule induction using stochastic population-based algorithms
(SPBAs) such as Ant Colony Optimisation (ACO) and genetic
algorithms. Several SPBAs are run in succession with the result
of each being a rule added to an emerging final ruleset. Each
successive rule is generally produced without taking into account
the rules already in the final ruleset, and how well they may
interact during fuzzy inference. This popular approach is com-
pared with the simultaneous rule learning strategy introduced
here, whereby the fuzzy rules that form the final ruleset are
evolved and evaluated together. This latter strategy is found to
maintain or improve classification accuracy of the evolved ruleset,
and simplify the ACO algorithm used here as the rule discovery
mechanism by removing the need for one parameter, and adding
robustness to value changes in another. This initial work also
suggests that the rulesets may be obtained at less computational
expense than when using an iterative rule learning strategy.

I. INTRODUCTION

The use of stochastic population-based algorithms (SPBAs)
for fuzzy rule induction has proved both popular and success-
ful, with one of the most common strategies being that of
Iterative Rule Learning (IRL) (see [1] for a review on the use
of evolutionary algorithms such as genetic algorithms (GAs)
[2] and genetic programming (GP) [3] for this purpose). In
IRL, an SPBA is run several times in succession, with the
result of each—the best fuzzy rule generated by the current
algorithm—being considered a partial solution. Between runs
of SPBAs, the training set is generally reduced by removing
from it the cases that are covered by the newly evolved best
rule. This is done so as to encourage the next algorithm to find
good rules that describe the remaining cases in the training set.

However, work on fuzzy rule induction using this strategy
suggests a potential shortcoming [4]. This arises out of the fact
that fuzzy rules, due to their very nature, will match or cover
all cases within a training set, but to varying degrees. Having a
final set of complementary fuzzy rules is therefore essential to
the inference process—i.e. it is necessary to avoid a situation
where a case requiring classification is closely matched by two
or more rules that have different conclusions.

An alternative approach is introduced in this work called
Simultaneous Rule Learning (SRL). Several Ant Colony Op-
timisation (ACO) algorithms are run simultaneously on the
training set, and rules from the different populations (ACOs)
are combined and evaluated together on the complete dataset.
A similar strategy has been reported using multi-population

Qiang Shen
Department of Computer Science
University of Wales, Aberystwyth, U.K.
Email: qqs@aber.ac.uk

rulesets and the other associated membership functions (e.g.
[5], [6]). The focus of this work is on evolving the fuzzy
rule base, with each population finding rules to describe a
specific class. The evolved rulesets are tested on benchmark
classification problems and compared with rulesets evolved
using IRL.

Since the application of ACO to fuzzy rule induction is
still a relatively unexplored area (compared to GAs and GP,
for instance), the next section introduces this topic. Section
IIT then describes the implemented system and its two main
variants, the first inducing rules using IRL and the second
using SRL. Section IV presents an analysis of the results
obtained using the two approaches, while Section V highlights
the strengths and limitations of the current research, and the
need for future work.

II. ANT COLONY OPTIMISATION AND RULE INDUCTION

Though often blind and travelling over considerable dis-
tances, real ants have the ability to find the shortest path be-
tween their nest and a food source. This is attributed to the fact
that ants lay a chemical substance, called a pheromone, along
the paths they take, and when presented with a choice between
alternative paths, they tend to choose the one with the greatest
amount of pheromone. Pheromone, however, evaporates so that
over time the shortest path accrues more pheromone as it is
traversed more quickly.

ACO is a population-based heuristic motivated by these
foraging strategies of real ants, and its appeal lies in sev-
eral factors: it provides a simple effective mechanism for
conducting global search by simultaneously constructing mul-
tiple solutions that investigate diverse areas of the solution
space; a simplicity of implementation that requires minimum
understanding of the problem domain; the problem-sepcific
elements—such as the fitness function and heuristic—which
may be readily borrowed from existing literature on rule
induction; and, an explicit heuristic embedded in the solution
construction mechanism that makes for easy insertion of
domain knowledge.

In ACO, each artificial ant is considered a simple agent,
communicating with other ants indirectly by effecting changes
to a common environment. A high-level description of an
ACO-based algorithm is:

; . (1) while termination condition false
GAs or GP but the separate populations are not all evolving (2) each ant constructs a new solution
rules—there are generally two populations with one evolving (3) evaluate new solutions
0-7803-9158-6/05/$20.00 © 2005 IEEE. 767 The 2005 IEEE International Conference on Fuzzy Systems

(4) update pheromone levels
(5) output best solution

Following is a brief introduction of the main elements
necessary for an implementation of an ACO [7], set in the
context of rule induction. The first four elements relate to line
(2) above, the fifth relates to line (3), and the sixth to line (4):

1) An appropriate problem representation is required that
allows an artificial ant to incrementally build a solution
using a probabilistic transition rule; the problem is mod-
elled as a search for a best path through a graph. In the
context of rule induction a solution is a rule antecedent
and each node of the graph represents a condition that
may form part of it, such as OUTLOOK=Sunny, or
OoUTLOOK=Cloudy.

2) A local heuristic provides guidance to an ant in choosing
the next node for the path (solution) it is building.
Possible examples may be based on fuzzy subsethood
values, or a measure of the vagueness in a fuzzy set.

3) The probabilistic transition rule determines which node
an ant should visit next. The transition rule is dependent
on the heuristic value and the pheromone level associ-
ated with a node.

4) A constraint satisfaction method forces the construction
of feasible rules. For instance, if simple propositional IF-
THEN rule antecedents are being constructed, then only
one fuzzy linguistic term from each fuzzy variable may
be selected.

5) A fitness function determines the quality of the solution
built by an ant.

6) The pheromone update rule specifies how to modify
the pheromone levels of each node in the graph. For
instance, between iterations of an ACO algorithm, the
nodes (conditions) contained in the best rule antecedent
created get their pheromone levels increased.

A first attempt to apply ACO to fuzzy modelling is found
in [8], though in this work the ACO algoirthm is not used
for constructing fuzzy rule antecedents, but for assigning rule
conclusions. In a graphical representation of the problem, the
fixed number of nodes are fuzzy rule antecedents found by a
deterministic method from the training set and an ant traverses
the graph, visiting each and every node and probabilistically
assiging a rule conclusion to each.

In [9] an IRL approach is adopted with each iteration run-
ning an ACO algorithm to produce fuzzy rules. The problem
graph for the ACO consists of nodes that represent conditions
that may be selected by an ant when building its fuzzy rule.
It is against this work that the SRL strategy is compared, and
more detail on both approaches is provided in the next section.

III. THE FRANTIC SYSTEM

FRANTIC (Fuzzy Rules from ANT-Inspired Computation)
as introduced in [9] implements a class-dependent IRL strat-
egy. For each class in the dataset one or more ACOs are run
and from each the best rule constructed is determined and
added to the final ruleset. However, before the next ACO is

768

run to find another rule describing the same class, the cases
belonging to that class that are covered by the previous best
rule are removed from the training set. Before ACOs are run
to find rules describing the next class, the full training set is
reinstated.

A simplified version of IRL is to run just one ACO
algorithm for each class, the assumption being that one rule is
sufficient to describe a class. In this initial work to compare
the two strategies, the simplifed form was used:

(1) for each class
(2 for nolterations
(3 each ant constructs rule

)
)
(4) evaluate all rules
)
)
)

(5 update pheromone levels
(6 add best rule to finalRuleSet
(7 output finalRuleSet

FRANTIC has now been developed to induce rules via SRL.
In the simplified form one ACO algorithm is also run for each
class. However, instead of running the ACOs in succession,
they are run in parallel (in principle, i.e. this is not as yet a true
parallel implementation running on multiple processors), with
each maintaining its own problem graph, pheromone levels
and heuristic values. A brief description follows:

(1) for nolterations

(2) for each class

(3) each ant constructs rule

(4) for each combined ruleset

(5) evaluate ruleset

(6)
(7)

update pheromone levels
output bestRuleSet of final iteration

After each class has had its rules created for a particular
iteration (lines (2)—(3), all possible combinations of rules (one
from each class) are formed into a ruleset and this is tested on
the training set (lines (4)—(5)). The rules in the best performing
ruleset are used to update the pheromone levels (line (6)), with
the rule describing a specific class being used to update the
pheromone levels of the associated ACO.

In the next subsection the similarites between the two
strategies as implemented in FRANTIC are described, while
the following subsection describes the main differences.

A. Rule Construction

FRANTIC has the flexibility to create simple propositional
rules (e.g. IF TEMPERATURE is Cool AND WIND is Windy
THEN Swimming), propositional rules with internal disjunc-
tion (e.g. IFF TEMPERATURE is Cool OR Mild AND WIND is
Windy THEN Swimming), or propositional rules that include
negated terms (e.g. IFF TEMPERATURE is NOT_Rain AND
WIND is Windy THEN Swimming). When creating a rule
antecedent an ant traverses a problem graph where each node
represents a term that may be added e.g OUTLOOK=Sunny. In
the case of constructing rules with negated terms, the graph
has double the number of nodes—one extra for each original
linguistic term, e.g. OUTLOOK=NOT_Sunny. The choice of
the next node to visit depends on both a heuristic value
and the pheromone level associated with the node. It is

The 2005 IEEE International Conference on Fuzzy Systems

made probabilistically but is biased towards terms that have
relatively higher heuristic and pheromone values.

However, after selection and before a term is added to a rule
antecedent, a check is made—this ensures that the resultant
rule antecedent covers a minimum number of the appropriate
classinstances from the training set (set by a parameter called
minInstPerRule), and is a way of avoiding over-fitting to
the training data.

For simple propositional rules, or rules with negated terms,
if an ant does add a term to its rule antecedent then it will not
consider other linguistic terms belonging to the same linguistic
variable. For example, if the linguistic variable OUTLOOK has
terms Sunny, Cloudy, Rain, and the term OUTLOOK=Sunny
has just been added to the rule antecedent, then the remaining
terms are not considered further. If this restriction is removed,
then it is possible for ants to add more than one linguistic
term from each variable, with the interpretation being of a
disjunctive operator between the terms added.

1) Fuzzy Rule Matching: As previously stated, while an
ant is constructing a rule it ensures that the rule covers
a minimum number of training instances. However, what
constitutes coverage of a fuzzy instance by a fuzzy rule needs
defining.

A fuzzy rule describing a specific class is said to cover or
match a fuzzy instance if:

1) the rule and instance belong to the same class; and,

2) the degree of match between the condition parts of rule
and instance is equal to or greater than a pre-defined
value, here called a threshold value.

An example follows. Consider a rule R that describes
the conditions leading to a decision to do Weightlifting (the
underlying dataset with its attributes and respective domains
is described in Section IV-A):

IF TEMPERATURE is C'ool OR Mild AND WIND is Windy
THEN Swimming

For the purpose of illustrating how a condition match may
be determined, a more convenient representation of the rule is
used: R=(0,0,0; 0,1,1; 0,0; 1,0; 0,0,1). This means that there
are five attributes, the first four being condition attributes
with three or two values (terms) in the domains, and the
last representing the class attribute with three possible values
(Volleyball, Swimming and Weightlifting respectively). Terms
that are present in the rule are denoted by 1, others by 0. These
rules may only classify instances into one class. However,
there may be more than one specific attribute value present
in a rule (i.e. propositional rules with internal disjunction).

Consider now a fuzzy instance u=(0.9,0.1,0.0; 0.0,0.3,0.7;
0.0,1.0; 0.9,1.0; 0.0,0.3,0.7). The representation is similar as
for rule R, though the value for each term represents the
degree of membership and lies in the range [0,1]. Note that
the conclusion attribute values may be greater than O for more
than one class, that an instance is considered to belong to
the class with the highest degree of membership, and in this
case, the class is Weightlifting. The rule and instance therefore
belong to the same class and so condition 1) above is satisfied.

769

The degree of condition match between a rule R and an
instance u is given by

mCond(R,u) = Ming(mAtt(Ry,uy)) (e8]

In the above mAtt(Ry,uy) measures the degree of match
between an attribute k in R and the corresponding attribute in
u:

1 : Rk empty

mAtt(Rk,uk):{ Maz;j(Min(u;(Ry), uj(uk))) : otherwise

where Ry, empty indicates that no term from the domain of
attribute & is present in rule R, and j is a specific term within
the domain of attribute k. If the attribute is not represented
at all in the rule, the interpretation is that it is irrelevant in
making a particular classification.

From the rule and instance examples above the attribute
matches are: mAtt(Ry,u1) = 1.0, mAtt(Rz,us) = 0.7,
mAtt(Rs,uz) = 1.0 and mAtt(R4,uqs) = 0.9, with the con-
dition match therefore mCond(R,w) = 0.7. If the threshold
value is set at 0.7 or below, then R is considered to cover u.
If the threshold value is set above 0.7, then R is considered to
not sufficiently match u.

2) Heuristic: The heuristic used to guide ants when select-
ing terms is based on fuzzy subsethood values [10], giving a
degree to which one fuzzy set A is a subset of another fuzzy
set B:

M(ANB) _ ZueU Min(pa(u), pp(w))
M(4) > e Ha(u)

where in this case u is an instance from the training set U, A
represents a class label and B a term that may be added to a
rule antecedent.

The heuristic value of a term j (7;) therefore gives a
measurement of how important that term is in describing a
specific class. The heuristic value for a negated term is the
complement of the heuristic value for the non-negated term,
i.e. nyor_j = 1 — n;. For a dataset with n classes, there are
therefore n different sets of heuristic values, and an ACO with
ants finding rules to describe a particular class will use the
appropriate set of heuristic values.

3) Pheromone Updating: At the start of an ACO run, all
nodes in the graph have an equal amount of pheromone which
is set to the inverse of the number of nodes. The pheromone
level of individual nodes, however, changes between iterations.
Towards the end of each iteration rules created by all ants are
evaluated (the difference in evaluation between FRANTIC-IRL
and FRANTIC-SRL is described in Section III-B). In either
case, the terms in the best rule of an iteration of a particular
ACO, say R, get their pheromone levels increased:

S(A, B) =

Ti(t+1) =7(t) +7;(t) - Q,Vj € R

i.e. at time ¢+ 1 each term j in rule R gets its pheromone level
increased in proportion to the quality Q of the rule (defined
in Section III-B). A normalisation of pheromone levels of all
terms further results in a decrease of the pheromone levels of
terms not in R.

The 2005 IEEE International Conference on Fuzzy Systems

The pheromone updating process is therefore a reinforce-
ment mechanism— both positive and negative—for ants con-
structing new rules in successive iterations: terms that have
had their pheromone levels increased have a higher chance of
being selected, while those that have had their levels decreased
have a lower chance.

4) Transition Rule: Ants select terms while constructing
a rule antecedent according to a transition rule that is prob-
abilistic but biased towards terms that have higher heuristic
and pheromone levels. The probability that ant m selects term
J when building its rule during iteration ¢ is given by:

;] - [15(1)]
D ier,, i) - [mi(t)]

where [, is the set of terms that may still be considered
for inclusion in the rule antecedent being built by ant m, i.e.
excluding terms that are already present in the current partial
rule antecedent, and terms that have already been considered
but found to decrease coverage of the training set below the
required number of instances (as set by minInstPerRule).

The probabilistic nature of the rule is a way of introducing
exploration into the search for a solution, in the expectation
that a more optimal solution may well be found rather than
by adhering strictly to terms with the highest values.

P (t) =

B. Rule Evaluation

Each constructed rule needs to be evaluated and this is
done by assessing how accurate it is in classifying the training
instances. However, in FRANTIC-IRL each rule is evaluated
individually, without taking into account how it may interact
with other rules describing other classes, while in FRANTIC-
SRL a rule forms part of a ruleset that is evaluated as a whole.

1) IRL Rule Evaluation: The fitness function combines
a measure of the sensitivity of a rule (its accuracy among
instances of the same class as the rule) with a measure of
the specificity of the rule (its accuracy among instances of
different classes):

TP TN
" TP+FN TN+ FP

Q

where

o TP (True Positives) is the number of instances covered
by the rule that have the same class label as the rule,

o FP (False Positives) is the number of instances covered
by the rule that have a different class label from the rule,

o FN (False Negatives) is the number of instances that are
not covered by the rule but have the same class label as
the rule, and

o TN (True Negatives) is the number of instances that are
not covered by the rule and do not have the same class
label as the rule.

What constitutes coverage of a fuzzy instance by a rule
is dependent on the class of the instance and rule, and on
a user-defined threshold. This has been discussed in Section
III-A.1. For maximum flexibility the threshold used during
rule evaluation has been implemented separately from the one

770

TABLE 1
‘WATER TREATMENT DATABASE FEATURES

| Name Sensor Description
Q-E Input to plant - fbw
PH-E Input to plant - pH
DBO-E Input to plant - biological demand of oxygen
DBO-P Input to primary settler - biological demand of oxygen
SSV-P Input to primary settler - volatile suspended solids
PH-D Input to secondary settler - pH
DQO-D Input to secondary settler - chemical demand of oxygen
SSV-D Input to secondary settler - volatile suspended solids
PH-S Output - pH
SSV-S Output - volatile suspended solids
RD-SED-G Global performance, input - sediments

used during rule construction. However, further investigation
is required to understand the dynamics between these (and
other) parameters and it may well be possible to merge them.

The total number of rule evaluations conducted during IRL
is the number of classes (ACOs run), multiplied by the number
of iterations and ants: #classes x #itns x #ants.

2) SRL Rule Evaluation: When each class has produced its
set of rules, for each iteration, a rule describing one class is
combined with one rule describing each of the other classes
and together they classify the training set. The method of
classification (also used to evaluate the final ruleset produced
by both IRL and SRL on a test set) is:

1) for each rule, calculate the condition match for instance

u;
2) assign to instance u the class of the rule with the highest
condition match.
The accuracy obtained on the training set is used as a measure
of the quality, Q, of each rule within a ruleset.

Each rule from each class is combined with each other
possible rule from the other classes, so that the total number
of ruleset evaluations conducted during SRL is #itns x
#ants#cl@ss¢s For the number of rule evaluations, multiply
again by the number of rules in the ruleset (#classes).

IV. FRANTIC EXPERIMENTS AND RESULTS
A. The Datasets

The first set is the fuzzified Saturday Morning Problem
dataset [11]. FRANTIC-IRL has already been tested using
this dataset, and compared with several other fuzzy rule
induction algorithms [9]. The results obtained indicate that
FRANTIC has comparable or better classification accuracy, and
superior rule comprehensibility (when considering the number
of conditions in a rule).

The Saturday Morning dataset has 16 instances, 4 condition
attributes and 1 class attribute called PLAN:
OUTLOOK={Sunny,Cloudy,Rain},
TEMPERATURE={Hot,Cool,Mild},

HUMIDITY={Humid,Normal},
WIND={ Windy,Not-Windy},
PLAN={Volleyball, Swimming, Weightlifting}.

The second dataset is the real-world Water Treatment Plant

Database [12]. It contains daily observations of 38 sensors

The 2005 IEEE International Conference on Fuzzy Systems

TABLE II

FRANTIC PARAMETERS
Saturday Morning || Water Treatment
IRL | SRL IRL [SRL
#itns 25 25 150 30
#ants 100 4 10 10
#cases 4 4 70% 70%
fi tness 0.5 n/a 0.5 n/a

monitoring the operation of a waste water treatment plant, with
the objective of predicting faults in the process. Observations
were taken over 527 days and are real-valued. The database has
13 possible classifications for each daily set of observations,
but most classifications are assigned to only a few records
in the database. The 13 classifications have therefore been
collapsed to two: OK and Faulty, as in [13]. Records with
missing values have been removed, leaving 377 records.
Other pre-processing steps included fuzzification of the
features using trapezoidal functions into two (low, high) or
three (low, high, normal) linguistic terms, and a feature subset
selection process [14] to reduce the number of features (better
accuracy was indicated in [13] with the reduced dataset). A
description of the retained features is shown in Table I

B. FRANTIC Parameters

The different parameter values used for the two datasets
and the two approaches are listed in Table II. It stipulates the
values for the number of iterations for an ACO, the number of
ants per iteration, the minimum number of cases a rule must
cover during rule construction, and for IRL rule evaluation the
fitness threshold. The minInstPerRule parameter mentioned
in Section III-A is flexible enough so that different values
may be given to different classes. This is particularly useful in
imbalanced datasets (such as the Water Treatment one) where
stipulating the same number of cases that a rule must cover
for a small class as for a large class is impractical. The value
‘4’ therefore means that for each class a rule must cover at
least 4 class cases from the training set, whilst the value “70%’
means that a rule should cover at least 70% of the class cases.

For IRL runs, the parameter values for the Saturday Morn-
ing dataset are as in [9], while a few exploratory runs of
FRANTIC were made to select parameter values giving rea-
sonable results for the Water Treatment database. For SRL, the
number of minimum cases per rule was kept the same as for
the IRL runs. However, the number of iterations or the number
of ants per iteration were reduced so as to make the number
of evaluations between the two approaches more comparable
(otherwise, with the same number of iterations and ants, the
number of evaluations for SRL would far exceed the number
of iterations for IRL). The impact of this is discussed further
in Section V.

C. FRANTIC Results

Table IV presents a summary of the results obtained using
different construction threshold values for the two approaches.

771

TABLE III
AN EXAMPLE FRANTIC RULESET FOR THE WATER TREATMENT
DATABASE (89.47% ACCURACY)

R1 IF ssv-D is NOT_Low THEN OUTCOME is OK
R2 IF PH-E is NOT_High AND ssV-P is Low AND RD-SED-G
is High THEN OUTCOME is FAULTY

For the Saturday Morning dataset, each result is the average
of the accuracies obtained from 30 FRANTIC-IRL or SRL
runs on the training set. The figure in brackets is the standard
deviation based on the predictive accuracies. IRL produced
the highest average accuracy of 93.75% but for the lower
and upper construction threshold values SRL significantly
outperformed IRL. It should be noted that this considerable
improvement in accuracy is obtained with only 4 ants per
iteration for SRL runs, versus 100 ants for IRL runs, where it
might be argued that the greater the number of ants, the greater
the opportunity for exploring the search space and obtaining
a more optimal solution.

A common observation was made in such cases—for SRL,
the rules in the best ruleset of an iteration need not be the best
individual rules describing a class (with ‘best’ as defined by
the IRL fitness function). For instance, in several runs with
construction threshold set at 0.45, the first iteration of rules
describing the conditions necessary for a Volleyball decision
produces rules with individual fitness of 0.80 or 0.72. For
IRL, the rule with the higher fitness is chosen for pheromone
updates.

These same rules are also produced during the SRL runs,
but in this case the ruleset that contains the highest fitness
level, and therefore is used for pheromone updates, actually
contains the Volleyball rule of individual fitness 0.72, and
not 0.80. This suggests that ruleset evaluation provides more
useful information for pheromone updating than individual
rule evaluation, as it takes into consideration how well the
rules interact fogether on the dataset.

Apart from the increase in accuracy, SRL has introduced the
added advantage of making the construction threshold more
robust to value changes. Furthermore, the way the evaluation
of the ruleset in SRL is done completely eliminates the need
for another parameter—the fitness threshold.

For the Water Treatment dataset, each result is the average
of ten 10-fold cross-validations. The figure in brackets is the
standard deviation of the 10 predictive accuracies of a 10-
fold cross-validation, averaged over all ten cross-validations.
The SRL runs do not achieve the highest accuracy as often as
IRL runs, but, overall the figures again suggest an increased
robustness to variations in the construction threshold values
(range of average predictive values for SRL is 76.08 —73.29 =
2.79, while that for IRL is 76.91 — 70.67 = 6.24). This is
further strengthened by observing that the average standard
deviations over the ten 10-fold cross-validations are generally
lower for SRL runs.

The 2005 IEEE International Conference on Fuzzy Systems

TABLE IV
PREDICTIVE ACCURACY -ITERATIVE VS SIMULTANEOUS RULE LEARNING

Construction Saturday Morning Water Treatment
Threshold IRL [SRL IRL [SRL
0.45 75.21 (6.0) | 92.08 (3.7) || 74.38 (10.7) | 74.11 (8.7)
0.50 74.38 (5.8) | 93.13 (1.9) 70.67 (7.2) | 75.08 (7.9)
0.55 93.75 (0.0) | 92.71 (3.7) 72.15 (94) | 73.87 (8.0)
0.60 93.75 (0.0) | 93.13 (3.4) || 71.45 (11.1) | 73.29 (8.0)
0.65 93.75 (0.0) | 93.33 (1.6) 7691 (1.7) | 76.08 (6.6)
0.70 93.75 (0.0) | 91.67 (5.8) 76.42 (7.6) | 74.07 (7.3)
0.75 68.75 (0.0) | 68.75 (0.0) 75.58 (8.0) | 73.66 (7.6)
0.80 68.75 (0.0) | 68.75 (0.0) 75.58 (8.0) | 74.37 (7.9)
0.85 25.00 (0.0) | 31.25 (0.0) 76.37 (71.6) | 75.32 (7.5)

V. CONCLUSIONS AND FUTURE WORK

These preliminary findings indicate that SRL is a viable
alternative to the more commonly used IRL. Predictive accu-
racy is maintained or improved, the need for one parameter is
removed entirely, while robustness to value changes of another
parameter is greatly improved.

However, there are still many aspects to explore of this
alternative strategy, one of which is whether it also provides
improved computational performance. With the parameter val-
ues as in Table II, the total number of ants and rule evaluations
for an IRL or SRL run are shown in Table V. Note that
rule and not ruleset evaluations are used for SRL, in order
to make the comparison with IRL more equitable. Initial tests
suggest that FRANTIC’s greatest computational expense is in
rule creation so SRL runs may take considerably less time
than IRL runs. For instance, for the Water Treatment dataset,
though the number of evaluations for SRL is twice the number
of evaluations for IRL, IRL runs generally take 3 to 5 times
longer, due to the fact that more ants are used during each
iteration.

It may even be possible to reduce the number of evaluations
done during SRL. Currently, all possible rulesets are created
and evaluated after an iteration, by combining a rule from one
class (ACO), with one rule from each of the other classes.
In work using multi-population co-evolution to induce both
a rulebase and associated membership functions, however,
not all possible combinations are formed. Generally, only a
few representatives from each population are used to form
different knowledge bases (i.e. a rulebase and membership
functions). The representatives may be chosen according to
fitness, randomly, or a combination of both, and this suggests
a useful avenue of further investigation for decreasing the
computational expense of the SRL evaluation strategy. There
are still other questions to be answered though, including
exploring the possibility that IRL runs can maintain the current
accuracy on these datasets, but use fewer ants and iterations
per ACO.

A major assumption in this work is that one rule is sufficient
to adequately describe a class, and so for SRL n ACOs are
run in parallel where n is the number of classes. Though a
useful starting point for investigating this alternative strategy,

772

TABLE V
COMPLEXITY—TERATIVE VS SIMULTANEOUS RULE LEARNING

Saturday Morning || Water Treatment
IRL | SRL IRL | SRL
evaluations || 7500 4800 3000 6000
ants 7500 300 3000 600

this may be a naive assumption when using larger and more
complex real-world datasets. Work will therefore be carried
out to extend SRL to run as many ACOs as are necessary
to adequately describe a class. One approach is to determine
beforehand how many rules may be required to describe a
class, and to then initiate the appropriate number of ACOs.
This may perhaps be accomplished by analysing the training
data to see whether any subclusters of instances may be found
within individual classes. The number of subclusters within a
class would then indicate the number of ACOs to be initiated
for that class.

ACKNOWLEDGMENT

The first author is supported by a UK EPSRC grant. Both
authors are grateful to John Levine and Stuart Aitken for
helpful discussions, whilst taking full responsibility for views
expressed in this paper.

REFERENCES

[1] M. Galea, Q. Shen, and J. Levine, “Evolutionary approaches to fuzzy
modelling for classifi cation,” to appear in Knowledge Engineering
Review.

[2] J. H. Holland, Adaptation in natural and artificial systems. Ann Arbor:
University of Michigan Press, 1975.

[3] J.R. Koza, Genetic programming: On the programming of computers by
means of natural selection. A Bradford Book, The MIT Press, 1992.

[4] O. Cordon, A. Gonzalez, F. Herrera, and R. Perez, “Encouraging
cooperation in the genetic iterative rule learning approach for quali-
tative modeling,” in Computing with Words in Intelligence/Information
Systems, J. Kacprzyk and L. Zadeh, Eds. Pyhsica-Verlag, 1998.

[5] C. A. Pena-Reyes and M. Sipper, “FuzzyCoCo: A cooperative-
coevolutionary approach to fuzzy modeling,” IEEE Trans. Fuzzy Syst.,
vol. 9, pp. 727-737, 2001.

[6] R. Mendes, F. Voznika, A. A. Freitas, and J. C. Nievola, “Discovering
fuzzy classifi cation rules with genetic programming and co-evolution,”
in Lecture Notes in Artificial Intelligence 2168. Springer-Verlag, 2001.

[7]1 E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm intelligence: From
natural to artificial systems. New York: Oxfor University Press, 1999.

[8] J. Casillas, O. Cordon, and F. Herrera, “Learning fuzzy rules using ant
colony optimization algorithms,” in Proc. 2nd International Workshop
on Ant Algorithms, Brussels, Belgium, Sep. 2000, pp. 13-21.

[9] M. Galea and Q. Shen, “Fuzzy rules from ant-inspired computation,”
in Proc. IEEE International Conference on Fuzzy Systems, Budapest,
Hungary, Jul. 2004.

[10] B. Kosko, “Fuzzy entropy and conditioning,” Information Sciences,
vol. 40, pp. 165-174, December 1986.

[11] Y. Yuan and M. Shaw, “Induction of fuzzy decision trees,” Fuzzy Sets
and Systems, vol. 69, pp. 125-139, 1995.

[12] C. L. Blake and C. J. Merz. (1998) UCI repository
of machine learning data. Department of Computer Science,
University of California, Irvine CA. [Online]. Available:

http://www.ics.uci.edu/ "mlearn/MLRepositary.html
[13] Q. Shen and A. Chouchoulas, “A rough-fuzzy approach for generating
classifi cation rules,” Pattern Recognition, vol. 35, pp. 2425-2438, 2002.
[14] R.Jensen and Q. Shen, “Fuzzy-rough attribute reduction with application
to web categorization,” Fuzzy Sets and Systems, vol. 141, pp. 469-485,
2004.

The 2005 IEEE International Conference on Fuzzy Systems

