
Aberystwyth University

A Framework for the Scoring of Operators on the Search Space of Equivalence
Classes of Bayesian Network Structures
Shen, Qiang; Daly, Ronan

Publication date:
2005

Citation for published version (APA):
Shen, Q., & Daly, R. (2005). A Framework for the Scoring of Operators on the Search Space of Equivalence
Classes of Bayesian Network Structures. 67-74.

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 18. Apr. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aberystwyth Research Portal

https://core.ac.uk/display/288843065?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://pure.aber.ac.uk/portal/en/persons/qiang-shen(695ae0bf-c764-425b-9496-cca71f02cb57).html
https://pure.aber.ac.uk/portal/en/publications/a-framework-for-the-scoring-of-operators-on-the-search-space-of-equivalence-classes-of-bayesian-network-structures(2d4f98ce-8027-4211-a40c-b05e01debe2e).html
https://pure.aber.ac.uk/portal/en/publications/a-framework-for-the-scoring-of-operators-on-the-search-space-of-equivalence-classes-of-bayesian-network-structures(2d4f98ce-8027-4211-a40c-b05e01debe2e).html

A Framework for the Scoring of Operators on the Search Space of
Equivalence Classes of Bayesian Network Structures

Rónán Daly
School of Informatics

University of Edinburgh
Edinburgh, EH8 9LE

Ronan.Daly@ed.ac.uk

Qiang Shen
Department of Computer Science
University of Wales, Aberystwyth

Aberystwyth, SY23 3DB
qqs@aber.ac.uk

Abstract

A method is proposed, whereby a particular
application of an operator, applied to a struc-
ture representing a Bayesian network equiv-
alence class can be scored in a generic fash-
ion. This is achieved by representing a par-
ticular compound operator in terms of a fi-
nite set of primitive operators and finding
the score of the compound operator through
the influence of the primitive operators on
the equivalence class. This method could be
used in a Bayesian network structure learning
framework which allows arbitrary definition
of operators at runtime, by the composition
of primitive operators.

1 Introduction

The task of learning Bayesian networks from data
has, in a relatively short amount of time, become a
mainstream application in the process of knowledge
discovery and model building. The reasons for this
are many.

For one, the model built by the process has an in-
tuitive feel—this is because Bayesian networks con-
sist of a directed acyclic graph (DAG), with condi-
tional probability tables annotating each node. Each
node in the graph represents a variable of interest
in the problem domain and the arcs can (with some
caveats) be seen to represent causal relations be-
tween these variables—the nature of these causal
relations is governed by conditional probability ta-
bles associated with each node/variable. An exam-
ple Bayesian network is shown at Figure 1.

Another reason for the usefulness of Bayesian
networks is that aside from the visual attractiveness
of the model, the underlying theory is quite well un-
derstood and has a solid foundation. A Bayesian net-
work can be seen as a factorisation of a joint prob-
ability distribution, with the conditional probability
distributions at each node making up the factors and
the graph structure making up their method of com-
bination. Because of this equivalence, the network

Rain

Cloudy

Sprinkler

C P(S=F) P(S=T)

F

T

0.5 0.5

0.9 0.1 C P(R=F) P(R=T)

F

T

0.8 0.2

0.2 0.8

P(C=F) P(C=T)

0.5 0.5

S R P(W=F) P(W=T)

F F

T F

1.0 0.0

0.1 0.9

F T

T T

0.1 0.9

0.1 0.9

Wet Grass

Figure 1: An example Bayesian network

can answer any probabilistic question put to it.
Finally, the popularity of Bayesian networks has

been increased by the accessibility of methods to
both query the model and learn both the structure
and parameters of the network. It has been shown
that inference in Bayesian networks is NP-Complete
[5, 11], but approximate methods have been found
to perform this operation in an acceptable amount
of time. Learning the structure of Bayesian net-
works is also NP-Complete [1], but here too, heuris-
tic methods have been found to render this operation
tractable.

It is with the latter remark that this paper con-
cerns itself, that is, the learning of the structure of
a Bayesian network from a sample of data. There
are generally two different methods used in this task.
One uses statistical tests to uncover conditional in-
dependencies in the data and then uses these condi-
tional independencies to produce the structure. The
second defines a search on the space of Bayesian net-
works, using a scoring function defined by the im-
plementor, which says how good the network is, rel-

ative to others.
This paper will seek to establish a framework to

help with the scoring function mentioned in the sec-
ond method in the previous paragraph. This frame-
work will allow for the scoring of arbitrary changes
in an equivalence class of Bayesian networks, with
the minimum number of operations necessary. To
this end, the rest of this paper will be structured in
the following fashion.

Firstly, there will be a more in depth study of the
problem of searching for an optimum Bayesian net-
work, in both the space of Bayesian networks them-
selves and of equivalence classes of Bayesian net-
works. Then, a new method of scoring moves in the
state space will be introduced, together with its mo-
tivation, benefits, consequences and implementation
details. This algorithm will be analysed to prove its
validity and to discover its complexity. Next, results
of tests against other scoring methods will be dis-
cussed and finally, any conclusions and possible fu-
ture directions will be stated.

2 Searching for a Bayesian Network
Structure

To start out this section, some definitions and nota-
tion are introduced.

A graphG is given as a pair(V,E), whereV =
{v1, . . . ,vn} is the set of vertices or nodes in the
graph andE is the set of edges or arcs between the
nodes inV. A directed graph is a graph where all the
edges have an associated direction from one node to
another. A directed acyclic graph or DAG, is a di-
rected graph, without any cycles, i.e. it is not possi-
ble to return to a node in the graph by following the
direction of the arcs.

A Bayesian network on a set of variablesV =
{v1, . . . ,vn} is a pair (G ,Θ), whereG = (V,E) is
a DAG andΘ = {θ1, . . . ,θn} is a set of conditional
probability distributions, where eachθi is associated
with eachvi .

In learning a Bayesian network from data, both
the structureG and parametersΘ must be learned,
normally separately. In the case of complete multi-
nomial data, the problem of learning the parameters
is easy, with a simple closed form formula forΘ [7].
However, in the case of learning the structure, no
such formula exists and other methods are needed.
As mentioned in the introduction, there are two main
methods—using conditional independencies learned
from the data and searching through a space of struc-
tures. There can be advantages to both methods but
the structure search method has the important abil-
ity to be able to probabilistically find conditional in-
dependencies, rather then categorically allowing or

denying an edge, based on a statistical test using
an arbitrary confidence value. Also, with structure
search, it is possible to find more than one high rank-
ing network—this allows these various networks to
be combined in a probabilistic model and produce
better answers to queries. For these reasons, we will
focus on the search method here.

Learning the structure of a Bayesian network is
an NP-Hard problem and consequently enumeration
and test of all network structures is not likely to suc-
ceed. In fact with just ten variables there are roughly
1018 possible DAGs, which leaves heuristic search
methods through the space of different structures as
possibly the only tractable solution.

In order to create a space in which to search
through, three components are needed. Firstly all
the possible solutions must be identified as the set of
states in the space. Secondly a representation mech-
anism for each state is needed. Finally a set of op-
erators must be given, in order to move from state to
state in the space.

Traditionally, in searching for a Bayesian net-
work structure, the set of states was the set of possi-
ble Bayesian network structures, the representation
was a DAG and the set of operators were various
small local changes to a DAG, e.g. adding, removing
or reversing an arc. Successful application of the op-
erators was also dependent on the changed graph be-
ing a DAG, i.e. that no cycle was formed in applying
the operator. In keeping with the terminology used
by Chickering this space shall be called B-space [2].

Once the search space has been defined, two
other pieces are needed to complete the search algo-
rithm, a scoring function which evaluates the “good-
ness of fit” of a structure with a set of data and a
search procedure that decides which operator to ap-
ply, normally using the scoring function to see how
good a particular operator application might be. An
example search procedure is greedy search, that at
every stage applies the operator that produces the
best change in the structure, according to the scor-
ing function. As for the scoring function, various
formulæ have been found to see how well a DAG
fits a data sample, e.g. by giving the relative poste-
rior probability [8], or using a large-sample approx-
imation such as the Bayesian information criterion
[7].

3 Searching in the Space of
Equivalence Classes

According to many scoring criterion, there are DAGs
that are equivalent to one another, in the sense that
they will produce the same score as each other.
Looking at this in more depth, it is found that these

Figure 2: An example of a PDAG

equivalent DAGs produce the same set of indepen-
dence constraints as each other, even though the
structures are different. Independence constraints
show how a set of variables are influenced or depen-
dent on another set of variables, given a certain third
set of variables. These constraints can be checked by
analysing the DAG for certain structures. It turns out
according to a theorem by Verma and Pearl that two
DAGs are equivalent iff they have the same skele-
tons and the same v-structures [12]. By skeleton is
meant the undirected graph that results in undirect-
ing all edges in a DAG and by v-structure (some-
times referred to as a morality) is meant a head-to-
head meeting of two arcs, where the tails of the arcs
are not joined. From this notion of equivalence, a
class of DAGs that are equivalent to each other can
be defined, notated here asClass(G).

Because of this apparent redundancy in the space
of DAGs, attempts have been made to conduct the
search for Bayesian network structures in the space
of equivalence classes of DAGs [2, 3, 9]. The search
set of this space is the set of equivalence classes
of DAGs. To represent the states of this set, a dif-
ferent type of structure is used, known as a par-
tially directed acyclic graph (PDAG). A PDAG (an
example of which is shown in Figure 2)is a graph
that contains both undirected and directed edges and
that contains no directed cycles and will be notated
herein asP . Again, the equivalence class of DAGs
corresponding to a PDAG is denoted asClass(P),
with a DAG G ∈ Class(P) iff G and P have the
same skeleton and same set of v-structures. Related
to this is the idea of aconsistent extension. If a DAG
G has the same skeleton and the same set of directed
edges as a PDAGP then it is said thatG is a con-
sistent extension ofP . Not all PDAGs have a DAG
that is a consistent extension of itself. If a consis-
tent extension exists, then it is said that the PDAG
admitsa consistent extension. Only PDAGs that ad-
mit a consistent extension can be used to represent
an equivalence class of DAGs and hence a Bayesian
network.

It turns out that directed edges in a PDAG can
be either compelled, or made to be directed that

way, whilst others are reversible, in that they could
be undirected and the PDAG would still represent
the same equivalence class. From this idea, we can
define a completed PDAG (CPDAG), where every
undirected edge is reversible in the equivalence class
and every directed edge is compelled in the equiva-
lence class. We shall denote a CPDAG asP C . It can
be shown that there is a one-to-one mapping between
a CPDAGP C andClass(P C).

With this representation of equivalence classes of
Bayesian network structures and a set of operators
that modify the PDAGs which represent them (e.g.
Insert an undirected arc, Insert a directed arc etc.),
a search procedure can proceed. But one might ask
why go to the bother of this type of search. Firstly,
an equivalence class can represent many different
DAGs in a single structure. Search in the space of
DAGs often moves between states with the same
equivalence class and so in a sense is wasted effort.
This also affects the connectivity of the search space,
in that the ability to move to a particular neighbour-
ing equivalence class can be constrained by the par-
ticular representation given by a DAG.

There is also the problem given by the prior prob-
ability used in the scoring function in that whilst
searching through the space of DAGs, certain equiv-
alence classes can be over represented by this prior
because there are many more DAGs contained in the
class.

These concerns have motivated researchers with
the results that recent implementations of algorithms
that search through the space of equivalence classes
have produced results that show a marked improve-
ment in execution time and a small improvement in
learning accuracy, depending on the type of data set
[3, 4].

3.1 Techniques for Searching through
Equivalence Classes

Note that here we refer to amoveas an application of
an operator to a particular state in the search space.

To be able to conduct a search through the space
of equivalence classes, a method must be able to find
out whether a particular move is valid and if valid,
how good that move is. These tasks are relatively
easy whilst searching through the space of DAGs—
a check whether a move is valid is equivalent to a
check whether a move keeps a DAG acyclic. The
goodness of such a move is found out by using the
scoring function, but rather then scoring each neigh-
bouring DAG in the search space, the decomposabil-
ity of most scoring criterion can be taken advantage
of, with the result that only nodes whose parent sets
have changed need to be scored.

However, this task of checking move validity and

move score is not as easy in the space of equivalence
classes. For one, instead of just checking for cycles,
checks also have to be made so that unintended v-
structures are not created in a consistent extension
of a PDAG. Scoring a move also creates difficulties,
as it is hard to know what extension and hence what
changes in parent sets of nodes will occur, without
actually performing this extension. Also, a local
change in a PDAGmight make a non-local change
in a corresponding extension and so force unneces-
sary applications of the score function.

These problems were voiced as concerns by
Chickering [2]. In this paper he performs valid-
ity checking of moves by trying to obtain a consis-
tent extension of the resulting PDAG—if none exists
then the move is not valid. Scoring the move was
achieved by scoring the changed nodes in the con-
sistent extension given. These methods were very
generic, but resulted in a significant slowdown in al-
gorithm execution, compared to search in the space
of DAGs.

To alleviate this problem, authors proposed im-
provements that would allow move validity and
move score to be computed without needing to ob-
tain a consistent extension of the PDAG [10, 9, 3].
This was done by defining an explicit set of oper-
ators, with each operator having a validity test and
corresponding score change function, that could be
calculated on the PDAG. These changes resulted in
a speedup of the execution time of the algorithm,
with the result that search in the space of equiva-
lence classes of Bayesian networks became compet-
itive with search in the space of Bayesian networks.
However this improvement came at a price, in that
the set of operators needed to be explicitly defined
beforehand with corresponding validity tests.

4 Generically Scoring a Move in the
State Space of Equivalence Classes of
DAGs

The problem stated at the end of the last section leads
onto the main result in this paper, a method to score a
move in the space of equivalence classes of Bayesian
networks, without having to have an operator and
corresponding scoring function explicitly defined.

The method draws inspiration from the algo-
rithm of Dor and Tarsi in finding consistent exten-
sions of PDAGs and from the work of Chickering in
searching through the space of equivalence classes
of Bayesian networks [6, 3]. The main part of the
search is like other similar search algorithms, in that
it tries to find out which moves are valid and the
scores for these valid moves. It then provides this
information to a function which decides which move

to take. Where the method differs is when it tries to
score a particular move. A move in this sense is a set
of primitive moves taken from a finite list shown in
Table 1. It can be seen that composition of these op-
erators is enough to represent any arbitrary change
in a PDAG.

Before explaining the operation of the method,
some notation will be explained.Pb(X), whereX is
a set of nodes refers to the subgraph ofPb restricted
to the nodes inX. M refers to a move composed of
a set of primitive moves.MXX refers to the set of
nodes inM, restricted to a particular type of primi-
tive move, as given in Table 1.Mx refers to the set
of all thex nodes in the moveM. M(x,y) refers to the
set of all pairs of nodes from each move inM. Pa(x)
stands for the parent set ofx, whilst Nx stands for
the set of neighbours ofx, i.e. the set of node con-
nected tox by undirected arcs. FinallyΩx,y, stands
for Pa(x)∩Ny andΩNx,y stands for(Pa(x)∪Nx)∩Ny.
The implementation of the method is shown in the
algorithmsORIENT-ARCS and SCORE-MOVE. The
ORIENT-ARCS algorithm is similar to theEXTEND

algorithm given by Dor and Tarsi, in that it tries
to find a consistent extension of a PDAG. In this
case however, the extension is limited to a set of
nodes given by the variablesV, V pre f andO. Also
at each iteration, tests and operations are performed
on two PDAGs,Pb andPa, being representations of
the PDAG before and after the application of a valid
move. The fact that undirected arcs are directed in
the same direction in bothPb andPa, helps ensure
that the least number of changes are made in the lo-
cal structure of the extension. The reason that there
are three sets of nodes as opposed to the one set in
EXTEND, is that the different sets correspond to dif-
ferent types of node in the PDAG. The setO consists
of nodes which are not participating in operations on
undirected arcs, but nevertheless can influence the
parent set of the nodes that do participate. For this
reason, nodes inO are the first to be directed away,
if possible, as this reduces the chances of a change
occurring in one of the participating nodes.

The next setV pre f consists of nodes that will be
picked to direct away in preference to nodes inV,
if possible. This is because certain combinations
of moves can by scored on less nodes than normal,
if the participating nodes are merged together into
V pre f. Finally, the setV consists of nodes that par-
ticipate in undirected operations and are not included
in V pre f.

The SCORE-MOVE algorithm is the main algo-
rithm that usesORIENT-ARCS as a subroutine. This
algorithm works by first directing neighbouring arcs
toward new heads in the operations that don’t in-
volve undirected arcs. It then calculates the sets of
nodesV, V pre f and O, by examining all primitive

Operator Set Before After

Insert Undirected MIU
X Y YX

Delete Undirected MDU
YX X Y

Insert Directed MID
X Y X Y

Delete Directed MDD
X Y X Y

Reverse Directed MRD
X Y YX

Direct Arc MDA
YX X Y

Undirect Arc MUA
X Y YX

Table 1: Primitive Operators

moves that involve undirected arcs. Next, it applies
the moveM on Pb to getPa. It then orients the arcs
in Pb andPa, calculates which nodes have different
parents sets in the PDAGs and from this calculates
the score difference between the two PDAGs.

.

5 Proof of Validity

In this section the correctness of the various opera-
tions will be shown, starting with theSCORE-MOVE

algorithm. The proofs developed by Chickering are
used in many cases [3].

5.1 Correctness ofSCORE-MOVE

The correctness of the first three statements in
SCORE-MOVE can be inferred almost directly from
Chickering. In this, necessary and sufficient con-
ditions for the state of the PDAG are given for the
InsertD, DeleteDandReverseDoperators. The only
difference is that inSCORE-MOVE, ΩNx,y is directed
towardy as opposed toΩx,y in Chickering’s proof.
The difference between the former and latter sets is
Nx,y. However,Nx,y can be directed towardy without
causing any cycles or v-structures. Therefore, the
direction ofΩNx,y towardy is sufficient. The reason
for the difference, is that in Chickering’s formula-
tion, Pa(x) 6= Pa(y) for anInsertDoperation.

In defining theV pre f set, it can be seen that if
Mxy

DU ∩Mxy
IU contains elements, say e.g.z, then the

undirected arcs corresponding toMxy
DU andMxy

IU can
be directed towardz in Pb and Pa, if possible and
thus decrease the number of changed nodes. Like-
wise, if the undirected arcs inPb are directed to-

wardMy
DA, this can decrease the number of changed

nodes.
TheV set is defined as containing all the nodes

participating in an operation involving an undirected
arc, less any nodes in theV pre f set.

TheO set is defined as the intersection of all the
neighbours of all the nodes inV ∪V pre f. Because of
this, O contains all nodes connected by undirected
arcs to bothx andy for any operation involving an
undirected arc betweenx andy.

The next two lines are simple function calls,
whilst the line after defines the set of nodes whose
parents have changed. It is obvious that any changes
must include nodes from the setsMy

ID , My
DD, Mxy

RD
and any nodes described as changed by theORIENT-
ARCSalgorithm. Finally, it is seen that the score dif-
ference of a compound move can be described as the
score difference of each of the nodes whose parents
sets have changed.

5.2 Correctness ofORIENT -ARCS

The purpose ofORIENT-ARCS is to direct arcs par-
ticipating in moves involving undirected arcs, so that
a consistent extension can be obtained of nodes in-
volved in those moves. Nodes involved in these
move are contained inV andV pre f, V pre f being used
to aggregate certain moves together for efficiency
purposes. However, in order to achieve this goal,
nodes in the setNx,y, wherex andy and contained
in V ∪V pre f, need to be taken account of, as these
nodes cannot be directed away in bothPb and Pa.
These nodes are contained in setO.

In the running ofORIENT-ARCS, the idea is to se-
lect a node to direct all undirected arcs toward. This

Input: PDAG Pb, PDAGPa, Set of nodesV, Set of nodesV pre f, Set of nodesO
Output: PDAG Pb, PDAGPa, Set of nodes with new parentsC

while V 6= /0||V pre f 6= /0 do
Nodes:= V ∪V pre f ∪O
Let Vmin, V pre f

min andOmin be sets such as follows
Vmin = {x|x∈V∧x has the least number of adjacencies inPb(Nodes) andPa(Nodes), with one adjacency
being counted as zero adjacencies}.
V pre f

min andOmin are defined in similar ways
if Omin 6= /0 then

y∈ Omin

O := O\y
else ifV pre f

min 6= /0 then
y∈V pre f

min
V pre f := V pre f\y
C := C∪y

else
y∈Vmin

V := V\y
C := C∪y

end if
Direct all undirected arcs towardy in Pb andPa

O := O\{z|z∈ O∧Az≡ /0 in Pb(Nodes) andPb(Nodes)}
V pre f := V pre f\{z|z∈V pre f ∧Az≡ /0 in Pb(Nodes) andPa(Nodes)}
V := V\{z|z∈V ∧Az≡ /0 in Pb(Nodes) andPa(Nodes)}

end while

Algorithm 1: orient-arcs

Input: PDAG Pb, Valid compound moveM
Output: Score DifferenceS

In Pb, directΩNx,y towardy, for all pairs(x,y) given byM(x,y)
ID

In Pb, directNy towardy, for all y given byMy
DD

In Pb, directΩy,x towardx, for all pairs(x,y) given byM(x,y)
RD

V pre f := (MDU ∩MIU)∪My
DA

V := (MIU ∪MDU ∪MDA∪MUA)\V pre f

O :=
(⋂

N(V∪V pre f)
)
\
(
V ∪V pre f

)
Pa :=apply moveM on Pb

(Pb,Pa,Cu) := orient-arcs(Pb,Pa,V,V pre f,O)
C := Cu∪My

ID ∪My
DD∪MRD

S:= ∑c∈C

(
scorePb(c)−scorePa(c)

)
Algorithm 2: score-move

proceeds until arcs involving all nodes inV ∪V pre f,
have been dealt with. In selecting a node, care must
be taken that no additional v-structures are formed.
By examining the proof given by Dor and Tarsi [6], it
can be seen that if for a nodex, Ax is a clique, where
Ax are all nodes adjacent tox, thenx is valid. How-
ever, if x is a member of the set of nodes such that
it is adjacent to the least number of nodes in bothPb

andPa, thenAx must be a clique, thereforex can be
selected. Ifx is a member ofV ∪V pre f, then obvi-
ously it is a node whose parent set has changed, sox
is inserted into the setC. Finally, all nodes that are
not adjacent to any other node inPb andPa can be
deleted, as they cannot affect the computation in any
way.

5.3 Complexity of Algorithm

Given that there arek primitive moves in the move
M, there are at most 2k nodes participating in an
undirected move. If there is a boundc on the number
of neighboursNx, then there will be at most(2k+c)
iterations in the loop ofORIENT-ARCS. Given that
the number of adjacencies of a node can be stored
alongside the graph information, the only operations
that must be performed can be done in(2k+c) time.
Therefore the complexity of theORIENT-ARCSalgo-

rithm is in O
(
(k+c)2

)
.

In SCORE-MOVE, all the other operations, apart
from the scoring operations, can be performed in
O(c2) time. Therefore, the total overhead for the al-
gorithm compared to a direct scoring algorithm is in

O
(
(k+c)2

)
.

6 Experimental Results

Some basic experiments were run, the results of
which can be seen in Table 2. This shows the re-
sults of structure searches without a cache on the
ALARM Bayesian network. Samples of various
sizes were taken and run under the different condi-
tions. Here Chickering 02 is a greedy search, using
the operators defined in [3] and GES is the Greedy
Equivalent Search algorithm defined in [4]. “Alg.”
stands for the scoring mechanism defined in the cor-
responding paper and “Frame.” stands for the scor-
ing mechanism that uses the generic scoring frame-
work defined in this paper. As can be seen from the
results, the framework only adds a small amount of
extra time, of which the relative difference tends to
decrease as the sample size increases.

Chickering 02 GES
Samples Alg. Frame. Alg. Frame.

500 263 327 347 425
1000 317 374 454 535
1500 470 535 502 613
2000 489 534 589 654

Table 2: Running times of algorithms in seconds

7 Conclusions

A method was introduced that enables arbitrary
changes in a PDAG representing an equivalence
class of Bayesian networks to be scored. It was
shown that the overhead introduced by this method
compared to directly evaluating changes by an ex-
plicit scoring operator was small. In exchange for
this extra running time, the method offers a more
general framework in which arbitrary changes can
be scored, obviating the need for explicit scor-
ing operators to be defined. This could encourage
more rapid development of algorithms used to learn
Bayesian network structures, bypassing the analysis
and definition of a theory to support each explicit
operator.

One obvious direction in which this work might
proceed is to develop a method that checks the
validity of a proposed change in a PDAG, whilst
also calculating the score of an acceptable change,
all whilst keeping algorithm complexity competitive
with other methods.

Acknowledgments

The authors are grateful to Drs Stuart Aitken and
Richard Jensen for their helpful discussions, whilst
taking full responsibility for the views expressed in
this paper.

References

[1] David M. Chickering. Learning Bayesian net-
works is NP-complete. In D. Fisher and
H. Lenz, editors,Learning from Data: Artifi-
cial Intelligence and Statistics V, chapter 12,
pages 121–130. Springer-Verlag, 1996.

[2] David M. Chickering. Learning equivalence
classes of bayesian network structures. In
Finn Jensen and Eric Horvitz, editors,Proceed-
ings of the Twelfth Conference on Uncertainty
in Artificial Intelligence, pages 150–157, San
Francisco, California, August 1996. Morgan
Kaufmann.

[3] David M. Chickering. Learning equivalence
classes of bayesian-network structures.Jour-
nal of Machine Learning Research, 2:445–498,
February 2002.

[4] David Maxwell Chickering. Optimal struc-
ture identification with greedy search.Jour-
nal of Machine Learning Research, 3:507–554,
November 2002.

[5] Paul Dagum and Michael Luby. Approximat-
ing probabilistic inference in bayesian belief
networks is np-hard. Artificial Intelligence,
60(1):141–154, March 1993.

[6] Dorit Dor and Michael Tarsi. A simple al-
gorithm to construct a consistent extension of
a partially oriented graph. Technical Report
R-185, Cognitive Systems Laboratory, Depart-
ment of Computer Science, UCLA, 1992.

[7] David Heckerman. A tutorial on learning with
Bayesian networks. Technical Report MSR-
TR-95-06, Microsoft Research, 1995.

[8] David Heckerman, Dan Geiger, and David M.
Chickering. Learning Bayesian networks: The
combination of knowledge and statistical data.
Machine Learning, 20(3):197–243, September
1995.

[9] Paul Munteanu and Mohamed Bendou. The
EQ framework for learning equivalence classes
of Bayesian networks. InProceedings of
the 2001 IEEE International Conference on
Data Mining, pages 417–424, Washington,
DC, USA, 2001. IEEE Computer Society.

[10] Paul Munteanu and Denis Cau. Efficient
score-based learning of equivalence classes of
bayesian networks. In Djamel A. Zighed, Hen-
ryk J. Komorowski, and Jan M. Zytkow, ed-
itors, Proceedings of the 4th European Con-
ference on the Principles of Data Mining and
Knowledge Discovery, PKDD 2000, volume
1910 of Lecture Notes in Computer Science,
pages 96–105. Springer-Verlag, Heidelberg,
2000.

[11] Solomon Eyal Shimony. Finding maps for
belief networks is NP-hard.Artificial Intelli-
gence, 68(2):399–410, August 1994.

[12] Thomas Verma and Judea Pearl. Equivalence
and synthesis of causal models. In Piero Bonis-
sone, Max Henriona, Laveen Kanal, and John
Lemmer, editors,Proceedings of the 6th An-
nual Conference on Uncertainty in Artificial
Intelligence, pages 255–268, New York, 1991.
Elsevier.

	Introduction
	Searching for a Bayesian Network Structure
	Searching in the Space of Equivalence Classes
	Techniques for Searching through Equivalence Classes

	Generically Scoring a Move in the State Space of Equivalence Classes of DAGs
	Proof of Validity
	Correctness of score-move
	Correctness of orient-arcs
	Complexity of Algorithm

	Experimental Results
	Conclusions

