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A method is proposed, whereby a particular
application of an operator, applied to a struc-
ture representing a Bayesian network equiv-
alence class can be scored in a generic fash-
ion. This is achieved by representing a par-
ticular compound operator in terms of a fi-
nite set of primitive operators and finding
the score of the compound operator through
the influence of the primitive operators on
the equivalence class. This method could be
used in a Bayesian network structure learning
framework which allows arbitrary definition
of operators at runtime, by the composition
of primitive operators.
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1 Introduction

The task of learning Bayesian networks from data Figure 1: An example Bayesian network
has, in a relatively short amount of time, become a
mainstream application in the process of knowledge
discovery and model building. The reasons for thiscan answer any probabilistic question put to it.
are many. Finally, the popularity of Bayesian networks has
For one, the model built by the process has an in-been increased by the accessibility of methods to
tuitive feel—this is because Bayesian networks con-both query the model and learn both the structure
sist of a directed acyclic graph (DAG), with condi- and parameters of the network. It has been shown
tional probability tables annotating each node. Eachthat inference in Bayesian networks is NP-Complete
node in the graph represents a variable of interes|5} [11], but approximate methods have been found
in the problem domain and the arcs can (with someto perform this operation in an acceptable amount
caveats) be seen to represent causal relations bef time. Learning the structure of Bayesian net-
tween these variables—the nature of these causalorks is also NP-Complet&l[1], but here too, heuris-
relations is governed by conditional probability ta- tic methods have been found to render this operation
bles associated with each node/variable. An examiractable.
ple Bayesian network is shown at Figfife 1. It is with the latter remark that this paper con-
Another reason for the usefulness of Bayesiancerns itself, that is, the learning of the structure of
networks is that aside from the visual attractivenessa Bayesian network from a sample of data. There
of the model, the underlying theory is quite well un- are generally two different methods used in this task.
derstood and has a solid foundation. A Bayesian netOne uses statistical tests to uncover conditional in-
work can be seen as a factorisation of a joint prob-dependencies in the data and then uses these condi-
ability distribution, with the conditional probability tional independencies to produce the structure. The
distributions at each node making up the factors andgecond defines a search on the space of Bayesian net-
the graph structure making up their method of com-works, using a scoring function defined by the im-
bination. Because of this equivalence, the networkplementor, which says how good the network is, rel-



ative to others. denying an edge, based on a statistical test using
This paper will seek to establish a framework to an arbitrary confidence value. Also, with structure
help with the scoring function mentioned in the sec-search, it is possible to find more than one high rank-
ond method in the previous paragraph. This frame4ng network—this allows these various networks to
work will allow for the scoring of arbitrary changes be combined in a probabilistic model and produce
in an equivalence class of Bayesian networks, withbetter answers to queries. For these reasons, we will
the minimum number of operations necessary. Tofocus on the search method here.
this end, the rest of this paper will be structured in  Learning the structure of a Bayesian network is
the following fashion. an NP-Hard problem and consequently enumeration
Firstly, there will be a more in depth study of the and test of all network structures is not likely to suc-
problem of searching for an optimum Bayesian net-ceed. In fact with just ten variables there are roughly
work, in both the space of Bayesian networks them-10'® possible DAGs, which leaves heuristic search
selves and of equivalence classes of Bayesian nemethods through the space of different structures as
works. Then, a new method of scoring moves in thepossibly the only tractable solution.
state space will be introduced, together with its mo-  In order to create a space in which to search
tivation, benefits, consequences and implementatiothrough, three components are needed. Firstly all
details. This algorithm will be analysed to prove its the possible solutions must be identified as the set of
validity and to discover its complexity. Next, results states in the space. Secondly a representation mech-
of tests against other scoring methods will be dis-anism for each state is needed. Finally a set of op-
cussed and finally, any conclusions and possible fuerators must be given, in order to move from state to

ture directions will be stated. state in the space.
Traditionally, in searching for a Bayesian net-
2 Searching for a Bayesian Network work structure, the set of states was the set of possi-
Structure ble Bayesian network structures, the representation

was a DAG and the set of operators were various
small local changes to a DAG, e.g. adding, removing
or reversing an arc. Successful application of the op-
erators was also dependent on the changed graph be-
ing a DAG, i.e. that no cycle was formed in applying
the operator. In keeping with the terminology used

To start out this section, some definitions and nota
tion are introduced.

A graph G is given as a paitV,E), whereV =
{v1,...,vn} is the set of vertices or nodes in the
graph anck is the set of edges or arcs between the . ; i
nodes inV. A directed graph is a graph where all the by Chickering this space shall be called B—space [2].
edges have an associated direction from one node to ONce the search space has been defined, two
another. A directed acyclic graph or DAG, is a di- o_ther pieces are neec_ied to _complete the search algo-
rected graph, without any cycles, i.e. it is not possi_rlthm, a scoring function which evaluates the “good-

ble to return to a node in the graph by following the N€SS Of fit” of a structure with a set of data and a
direction of the arcs. search procedure that decides which operator to ap-

A Bayesian network on a set of variabls= ply, normally using the scoring function to see how
{Vi,...,Va} is a pair(G,0), where G = (V,E) is good a particular operator application might be. An
a2 DAG ando — {6n,... 79n}, is a set of conditional €Xa@mple search procedure is greedy search, that at

probability distributions, where eaghis associated €VeTY Stage applies the operator that produces the
with eachv:. best change in the structure, according to the scor-

In learning a Bayesian network from data, both ing function. As for the scoring function, various
the structureG and parameter® must be learned, formulee have been found to see how well a DAG
normally separately. In the case of complete multi-fitS @ data sample, e.g. by giving the relative poste-
nomial data, the problem of learning the parameterdi©r Probability [€], or using a large-sample approx-
is easy, with a simple closed form formula f@r7]. imation such as the Bayesian information criterion
However, in the case of learning the structure, noll-
such formula exists and other methods are needed. o
As mentioned in the introduction, there are twomain3 ~ Searching in the Space of
methods—using conditional independencies learned  Equivalence Classes
from the data and searching through a space of struc-
tures. There can be advantages to both methods btccording to many scoring criterion, there are DAGs
the structure search method has the important abilthat are equivalent to one another, in the sense that
ity to be able to probabilistically find conditional in- they will produce the same score as each other.
dependencies, rather then categorically allowing orLooking at this in more depth, it is found that these



way, whilst others are reversible, in that they could
be undirected and the PDAG would still represent
the same equivalence class. From this idea, we can
define a completed PDAG (CPDAG), where every
undirected edge is reversible in the equivalence class
and every directed edge is compelled in the equiva-
lence class. We shall denote a CPDAGRS It can
be shown that there is a one-to-one mapping between
a CPDAGPC andClasgP©).

With this representation of equivalence classes of
Bayesian network structures and a set of operators
that modify the PDAGs which represent them (e.g.

eduiva|en[ DAGs produce the same set of indepenlnsert an undirected arc, Insert a directed arc etc.),
dence constraints as each other, even though the search procedure can proceed. But one might ask
structures are different. Independence constraint§hy go to the bother of this type of search. Firstly,
show how a set of variables are influenced or depenan equivalence class can represent many different
dent on another set of variables, given a certain third®AGs in a single structure. Search in the space of
set of variables. These constraints can be checked bPAGs often moves between states with the same
analysing the DAG for certain structures. It turns out €quivalence class and so in a sense is wasted effort.
according to a theorem by Verma and Pearl that twoT his also affects the connectivity of the search space,
DAGs are equivalent iff they have the same skele-in that the ability to move to a particular neighbour-
tons and the same v-structurési[12]. By skeleton igng equivalence class can be constrained by the par-
meant the undirected graph that results in undirecticular representation given by a DAG.

ing all edges in a DAG and by v-structure (some-  Thereis also the problem given by the prior prob-
times referred to as a mora”ty) is meant a head-to.ab“ity used in the Scoring function in that whilst
head meeting of two arcs, where the tails of the arcs$earching through the space of DAGs, certain equiv-
are not joined. From this notion of equivalence, aalence classes can be over represented by this prior
class of DAGs that are equivalent to each other carPecause there are many more DAGs contained in the
be defined, notated here @kasg G). class.

Because of this apparent redundancy inthe space These concerns have motivated researchers with
of DAGs, attempts have been made to conduct thdhe results that recent implementations of algorithms
search for Bayesian network structures in the spacéhat search through the space of equivalence classes
of equivalence classes of DAGS [2[3, 9]. The searcthave produced results that show a marked improve-
set of this space is the set of equivalence classeBent in execution time and a small improvement in
of DAGs. To represent the states of this set, a dif-learning accuracy, depending on the type of data set
ferent type of structure is used, known as a par-[3./4].
tially directed acyclic graph (PDAG). A PDAG (an ) )
example of which is shown in Figufg 2)is a graph 3.1 Techniques for Searching through
that contains both undirected and directed edges and ~ EQuivalence Classes

that contains no directed cycles and will be notated o
herein agP. Again, the equivalence class of DAGs Note that here we refer toraoveas an application of

corresponding to a PDAG is denoted Gisg ?), an operator to a particular state in the search space.

with a DAG G € Clasg®P) iff G and® have the To be able to conduct a search through the space
same skeleton and same set of v-structures. Relatedf €guivalence classes, amethod must be able to find
to this is the idea of aonsistent extensioff a DAG Ut whether a particular move is valid and if valid,
G has the same skeleton and the same set of directddPW 9ood that move is. These tasks are relatively
edges as a PDA®@ then it is said thaij is a con-  €2SY whilst searching through the space of DAGs—
sistent extension aP. Not all PDAGs have a DAG @ check whether a move is valid is equivalent to a
that is a consistent extension of itself. If a consis-CNeck whether a move keeps a DAG acyclic. The
tent extension exists, then it is said that the PDAGI00dness of such a move is found out by using the

admitsa consistent extension. Only PDAGs that ad-S¢0ring function, but rather then scoring each neigh-
houring DAG in the search space, the decomposabil-

mit a consistent extension can be used to represer ¢ ) - K
an equivalence class of DAGs and hence a BayesiaHy of most scoring criterion can be taken advantage

network. of, with the result that only nodes whose parent sets

It turns out that directed edges in a PDAG can@ve changed need to be scored. -
be either compelled, or made to be directed that However, this task of checking move validity and

Figure 2: An example of a PDAG



move score is not as easy in the space of equivalenc® take. Where the method differs is when it tries to
classes. For one, instead of just checking for cyclesscore a particular move. A move in this sense is a set
checks also have to be made so that unintended wef primitive moves taken from a finite list shown in
structures are not created in a consistent extensiomable[]. It can be seen that composition of these op-
of a PDAG. Scoring a move also creates difficulties, erators is enough to represent any arbitrary change
as itis hard to know what extension and hence whain a PDAG.
changes in parent sets of nodes will occur, without = Before explaining the operation of the method,
actually performing this extension. Also, a local some notation will be explained,(X), whereX is
change in a PDAGnight make a non-local change a set of nodes refers to the subgraptPpfestricted
in a corresponding extension and so force unnecego the nodes irX. M refers to a move composed of
sary applications of the score function. a set of primitive movesMxx refers to the set of

These problems were voiced as concerns bynodes inM, restricted to a particular type of primi-
Chickering [2]. In this paper he performs valid- tive move, as given in Tab[g IM* refers to the set
ity checking of moves by trying to obtain a consis- of all thex nodes in the movié1. M*Y) refers to the
tent extension of the resulting PDAG—if none exists set of all pairs of nodes from each moveMh Pa(x)
then the move is not valid. Scoring the move wasstands for the parent set &f whilst Ny stands for
achieved by scoring the changed nodes in the conthe set of neighbours of, i.e. the set of node con-
sistent extension given. These methods were veryected tax by undirected arcs. FinallQy, stands
generic, but resulted in a significant slowdown in al- for Pa(x) NNy andQNy y stands fofPa(x) UNy) NNy.
gorithm execution, compared to search in the spac@he implementation of the method is shown in the
of DAGSs. algorithmsoRIENT-ARCS and SCOREMOVE. The

To alleviate this problem, authors proposed im- ORIENT-ARCS algorithm is similar to theeXTEND
provements that would allow move validity and algorithm given by Dor and Tarsi, in that it tries
move score to be computed without needing to ob-to find a consistent extension of a PDAG. In this
tain a consistent extension of the PDAGI[LD| B, 3]. case however, the extension is limited to a set of
This was done by defining an explicit set of oper- nodes given by the variablag VP andO. Also
ators, with each operator having a validity test andat each iteration, tests and operations are performed
corresponding score change function, that could beon two PDAGSs,B, and P, being representations of
calculated on the PDAG. These changes resulted ithe PDAG before and after the application of a valid
a speedup of the execution time of the algorithm,move. The fact that undirected arcs are directed in
with the result that search in the space of equiva-the same direction in boti#, and 2, helps ensure
lence classes of Bayesian networks became compethat the least number of changes are made in the lo-
itive with search in the space of Bayesian networks.cal structure of the extension. The reason that there
However this improvement came at a price, in thatare three sets of nodes as opposed to the one set in
the set of operators needed to be explicitly definedeXTEND, is that the different sets correspond to dif-

beforehand with corresponding validity tests. ferent types of node in the PDAG. The §&tonsists
of nodes which are not participating in operations on
4 Generically Scoring a Move in the undirected arcs, but nevertheless can influence the
State Space of Equivalence Classes of parent set of the nodes that do participate. For this
DAGS reason, nodes i@ are the first to be directed away,

if possible, as this reduces the chances of a change
ccurring in one of the participating nodes.

The next seV P consists of nodes that will be
cked to direct away in preference to nodesvin
possible. This is because certain combinations
of moves can by scored on less nodes than normal,
AR if the participating nodes are merged together into
The method draws inspiration from the algo-  pref Finally, the seV consists of nodes that par-

rithm of Dor and Tarsi in finding consistent exten- ticipate in undirected operations and are notincluded
sions of PDAGs and from the work of Chickering in . \?pref P

searching through the space of equivalence classes
of Bayesian networks [6,/ 3]. The main part of the
search is like other similar search algorithms, in that
it tries to find out which moves are valid and the . . s

. . . toward new heads in the operations that don't in-
scores for these valid moves. It then provides this

; ) . . . . volve undirected arcs. It then calculates the sets of
information to a function which decides which move ref L L
nodesV, VP®" and O, by examining all primitive

The problem stated at the end of the last section lead®
onto the main result in this paper, a method to score a i
move in the space of equivalence classes of Bayesiaﬁj
networks, without having to have an operator and
corresponding scoring function explicitly defined.

The sCOREMOVE algorithm is the main algo-
rithm that use®©RIENT-ARCS as a subroutine. This
algorithm works by first directing neighbouring arcs



] Operator | Set | Before | After \

!

Insert Undirected| My

2

Delete Undirected Mpy

!

Insert Directed | Mp

®
®

Delete Directed | Mpp

Reverse Directed] Mrp

Direct Arc Mpa

099
09

Undirect Arc Mua

Table 1: Primitive Operators

moves that involve undirected arcs. Next, it appliesward M‘[’,A, this can decrease the number of changed
the moveM on A, to getP,. It then orients the arcs nodes.
in B, and P,, calculates which nodes have different  TheV set is defined as containing all the nodes
parents sets in the PDAGs and from this calculategparticipating in an operation involving an undirected
the score difference between the two PDAGs. arc, less any nodes in the""® set.
The O set is defined as the intersection of all the
neighbours of all the nodes ihuVP™ef. Because of
5 Proof of Validity this, O contains all nodes connected by undirected
arcs to bothx andy for any operation involving an

In this section the correctness of the various operatindirected arc betweenandy.

tions will be shown, starting with thecorReMOVE The next two lines are simple function calls,

algorithm. The proofs developed by Chickering arewhilst the line after defines the set of nodes whose

used in many cases|[3]. parents have changed. It is obvious that any changes
must include nodes from the sew,, MYy, M5

5.1 Correctness 0fSCORE-MOVE and any nodes described as changed bythiENT-

ARcsalgorithm. Finally, it is seen that the score dif-
The correctness of the first three statements irference of a compound move can be described as the
SCOREMOVE can be inferred almost directly from score difference of each of the nodes whose parents
Chickering. In this, necessary and sufficient con-sets have changed.
ditions for the state of the PDAG are given for the
InsertD, DeleteDandReverseperators. Theonly 5.2 Correctness oORIENT-ARCS
difference is that ilsCOREMOVE, QNyy is directed
towardy as opposed t@X,y in Chickering's proof. The purpose oDRIENT-ARCS is to direct arcs par-
The difference between the former and latter sets idicipating in moves involving undirected arcs, so that
Nyy. HoweverNy, can be directed towargwithout @ consistent extension can be obtained of nodes in-
causing any cycles or v-structures. Therefore, thevolved in those moves. Nodes involved in these
direction ofQNyy towardy is sufficient. The reason Move are contained v andV pref v Pref heing used
for the difference, is that in Chickering’s formula- t0 aggregate certain moves together for efficiency

tion, Pa(x) # Pa(y) for anInsertDoperation. purposes. However, in order to achieve this goal,
In defining theVPef set, it can be seen that if nodes in the sely, wherex andy and contained

My, "M} contains elements, say e.g, then the NV UVPref need to be taken account of, as these
undirected arcs correspondinghtf), andM; can  nodes cannot be directed away in bathand Za.
be directed toward in B, and s, if possible and These nodes are contained in €et

thus decrease the number of changed nodes. Like- Intherunning ofoRIENT-ARCS, the ideais to se-
wise, if the undirected arcs if, are directed to- lecta node to direct all undirected arcs toward. This



Input: PDAG B, PDAG 2, Set of node¥, Set of node¥ P!, Set of node®©
Output: PDAG B, PDAG P, Set of nodes with new parer@s
while V # 0||VPeT £ 0 do
Nodes=VuUVPeiyo
Let Vinin, V,2re T andOmin be sets such as follows
Vmin = {X|X € V Ax has the least number of adjacencie®i(N odeg and?,;(Nodes, with one adjacency
being counted as zero adjacengies
VP! andOpin are defined in similar ways
if Omin # 0 then
Y € Omin
0:=0\y
else ifve" £ 0 then
yeyh!
Vpretﬂ;:\/pref\y
C:=Cuy
else
Y € Vmin
V:=V\y
C.=Cuy
end if
Direct all undirected arcs towagdin B, and P,
0:=0\{7ze OAA,=0in B,(Nodes andB,(Nodes}
vpref.—ypref\ (717 c vPref A A, = 0in By(Nodes andPa(Nodes}
V:=V\{zzeVAA,=0in B,(Nodeg andP;(Nodes}
end while

Algorithm 1: orient-arcs

Input: PDAG B, Valid compound mové/

Output: Score Difference&
In B, directQN,, towardy, for all pairs(x,y) given byM%Y
In By, directNy towardy, for all y given byMp,
In B, directQy, towardx, for all pairs(x,y) given byMZY)
ypref.— (MDU N My ) U M%A
V= (M|U UMpuy UMpaU MUA) \Vpref
0:=(NNpyomer) \ (VUVP)
P, :=apply moveM on B,
(Py, P5,Cy) = orient-arc$®,, P5,V,VPef O)
C:=CyUM{p UMYy UMgp
S:= Y ccc (Scorey, (c) — scorep, (C))

Algorithm 2: score-move




proceeds until arcs involving all nodes\tu Vv Pef, Chickering 02 GES
have been dealt with. In selecting a node, care must | Samples|| Alg. \ Frame.| Alg. \ Frame.
be taken that no additional v-structures are formed. 500 263 327 347 425
By examining the proof given by Dor and Taisi [6], it 1000 317 374 454 535
can be seen that if for a noaeAy is a clique, where 1500 || 470 | 535 | 502 | 613
Ay are all nodes adjacent g thenx is valid. How- 2000 || 489 | 534 | 589 | 654

ever, ifx is a member of the set of nodes such that
it is adjacent to the least number of nodes in bBth
and?P,, thenAy, must be a clique, therefosecan be
selected. Ifx is a member oV UV P!, then obvi-
ously it is a node whose parent set has changex, so .
is inserted into the s&@. Finally, all nodes that are 7 Conclusions
not adjacent to any other node # and 7, can pe A method was introduced that enables arbitrary
deleted, as they cannot affect the computation in any . . .
changes in a PDAG representing an equivalence
way. .
class of Bayesian networks to be scored. It was
shown that the overhead introduced by this method
compared to directly evaluating changes by an ex-
plicit scoring operator was small. In exchange for

M, there are at mostk2nodes participating in an this extra running ti_me, t_he met_hod offers a more
undirected move. If there is a boundn the number ~ 9€neral framework in which arbitrary changes can

of neighbours\y, then there will be at mosek -+ c) _be scored, obviating t.he need. for explicit scor-
iterations in the loop 0BRIENT-ARCS. Given that Nd Operators to be defined. This could encourage

the number of adjacencies of a node can be store'°'€ rapid development of algorithms used to leam
alongside the graph information, the only operationsB@yesian network structures, bypassing the analysis
that must be performed can be doné2k -+ c) time. and definition of a theory to support each explicit

Therefore the complexity of theRIENT-ARCSalgo- ~ OPerator. S _ _
. . 2 One obvious direction in which this work might
rithmis inO ((k+c) )

_ proceed is to develop a method that checks the
In SCOREMOVE, all the other operations, apart yajidity of a proposed change in a PDAG, whilst
from the scoring operations, can be performed ingiso calculating the score of an acceptable change,

O(c?) time. Therefore, the total overhead for the al- 4| whilst keeping algorithm complexity competitive
gorithm compared to a direct scoring algorithm is in \yith other methods.

o((k+ c)2>.

Table 2: Running times of algorithms in seconds

5.3 Complexity of Algorithm

Given that there ark primitive moves in the move
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