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A Scenario Driven Decision Support System

for Serious Crime Investigation

Qiang Shen∗, Jeroen Keppens†, Colin Aitken‡, Burkhard Schafer§, and Mark Lee¶

Abstract

Consideration of a wide range of plausible crime scenarios during any crime investigation is important to

seek convincing evidence and hence to minimise the likelihood of miscarriages of justice. It is equally important

for crime investigators to be able to employ effective and efficient evidence collection strategies that are likely

to produce the most conclusive information under limited available resources. An intelligent decision support

system that can assist human investigators by automatically constructing plausible scenarios and reasoning with

the likely best investigating actions will clearly be very helpful in addressing these challenging problems. This

paper presents a system for creating scenario spaces from given evidence, based on an integrated application of

techniques for compositional modelling and Bayesian network-based evidence evaluation. Methods of analysis

are also provided by the use of entropy to exploit the synthesised scenario spaces in order to prioritise investigat-

ing actions and hypotheses. These theoretical developments are illustrated by realistic examples of serious crime

investigation.

Keywords: Crime investigation; Decision support; Scenario generation; Scenario fragments; Bayesian networks;

Evidence evaluation; Conditional independence; System architecture; Entropy.

1 Introduction

In the criminal justice system, practitioners from highly diverse backgrounds and professional cultures, including

police, crime scene examiners, scientists, medical examiners, legal professionals, policy makers and researchers,

have to interact on a recurrent basis. As a result, crime investigations take place at the intersection of numerous

and often conflicting demands by the various stake-holders. The heterogeneity of these multi-disciplinary groups

poses serious challenges. Some of the core issues involved in the crime scene to court process are the understand-

ing, integration and communication of the different spheres of knowledge, concepts and experience – concepts
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and experiences which will not always match. For a scientist, two blood samples either match or do not match,

regardless of whether the samples were obtained with or without the appropriate warrant. The need for the police

to stay within budgetary constraints in their work is only partly recognised in the law of evidence. Computer tech-

nology has the potential of facilitating cross disciplinary communication, first by making underlying assumptions

and procedures explicit, and second by facilitating access to the relevant expert knowledge by the non-expert.

Previous investigations into the analysis of high profile miscarriages of justice in the 1980s, as reported in

numerous papers (e.g. [7, 14, 26]), have led to an interesting finding: Many of these cases may be understood

as a clash between professional cultures and their respective reward structures. Scientists, to some extent at least,

adhere to a falsificationist model of inquiry. In this approach, conflicting explanations of the available evidence

are actively sought and then eliminated in a process of rigorous testing. Police investigators by contrast, tend to

formulate a case theory at a very early stage of an investigation, and then try inductively to confirm that theory to

an extent high enough to convince the prosecution service to indict the suspect. This can lead to a situation where

exculpating evidence is overlooked [10].

To help address this problem, a computer-aided tool that makes use of human knowledge for crime investigation

has been built, which ensures as complete a space of likely cases as possible to be considered [22]. This work was

inspired by solutions developed for the diagnosis of complex physical systems [12]. It involves two conceptually

distinct stages. In the first,constructivestage, the computer system develops abductively, on the basis of the

established facts, a range of alternative explanations to the case theory of the investigator. All of these should

account equally for the available evidence. The aim is to keep track of alternative explanations of the evidence

and to remind the investigating officer that not all avenues of inquiry have as yet as been exhausted. In the second,

critical stage, the system suggests which additional tests and inquiries can be carried out to decide between the

different explanations. For this, it deduces what other facts would be expected to be found if the respective theories

were true. Of particular interest are those facts that are inconsistent with an investigating hypothesis, thereby

helping to eliminate provably wrong explanations.

The most intuitive illustration of this idea is, perhaps, through the exploitation of the concept ofalibi. Suppose

that the evidence which triggers the investigation is the discovery of the body of Smith, with a knife in his back.

The preferred police hypothesis is that Jones stabbed Smith. While this would explain how the evidence was

created, everything found so far may still be consistent with the guilt of an alternative suspect, Miller. In the first

stage, the system builds these two alternative explanations for the evidence discovered. From the hypothesis of the

guilt of Jones, and based on the pathological report and general knowledge about the world and causal relations

within it, it follows deductively that Jones must have been near Smith within a specific time interval. If it can be

established that Jones had an alibi for the time interval in question, then this new fact would be inconsistent with

the assumption of his guilt. This is again based on general world knowledge that indicates that no object can be at

two places at the same time. Ascertainment of the truth of Jones’ alibi provides therefore more information than
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any evidence that ties him to the dead, from his DNA on the crime scene to his fingerprints on the knife or the

threats he uttered against Smith the night before. The investigating action that the system will recommend is the

strength of Jones’ alibi.

This work assumes that Jones either has or does not have an alibi. If he has a true alibi (i.e., he was truly

elsewhere at the time of the crime), pure logic dictates that the assumption of his guilt is falsified. It is then not

necessary to calculate the relative weight of the evidence that supported the hypothesis that he was the perpetrator.

Therefore, it is not necessary either to weigh the evidence that supports his alibi. The underlying world view is

that of anave physicist: the world consists of objects that impose causal effects on each other. It is possible to

reason scientifically about these causal relations without any need of a mathematical framework. This approach

has didactical, legal and computational advantages. Computationally, it keeps the system simple. Didactically, it

transfers from the scientific sphere those modes of thought that prior analysis has found to be most desirable in

the spheres of police work and court proceedings, without requiring more than that which is absolutely necessary

for that purpose. Thinking in numbers does not come naturally to lawyers, and the mathematical nature of modern

sciences seems to be one of the biggest stumbling blocks for interdisciplinary discourse [11]. Legally, assigning

probabilistic values to individual pieces of evidence poses the danger of trespassing into the territory of the jury. By

avoiding this type of evidence weighting altogether, lawyers could take the results provided by the system directly

for the preparation of their case, without having to worry about procedural constraints.

However, the example of the alibi can also help to illustrate the self-imposed limitations of this approach, as

the work is restricted in terms of practical relevance and applicability. Assume that there are again two competing

explanations for the evidence found on the crime scene. According to the first case theory, Jones, a burglar, entered

through a window overlooking the back garden, was surprised by the house owner Smith, stabbed him and killed

him. According to the second theory, Miller and Smith entered into a fight over the rent. A struggle ensued

during which Miller grabbed a kitchen knife and killed Smith. If the first theory is correct, there is a certain

probability that pollen from the garden are on Jones’ clothes. There is also a certain probability that fibres from

his clothes are found on the window frame. If either pollen or fibres are found, the hypothesis is strengthened;

their absence weakens the hypothesis. Similarly, if the second theory is correct, there is a chance that fibres from

Miller can be found on Smith and fibres from Smith’s clothes can be found on Miller. Consequently, there are four

different tests that an investigating officer could request: pollen on Jones’ clothes, fibres from Jones’ clothes on the

window frame, fibres from Miller’s clothes on Smith, fibres from Smith’s clothes on Miller. Which one should be

prioritised? From which could the most be learned? Note that there are two different suspects, Jones and Miller,

depending on which hypothesis is under investigation.

The system initially conceived could not answer these questions as they require reasoning about the respective

strengths of different types of evidence. However, guidance to police officers in this sort of scenario has gained

particular relevance through the introduction of actuarial methods in modern policing. As noticed above, police
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investigations are subject to demands by various stake-holders that are often conflicting. Since the 1980s, mana-

gerial constraints on the police have increased considerably with the introduction of the internal market in forensic

services [20, 21]. Cost constraints are therefore one of the parameters that can influence the decision making by

an investigative officer. Yet, at the same time evidentiary constraints remain in place, and failure to carry out, for

cost reasons alone, tests that have, scientifically, a good chance of exculpating a suspect may well jeopardize later

prosecutions. It is therefore important that police officers are able to justify their investigating choices through

sound scientific reasons, as much as managerial ones.

To enable the existing approach to support this type of decision making, it becomes necessary to increase its

expressive power by combining theassumption-based truth maintenancetechnique [6] that has been used initially

in building the software system with a representation capable of reasoning with probabilities. Assumption-based

truth maintenance involves efficient tracking of the assumptions under which logical inferences are derived. This

makes it easy to determine what may be inferred under which assumptions and what combinations of assumptions

may lead to inconsistent reasoning results. The reminder of this paper shows in more technical detail how this is

achieved.

It is important to remember though the context for which this work is developed. The intended application is to

assist a police investigator to make, under uncertainty, decisions on how to reduce this uncertainty, how to optimise

his so-called “information acquisition strategy”. The primary aim is not to assist him in deciding whether or not

the evidence against a suspect is sufficient, but in how to find that evidence in the first place. This is a categorically

different scenario from that faced by evidence evaluation in court. See [13] for an example of network analysis

for evidence evaluation and, also, the historical evidence available and not known, or used, at the time of the

trial. There, all relevant investigating actions have typically been carried out, and the issue is to decide on the

basis of the results of these actions if they prove the defendant’s guilt to the required standards. In framing the

problem considered herein as a question for information theory – how best to increase available information on the

basis of already available evidence – basic concepts from information theory, in particular the concept of entropy,

are adopted in developing the present work. As will be seen later, this approach to the investigation of a crime

is not applicable for the evaluation of evidence because of its reliance on judgements about the probabilities of

propositions.

The rest of this paper is organised as follows. The next section provides a brief overview of the underlying

method taken for evidence investigation, setting the background for the present research. Section 3 shows the

architecture of the proposed decision support system. Section 4 introduces the specific concepts employed and

describes how different scenarios can be created systematically given evidence and generic domain knowledge.

Section 5 presents the approach to analysing generated scenario spaces, with a focus on computing evidence

collection strategies using entropy measures. The final section concludes the paper and points out further work.

For convenience, the Appendix lists the notations used with explanations.

4



2 Bayesian Networks for Evidence Investigation

In order to produce effective evidence investigation strategies, a method is required to evaluate the informative

value of a piece of evidence. As argued in [23], a wide range of methodologies have been devised for this purpose.

The present work will employ Bayesian belief propagation to investigate evidence. This is because there is a

substantial body of research on forensic statistics in which Bayesian networks (BN) are developed as probabilistic

expert systems for evaluating specific types of forensic evidence [1, 24]. Therefore, this section presents a brief

overview of this existing methodology.

Briefly, the method [8] for applying the Bayesian approach to evaluating a piece of forensic evidencee follows

the following procedure:

1. Identify theprosecution positionpprosecution. This may be the case of a prosecution attorney after the invest-

igation or a hypothesis of the forensic scientist or crime investigator.

2. Identify thedefence positionpdefence. This may be the case of the defence attorney, an explanation of a

suspect, a presumed “best defence”, or a hypothesis of the forensic scientist or crime investigator.

3. Build a model to compute the probabilityP (e | pprosecution) of the given piece of evidence being true in the

prosecution scenario, and another to compute the probabilityP (e | pdefence) of obtaining the given piece of

evidence in the defence scenario. One approach to modelling these probabilities is to use BNs. BNs describe

how the probability of the evidence of interest is affected by causes within and outside of the prosecution

and defence scenarios.

4. Calculate thelikelihood ratio:

LR =
P (e | pprosecution)
P (e | pdefence)

(1)

The ratio in (1) gives the value of the probability of the evidence if the prosecutions scenario is true relative

to the probability of the evidence if the defence scenario is true. The vertical bar| denotes conditioning. The

characteristic to the left of the bar is the event or hypothesis whose outcome is uncertain and for which a probability

is wanted. The characteristic to the right of the bar are the events or hypotheses which are assumed known.

The greaterLR is, the more support evidencee provides for the prosecution position. The closerLR is to

0 (and smaller than1), the bettere supports the defence position. IfLR is around1, the evidence provides little

information about either position. As such,LR can be employed as a means for a forensic expert to make consistent

statements in court about the implications of evidence and as a tool for investigators to decide the potential benefit

of an expensive laboratory experiment prior to committing any resources.

The methodology of inferring and comparing the (body of) evidence that should be observed under conjectured

(prosecution or defence) scenarios corresponds to a reasoning method that is widely adopted in science, and which

is gaining increased acceptance in serious crime investigation [1]. The specific use of precise probabilities is more
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Figure 1: A simple Bayesian network

controversial, although it is adopted by major forensic laboratories, such as the Forensic Science Service of England

and Wales [3]. Obviously, the approach is very useful when substantial data sets enable the analyst to calculate

accurate estimates. This is the case in evaluating DNA evidence, for example [16]. Nevertheless, the approach

can also be successfully applied to cases where the analyst has to rely on subjective probabilities, by performing

a detailed sensitivity analysis [2] or by incorporating uncertainty concerning the probability estimates within the

Bayesian model [11].

The likelihood ratio method is crucially dependent upon a means to compute the probabilitiesP (e | pprosecution)

andP (e | pdefence). As shown in [2, 4], Bayesian Networks (BN) are a particularly useful technique in this context.

A BN is a directed acyclic graph (DAG) whose nodes correspond to random variables and whose arcs describe how

the variables are dependent upon one another. Each variable can be assigned a value, such as ”true” or ”false”, and

each assignment of a value to a variable describes a particular situation of the real world (e.g. ”Jones has an alibi”

is ”true”). The arcs have directions associated with them. Consider two nodes,A andB say, with a directed arc

pointing fromA toB. NodeA is said to be the parent ofB andB is said to be the child ofA. Moreover, an arc

from a node labelledH pointing towards a node labellede indicates thate is causally dependent onH [18]. The

graph is acyclic in that it is not permitted to follow directed arcs and return to the starting position. Thus, a BN is a

type of graphical model that captures probabilistic knowledge. The actual probabilistic knowledge is specified by

probability distributions: a prior probability distributionP (xi) : Dxi 7→ [0, 1] for each root nodexi in the DAG

and a conditional probability distributionP (xi | xj , . . . , xk) : Dxi ×Dxj × . . .×Dxk 7→ [0, 1] for each nodexi

that has a set of (immediate) parent nodes{xj , . . . , xk} (whereDx, the domain of variablex, denotes the set of

all values that can be assigned tox andDxi × . . .×Dxk denotes the set of all combinations of values that can be

assigned toxi, . . . , xk).

Figure 1 illustrates these concepts by a sample BN that describes how the assumed event of a perpetrator killing

a victim (x1) is related to the possibility of discovering traces of blood on the victim matching the perpetrator’s

blood (x5). The probabilistic knowledge represented by this BN is specified by probability distributions. There are

two unconditional prior probability distributions:P (x1) is read as the probability that the perpetrator has killed

the victim andP (x4) read as the probability that the victim has the background they have. For example, if a

victim is a 20-year-old female student at a red-brick university, thenP (x4) is the probability that a victim of rape
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is a 20-year-old female student at a red-brick university (in the absence of other information). This probability is

a subjective one. There are three conditional probabilitiesP (x2|x1), P (x3|x2, x1) andP (x5|x4, x3) where the

probabilities of the various possible combinations of outcomes are represented in tables. Table 1 is an example of

such a probabilistic table:

P (x2|x1) x1: perpetrator killed victim

x2: perpetrator had violent contact

with the victim

True False

True 0.9 0.3

False 0.1 0.7

Table 1: An example probabilistic table

Thus, given these figures, the subjective probability that the perpetrator had violent contact with victim (x2 : true)

given that the perpetrator killed the victim (x1 : true) is0.9.

BNs facilitate the computation of joint and conditional probabilities. This can be illustrated by calculating

P (x5 : true | x1 : false). By definition,

P (x5 : true | x1 : false) =

∑
v2∈Dx2

∑
v3∈Dx3

∑
v4∈Dx4

P (x1 : false, x2 : v2, x3 : v3, x4 : v4, x5 : true)

P (x1 : false)

where, for example,
∑
v2∈Dx2

denotes the sum over all possible valuesv2 thatx2 may take. Note that in general,

this calculation requires a substantial number of joint probabilitiesP (x1 : false, x2 : v2, x3 : v3, x4 : v4, x5 : true).

However, with the BN of Figure 1 and the corresponding conditional probability tables, the computation can be

reduced to

P (x5 : true | x1 : false) =
∑

v2∈Dx2

∑
v3∈Dx3

∑
v4∈Dx4

P (x5 : true | x3 : v3, x4 : v4)× P (x3 : v3 | x2 : v2, x1 : false)×

P (x2 : v2 | x1 : false)

=
∑

v2∈Dx2

P (x2 : v2 | x1 : false)×
∑

v3∈Dx3

P (x3 : v3 | x2 : v2, x1 : false)×

∑
v4∈Dx4

P (x5 : true | x3 : v3, x4 : v4)

A BN can be employed as a means to calculate probabilities more efficiently. This increase in efficiency of the

computation arises because the BN indicates which variables (characteristics which are measurements such as the

elemental composition of glass) or factors (characteristics which are qualitative, such as whether or not the suspect

had been in contact with the victim - true or false) are conditionally independent of each other. Thus the amount

of blood traces found on the victim which match the perpetrator (x5) is independent of whether the perpetrator has

killed the victim or not (x1) if the amount of blood traces transferred from the perpetrator to the victim is known
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(i.e. conditional on the knowledge of the amount of blood traces transferred from the perpetrator to the victim),x3.

This conditional independence is indicated by the separation of the node forx1 from x5 by x3.

3 System Architecture

Evaluation of evidence for individual crimes requires the use of a specifically designed BN, and the use of BNs in

the evaluation of evidence requires careful consideration for their construction. For crime investigation, in contrast

to evidence evaluation, a method by which a generic BN may be constructed can be developed. The method is

illustrated with an application to a situation in which a person is found dead from hanging. The method considers,

first, the development of a novel inference mechanism that constructs a BN to describe a range of possible scenarios

and corresponding hypotheses and, second, the employment of Bayesian model-based diagnostic techniques to

evaluate evidence and to create strategies for the collection of evidence, with the payment of attention to the

scenarios and hypotheses of the BN. The combination of the inference mechanism and the diagnostic techniques

is known as a decision support system and the structure of the system is known as system architecture.

The overall architecture of the decision support system is shown in Figure 2. In this figure, types of information

and knowledge are represented by rectangles, and inference mechanisms that reason with information/knowledge

are represented by ellipses. Given a new or ongoing investigation in which an initial set of evidence has been

collected by the investigators, thesynthesiscomponent will generate a large BN that contains a range of plausible

scenarios, called thescenario space, by means of a prespecifiedknowledge base. The scenario space describes

how plausible states and events, pieces of evidence, investigating actions and other properties of crime scenarios

are causally related to one another. Note that this representation is substantially more efficient than one that

considers a separate representation for each considered scenario because all the information that is shared by

different scenarios is stored only once.

Once the scenario space has been constructed, theanalysiscomponent can evaluate it to provide useful inform-
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ation, such as (i) descriptions of scenarios that may have caused the available evidence, (ii) useful explanations for

the human investigator (e.g what evidence should be expected if a certain scenario were true), and (iii) investigat-

ing actions that are likely to yield useful information. The proposed investigating actions can, in turn, be used to

inform the investigation directly or tospeculateabout the possible outcomes of the investigating action, determine

future actions, and, hence, gather further evidence for input to a new synthesis operation.

4 Generation of a Space of Plausible Scenarios

4.1 Stored Knowledge

4.1.1 Situations

Consider the suspicious circumstance of the discovery of a dead body hanging by the neck. There are various

scenarios which could have given rise to this circumstance and these are discussed in detail later. Whilst the

investigation is continuing, these scenarios are grouped together in what is known as aspaceof plausible scenarios.

The discussion of such scenarios involves what are known assituations. A situation is either a particular condition

or status of the world, or a development that changes another situation.

Situations can be described at different levels of generality, depending on what is being modelled. In terms of

relations between possible scenarios and a given specific case, the system supports the representation of situation

instancesat the information level, such as:

• ”fibres were transferred from jane doe to joe bloggs” and

• ”many fibres were transferred from jane doe to joe bloggs”

Generally speaking, situation instances refer to information about specific entities, such asjane doe and joe

bloggs. At the knowledge level, which relates to the understanding of the crime investigation domain, the system

also supports representation of situationtypes, such as:

• ”fibres were transferred from person P1 to person P2” and

• ”many fibres were transferred from person P1 to person P2”

Thus, situation types refer to certain general properties or relations of the classes of entities.

As the examples illustrate, quantities and truth values (true or false with reference to a statement such as ’X

killed Y’) are also an important feature of situations. In a manner similar to the distinction between types and

instances, the system may sometimes be interested in situations that denote specific quantities and sometimes it

may not. Situations that leave open specific quantities or truth values involved, such as

• ”fibres were transferred from jane doe to joe bloggs” and
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• ”fibres were transferred from person P1 to person P2” .

are referred to asvariables, where the quantity of fibres transferred is left unspecified. Situations that do include

specific quantities, such as

• ”many fibres were transferred from jane doe to joe bloggs” and

• ”many fibres were transferred from person P1 to person P2”

are referred to as(variable) assignments, the variable being the ’quantity’ of the fibres transferred, where ’quantity’

can take one of three values ’none’, ’few’ or ’many’, for example (though other classifications are possible).

Each situation variablex is said to have adomainDx. This domain is the set of quantities that the situation

variable can take in a valid assignment. All situations of the same type are given the same domain, which is defined

in the knowledge base. The assignment of a domain value to a variable may be affected by multiple influences.

The way in which the effects of different influences on the assignment of a variablex are to be combined is defined

by a combination operator⊕x, which is in general specific to that variable. As with the domains, combination

operators are associated with variable types in the knowledge base.

Note that in what follows, the termssituationsmay interchangeably refer to variable types, variable instances,

assignment types or assignment instances. Whenever the context does not clarify any ambiguity between these

concepts, however, the text will specify to which context reference is being made.

Most situations used simply describe real-world situations. However, some also convey additional information

that may aid in decision support. These concepts have been adapted from earlier work on abductive reasoning [19]

and model based diagnosis [12]. In particular, certain situations may correspond toevidence. These are pieces of

known information that are considered to be observable consequences of a possible crime. Note that as evidence

is herein defined as “information”, it does not equal the “exhibits” presented in court. Thus, for example, in the

context of this discussion, the existence of a suicide note is not considered to be a piece of evidence on its own, but

the conclusions of a handwriting expert who has analysed the note are. Different from evidence,factsare pieces of

known information that do not require an explanation. In practice, it is often convenient to accept some information

at face value without elaborating on possible justifications. For instance, when a person is given the responsibility

of analysing the cause of death of a victim, the status of that person as a medical expert is normally deemed to

be a fact (subject to current issues concerning the status of expert witnesses which are not part of the thesis of

this paper).Hypothesesare possible answers to questions that are addressed by the investigators, reflecting certain

important properties of a scenario. Typical examples of such hypotheses include the categorisation of a suspicious

death into homicidal, suicidal, accidental or natural.

Also, assumptionsare uncertain pieces of information that can be presumed to be true for the purpose of

performing hypothetical reasoning. Three types of assumption are considered here: (i)Investigating actionswhich

correspond to evidence collection efforts made by the investigators. For example, a variable assignment associated
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with the comparison of the handwriting on a suicide note and an identified sample of handwriting of the victim is an

investigating action. Each investigating action is associated with an exhaustive set of mutually exclusive outcomes

for the consideration of a piece of evidence that cover all possible situations (exhaustive outcomes) considered by

the action of the investigation, such that there can be one and only one outcome of the investigation of the piece

of evidence (e.g., the blood group of a suspect). (ii)Default assumptionswhich are presumed true unless they are

contradicted. Such assumptions are typically employed to represent the conditions from which an expert produces

evaluations based upon sound methodology and understanding of his/her field. (iii)Conjectureswhich simply

correspond to uncertain states and events that need not be described as consequences of other states and events.

4.1.2 Knowledge Base

The objective of crime investigation is to determine (ideally beyond a reasonable doubt) the crucial features (such

as the type of crime, the perpetrator(s), etc.) that have led to, or, more precisely, caused the available evidence.

Therefore, the so-calleddomain knowledgethat is relevant to a crime investigation concerns the causal relations

among the plausible situations.

This is stored in the knowledge base: The decision support system described in this paper employs a knowledge

base consisting of generic causal relations, called scenario fragments, among situations. Each scenario fragment

describes a phenomenon whereby a combination of situations leads to a new situation. In particular, each scenario

fragment consists of (i) a rule representingwhichsituation variable types are causally related, and (ii) a set of prob-

ability distributions that representhowthe corresponding situation assignment types are related by the phenomenon

in question.

The rule component of a scenario fragment is an expression of the form:

IF conjunction of antecedents

ASSUMING conjunction of assumptions

THEN consequent
where antecedents, assumptions and consequent refer to situation variable types. The antecedents and assumptions

of a rule refers to the situations that are required for the phenomenon described by the scenario fragment to take

effect. Note that the assumptions are situations that may be presumed to be present in a scenario because they refer

to conjectures, default assumptions or investigating actions, and that the antecedents are themselves situations that

must either be consequences of certain other scenario fragments or be factually true. For example, the following

ruleR describes the phenomena that persons who are addicted to a certain substance have traces of that substance

in their blood, especially when they have recently used that substance.

IF anaesthetic A is an addictive substance (a1)

ASSUMING person P has an addiction to anaesthetics (a2), and

person P has recently used anaesthetic A (a3)

THEN person P has anaesthetic A in blood (c)
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A scenario fragment (SF ) consists of a rule and a set of probability distributions. For example, the rule

could have variable typesa1, . . . , am as its antecedents and assumptions and the variable typec as its consequent.

TheSF then includes probability distributions over the possible assignments ofc, for different combinations of

assignments to the variablesa1, . . . , am. These distributions describe how the assignment ofc is affected by the

phenomena under different configurations ofa1, . . . , am. In what follows, the probability distributions of such a

scenario fragmentSF will be denoted by:

P (a1 : v1, . . . , am : vm
SF→ c : vc)

wherea : v denotes the situation assignment obtained by assigningv to situation variablea, anda1 : v1, . . . , am :

vm, c : vc are assignments corresponding to the variablesa1, . . . , am, c. This can be applied to the above example

ruleR. Let SF denote the scenario fragment containing this rule with situation variable typesa1, a2, a3, c. Let

a1, a2, a3 be variables that are assigned one value from{true, false} (indicating whether the condition is met or not)

andc be a variable that is assigned one of{high, low,none} (indicating the proportion of the addictive substance in

the person’s blood). Then, the following probability distributions associated with scenario fragmentSF may be:

P (a1 : true, a2 : true, a3 : true
SF→ c : high) = 0.8

P (a1 : true, a2 : true, a3 : true
SF→ c : low) = 0.2

P (a1 : true, a2 : true, a3 : true
SF→ c : none) = 0

with

P (a1 : v1, a2 : v2, a3 : v3
SF→ c : high) = 0

P (a1 : v1, a2 : v2, a3 : v3
SF→ c : low) = 0

P (a1 : v1, a2 : v2, a3 : v3
SF→ c : none) = 1

for any combination of values(v1, v2, v3) 6= (true, true, true). These distributions indicate that, if the antecedent

and assumption conditions are met, the phenomenon will cause high levels of anaestheticA in the blood of person

P with probability 0.8 and low levels with probability 0.2, and, naturally, no anaesthetic with probability 0, and

that the phenomenon is not in effect if the conditions are not met (though this does not exclude the possibility that

other phenomena may still cause high levels of anaestheticA in the blood of personP ).

4.1.3 Presumptions

The use of scenario fragments in the construction of BNs is enabled by assuming thatSFs in the knowledge base

possess the following properties:

1. Any two probability distributions from two scenario fragments that involve the same consequent variable are

independent. Intuitively, this assumption indicates that, given the relevant antecedents and assumptions, the
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phenomena described by different scenario fragments that affect the same situation consequent variable are

independent from one another.

2. There are no cycles in the knowledge base. This means that there is no subset of scenario fragments in the

knowledge base that allow a situation variable instance to be affected by itself; a consequent variable cannot

be its own antecedent of assumption. This is required because BNs cannot represent such information as

they are inherently acyclic [17].

While presumption 1 is a strong assumption, and may hence reflect a significant limitation of the present work,

it is required to compute efficiently the combined effect of a number of scenario fragments on a single variable (see

Section 4.4). Future work will seek to relax this assumption in order to generalise further the application of the

method proposed.

4.2 Scenario Spaces

A scenario space is a grouping of all the scenarios that support the available evidence, and of the evidence and

hypotheses that these scenarios entail. In a typical case, there may be many scenarios that explain the given

evidence and most of these may only involve minor variations from the others in the same space. Therefore, it is

not sensible to describe scenarios individually. Instead, the scenario space contains the situations that constitute

scenarios and how they are causally related.

Formally, a scenario space covers two sub-representations: the structural scenario space and the probabilistic

scenario space:

• The structural scenario spacedenoteswhich combinations of situations affect other situations within the

scenario space. Each situation in the structural scenario space is deemed to be either an assumption/fact or a

consequent of other situations. For each sequence of situations, through the use of an assumption-based truth

maintenance system (which allows efficient tracking of the assumptions under which logical inferences are

derived) [6], the structural scenario space maintains the smallest sets of other situations that can meaningfully

explain it.

Consider, for example, a crime scene containing the dead body of a man, who is namedjohndoe in what

follows, hanging from a rope. Assume that near the body ofjohndoe, a knife is found. Different scenarios

may provide a valid explanation for the dead body and the discovery of the knife. For instance:

– johndoe may have hung himself as part of an autoerotic asphyxiation ritual with the intention of cutting

himself loose with the knife, but failed to do so; or

– johndoe may have been hung by a person who overpowered him using the knife.

13



johndoe asphyxiates self
using rope r1

johndoe planned to end
self asphyxiation by
cutting rope r1 with
cutting instrument c1

person p1 overpowered
johndoe using knife

person p1 left knife c1
after overpowering
johndoe

cutting instrument c1
is near johndoe

c1

Figure 3: Partial scenario space

Figure 3 is a partial structural scenario space that contains some of the information relevant to these pos-

sible scenarios. In particular, the space identifies two plausible causes for ”cutting instrument c1 is near

johndoe”:

1. A combination of events that may be part of an accidental auto-asphyxiation scenario: ”johndoe as-

phyxiates self using rope r1” and ”johndoe planned to end self asphyxiation by cutting rope r1

with cutting instrument c1”, and

2. A combination of events that may be part of a homicidal asphyxiation scenario: ”person p1 over-

powered johndoe using knife c1” and ”person p1 left knife c1 after overpowering johndoe”.

In Figure 3, the black circles correspond to the keywordand in the above description of causes. Thus, the

black circles combine multiple causes that, in conjunction, are sufficient to explain the consequentcutting

instrument c1 is near johndoe.

Note that in all following figures, black circles represent the same logical conjunctive operatorandas above.

The cases where the justification only involves one cause node (e.g., the link fromjohndoe committed

suicide by hanging to johndoe died from hanging) are simply a degeneralised form of this general rep-

resentation (in the sense of the number of causes being one). In these cases, a black circle remains in the

middle of the justification link, as these figures are produced automatically.

• The probabilistic scenario spacedenoteshow likelya combination of situations affects other situations in

the scenarios space. The probabilistic scenario space is a Bayesian network that refers to the same nodes as

the structural scenario space. An example of a probabilistic scenario space is the Bayesian network depicted

in Figure 1, with associated probability tables of which Table 1 is an example.

The structural and probabilistic versions of the scenario space reflect different types of information, providing

complementary knowledge. While the structural scenario space does not provide a suitable means to test hypo-

theses or to evaluate evidence in an investigation, it enables the generation of explanatory scenarios, as illustrated in

the example of Figure 3. Contrarily, while the probabilistic scenario space lacks the knowledge to produce minim-
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ally explanatory scenarios, it does, as shown in Section 2, provide the necessary knowledge to test hypotheses and

evaluate evidence. The remainder of this section aims to demonstrate how both scenario spaces can be constructed

from a given knowledge base. This demonstration will start from the partial scenario space in Figure 3.

4.3 Generation of Structural Scenario Spaces

The approach to generate the structure of a scenario space relies on the application of two conventional inference

techniques to the knowledge base. They are (i) abduction of the plausible causes of known or hypothesised situ-

ations, and (ii) deduction of the plausible consequences of known or hypothesised situations. This is basically the

same as reported in the initial system [22]. However, for completeness, a brief summary of the relevant techniques

is given below, with illustrations.

The abduction and deduction operations are applied to develop the scenario space by adapting the rules from

the knowledge base to given situations incrementally. A partially constructed scenario space is termed an emerging

scenario space during such an abduction and deduction process:

• Abduction: given a piece of information that matches the consequent of a rule in the knowledge base, the

abduction operation instantiates the information of the antecedents and assumptions of the rule, and adds

them and the corresponding implication to the emerging scenario space. For example, given the rule:

IF anaesthetic A is an addictive substance

ASSUMING person P has an addiction to anaesthetics, and

person P has recently used anaesthetic A

THEN person P has a high level of anaesthetic A in blood

and a scenario space that contains the piece of informationn1 = ”person vic has a high level of anaes-

thetic percocet in blood”, then the abduction operation will generate the pieces of information:

n2 = ”anaesthetic percocet is an addictive substance”

a1 = ”person vic has an addiction to anaesthetics”

a2 = ”person vic has recently used anaesthetic percocet”

and add the implicationn2 ∧ a1 ∧ a2 → n1 to the emerging scenario space. Notationally, throughout this

work, those nodes that represent assumptions are denoted byai (e.g., thea1 anda2 above), and those nodes

that represent either facts or consequents derived from other nodes are denoted bynj (e.g. then1 andn2

above).

• Deduction: given a set of pieces of information that match the antecedents of a rule in the knowledge base,

the deduction operation instantiates the information of the assumptions and consequent of the rule, and adds

them and the corresponding implication to the emerging scenario space. For example, given the rule:
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IF person I is an investigator, and

person P has symptom S, and

symptom S corresponds to purple spots on the eyes, and

symptom S is petechiae on the eyes

ASSUMING investigator I correctly diagnoses symptom S

THEN investigator I identifies symptom S as petechiae on the eyes of person P

and a scenario space that contains the pieces of informationn1 = ”person quincy is an investigator”,

n2 = ”person vic has symptom x”, n3 = ”symptom x corresponds to purple spots on the eyes” and

n4 = ”symptom x is petechiae on the eyes”, then the deduction operation will generate the pieces of

information:

a1 = ”investigator quincy correctly diagnoses symptom x”

n5 = ”investigator quincy identifies symptom x as petechiae on the eyes of person vic”

and add the implicationn1 ∧ n2 ∧ n3 ∧ n4 ∧ a1 → n5 to the emerging scenario space.

By means of such abduction and deduction steps, a structural scenario space can be created from a given set of

available evidence, using the following procedure:

1. Initialisation: A new structural scenario space is first created containing only the pieces of evidence and no

inferences between them. For simplicity, this procedure will be illustrated using an example involving just a

single piece of evidence that represents the ”hanging body of johndoe”.

2. Abduction of plausible causes from collected evidence: Abduction involves speculation about the possible

causes of a known situation. Abduction operations are applied with all the scenario fragments in the know-

ledge base, whose consequent matches a situation variable instance in the emerging scenario space. Obvi-

ously, as these abduction operations are applied (initially for those scenario fragments whose consequent

matches a piece of evidence), new situation variable instances are added to the emerging scenario space, and

therefore, new scenario fragments become applicable. In so doing, causal chains of situations are created,

and these constitute plausible explanations for the available evidence. This part of the procedure ends when

no more information can be adduced and added to the scenario space.

Figure 4 depicts a sample emerging scenario space that may be the outcome of this step (depending on

exactly what is stored in the knowledge base of course). For example, given a rule

IF P died from hanging

THEN hanging body of P

and the initial piece of evidence ”hanging body of johndoe”, the abduction step adds the node ”johndoe

died from hanging” as well as the implication:
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johndoe performs

hanging body
of johndoe

johndoe had habit
of autoerotic

fatal autoerotic

johndoe hung
himself
accidentally

_1 killed johndoe
by hanging

_1 chooses
hanging

johndoe chose
hanging

johndoe was
suicidal

johndoe committed
suicide by hanging

johndoe died
from hanging

_1 is johndoe’s
killer

hanging

asphyxiation

Figure 4: Sample scenario space after abduction of plausible causes from collected evidence

johndoe died from hanging→ hanging body of johndoe

The other nodes of Figure 4 are created in a similar manner (by backward application of the rules in the

knowledge base).

3. Deduction of plausible consequences from plausible causes: Deduction operations are applied with all the

scenario fragments in the knowledge base, whose antecedents match a set of situation variable instances

in the emerging scenario space. As with the abduction process, new information that is deduced is added

to the emerging scenario space and may give rise to new matches of scenario fragment antecedents with

information in it. In so doing, causal chains containing the consequences of those situations that are plausible

causes of the available evidence are generated. The objective of this step in the overall procedure is to infer

the evidence that has not yet been identified, but may be produced by plausible scenarios that explain the

available evidence. As discussed below, it is important to identify these pieces of evidence because this

information helps the system in supporting the investigator to determine which of the scenarios that explain

the available evidence may be more plausible.

Figure 5 depicts a sample emerging scenario space that may be the outcome of this step. In this figure, the

gray squares and bold arrows respectively denote the nodes and justifications that have been added by the

procedure that expanded the emerging scenario space of Figure 4 to the one shown here. A similar treatment

is given to the next figure.

4. Abduction of plausible causes from uncollected evidence: When assessing the value of searching for addi-

tional evidence through further investigating actions, it is important that the entire range of possible causes

of such evidence is considered, not just the causes that reside within the crime scenarios. For example, when

searching for gun powder residue on the hands of a suspect, the possible role of this suspect in the crime
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Figure 5: Sample scenario space after deduction of plausible consequences from plausible causes

under investigation is not the only relevant plausible explanation for a potential discovery of gun powder

residue. The background of the suspect may constitute an alternative explanation when, for instance, the

suspect is an amateur hunter. Therefore, Step 2 of the procedure is repeated for the pieces of uncollected,

but potentially available evidence, which have been deduced in Step 3. Figure 6 depicts a sample emerging

scenario space that may be the outcome of this step.

5. Deduction of inconsistencies: Once a structural scenario space has been constructed that contains the avail-

able evidence (Step 1), the possible causes of the available evidence (Step 2), the possible but uncollected

evidence that may be generated by these possible causes (Step 3) and the possible causes of the uncollected

evidence (Step 4), any given constraints under which situations that may be part of the same scenario are

added to the emerging structural scenario space. This involves applying a deduction operation for each in-

consistency whose situation variables match a set of situation variables in the emerging structural scenario

space. Figure 7 depicts a sample emerging scenario space that may be the outcome of this step, where each

pair of nodes whose links are merged into the specific nodenogood represents an inconsistency (in other

words,nogood denotes the collection of any given and deduced inconsistencies). Note that in this figure, for

easy reference, each node is labelled with a node number; e.g., the nodejohndoe was suicidal is labelled

with n1 anddefensive wounds on johndoe with n39.

For example, given the inconsistency
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Figure 6: Sample scenario space after abduction of plausible causes from uncollected evidence

P committed suicide by hanging : TRUE, and

P hung himself accidentally : TRUE

and assuming that the emerging scenario space contains the hypothetical pieces of information ”johndoe

committed suicide by hanging” and ”johndoe hung himself accidentally”, the deduction of inconsist-

encies step adds the implication

johndoe committed suicide by hanging ∧ johndoe hung himself accidentally→ nogood

to the emerging scenario space.

The structural scenario space generated by the above procedure enables the decision support system to trace

back the conjectures and facts that ultimately could have caused the available evidence. Because such causal chains

may have to be established by multiple abduction operations applying different scenario fragments, it is possible

that the resulting structural scenario space contains situations that are not a consequence of any situations and that

are not assumptions or facts. These are spurious explanations, and they are to be removed from the emerging

scenario space. Therefore, the procedure is extended with a sixth step:

6. Spurious explanation removal: Any situation variable instance in the emerging scenario space that is not the

consequent of one or more other situation instances and that is neither an assumption nor a fact is removed.
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Figure 7: Sample scenario space after deduction of inconsistencies
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Consider, for instance, the following rule:

IF person W is in location L1, and

person V is assaulted in location L2, and

location L1 is near location L2

ASSUMING person V screams due to the assault

THEN person W witnesses a scream from V
Given this rule and an observation:person rita witnesses a scream from johndoe, the abduction operation

will generate the following plausible explanation:

person rita is in location lounge, and

person johndoe is assaulted in location garden, and

location lounge is near location garden

person johndoe screams due to the assault

Note, however, thatlocation lounge is near location garden cannot be guaranteed to be true (here, for

illustrative simplicity, presuming thatperson rita is in location lounge andperson johndoe is assaulted in

location garden are either given observations or have been inferred by a previous deduction/abduction process).

If this is the case (and assuming that the variable is modelled to have a boolean or{true, false} domain), this piece

of information may not be asserted by the investigator. As such, the piece of informationlocation lounge is near

location garden is neither a fact nor an assumption and this plausible explanation is therefore removed from the

emerging scenario space.

4.4 Generation of Probabilistic Scenario Spaces

As explained above, the probabilistic scenario space is a Bayesian network (BN) that represents the extent to which

the situations in the structural scenario space affect one another. Such a scenario space is created by following the

procedure below:

• For each situation variable instance in the structural scenario space, create a corresponding node;

• For each implication. . . ∧ a ∧ . . . → c, wherea andc refer to situation variable instances, create an arc

a→ c;

• For each assumption or fact in the structural scenario space, which (as defined above) are always represented

by a parent node and not by a child node, obtain a prior probability distribution, which must either be

predefined in the knowledge base or be specified by the user; and

• For each node that does not correspond to an assumption or fact, calculate a conditional probability distribu-

tion table based on the probability distributions associated with each scenario fragment.

The last step of this procedure may appear not to be straightforward, therefore requiring further explanation.

Thus, the remainder of this section describes how such conditional probability distributions are calculated.
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Let{p1, . . . , ps} be the set of parents ofpn in the probabilistic scenario space,pc : c be an assignment ofpc, and

A be a set of assignments{p1 : v1, . . . , ps : vs}, where eachvi ∈ Dpi . The conditional probability of the situation

pc : c givenA is determined by those scenario fragments that determine how the situationsp1 : v1, . . . , ps : vs

affectpc. Let SF1, . . . , SFk be such scenario fragments andpc : c1, . . . , pc : ck be their respective outcomes.pc

is assignedc whenever the combined effect of the scenario fragmentsc1 ⊕ . . . ⊕ ck = c, with regard to a certain

predefined interpretation of the combination operator⊕. Many operators may be adopted to implement this [25].

In a given application, the choice of what combination operator to use requires careful consideration of several

important factors such as computational efficiency, intuitive interpretability and the power of such an operator in

aggregating information.

From the above, the conditional probabilityP (pc : c | A) is given by:

P (pn : c | A) = P

[ ∨
c1⊕...⊕ck=c

( ∧
i=1,...,k

(
A
SFi→ pn : ci

))]
(4)

where
∨

and
∧

represent logical disjunction and conjunction (i.e., “or” and “and”), respectively.

Thus, computingP (pn : c | A) involves calculating the likelihood of a combination of events described by

a so-called disjunctive normal form expression (i.e. a logical expression of the form (x11 and . . . andx1m1) or

. . . or (xn1 and. . . andxnmn )). Because the occurrence of the different combinations of outcomesc1, . . . , ck of

scenario fragmentsSF1, . . . , SFk involves mutually exclusive events, the calculation can be resolved by adding

the probabilities of the conjuncts in (4):

P (pn : c | A) =
∑

c1⊕...⊕ck=c

P

( ∧
i=1,...,k

(
A
SFi→ pn : ci

))
(5)

From presumption 1 (as noted in 4.1.3), the outcomes of different scenario fragments (of the same consequent),

with regard to a given set of assignments of the antecedent and assumption variables, correspond to independent

events. Therefore, the probability of the conjunctions in (5) is equal to the product of the probabilities of their

conjuncts, thereby

P (pn : c | A) =
∑

c1⊕...⊕ck=c

( ∏
i=1,...,k

P
(
A
SFi→ pn : ci

))
(6)

Consider the following two scenario fragments, which form part of the probabilistic scenario space that corres-

ponds to the structural space of Figure 7:

IF person V had an auto-erotic asphyxiation habit (n5)

THEN person V has previously hung him/herself (n21)

IF person V has attempted to commit suicide (n12)

THEN person V has previously hung him/herself (n21)
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wheren5 andn12 have a boolean domain{>,⊥} (respectively denoting true, false), andn21 to a variable taking

values from a (totally ordered) domain, say{never , veryfew , several }, with never <veryfew <several .

Here, purely for illustration, these three values are used. For different applications a different number of different

terms may be employed. Also for illustration purposes, the combination operator associated with the last variable

is set tomax (which enjoys computational efficiency). Then, the probabilities of assignments ton21 givenn5 : >

andn12 : >, can be computed as follows. For notational convenience, let the above two scenario fragments be

namedSF1 andSF2. Assume that the unconditional prior probabilities associated with scenario fragments are:

P (n5 : > SF1→ n21 : never ) = 0.10

P (n5 : > SF1→ n21 : veryfew ) = 0.40

P (n5 : > SF1→ n21 : several ) = 0.50

P (n12 : > SF2→ n21 : never ) = 0.70

P (n12 : > SF2→ n21 : veryfew ) = 0.29

P (n12 : > SF2→ n21 : several ) = 0.01

where, for instance,P (n5 : > SF1→ n21 : never ) = 0.10 represents the statement that the probability of which

scenario fragmentSF1 assigns the valuenever to variablen21 givenn5 being true is 0.10.

Following (6), to computeP (n21 : veryfew |n5 : >, n12 : >) all combinations of the outcomesc1 andc2

of scenario fragmentsSF1 andSF2, with c1, c2 ∈ {never , veryfew , several }, such thatmax(c1, c2) =

veryfew , must be considered. This is because (6) states that the probability ofn21 taking on the value ofvery-

few , given thatn5 andn12 are both true, is the sum of the products of the probabilities of any two possibleSF

assignment outcomes, subject to the constraint that the composition (or maximum in this case) of both outcomes is

veryfew . There are three such combinations:{c1 : veryfew , c2 : veryfew }, {c1 : never , c2 : veryfew }

and{c1 : veryfew , c2 : never }. Hence,

P (n21 :veryfew |n5 : >, n12 : >)

=P (n5 : > SF1→ n21 : veryfew )× P (n12 : > SF2→ n21 : veryfew )+

P (n5 : > SF1→ n21 : never )× P (n12 : > SF2→ n21 : veryfew )+

P (n5 : > SF1→ n21 : veryfew )× P (n12 : > SF2→ n21 : never )

=0.4× 0.29 + 0.1× 0.29 + 0.4× 0.7 = 0.425
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Figure 8: Sample partial Bayesian network

Similarly, it can be shown that

P (n21 : never |n5 : >, n12 : >) = 0.070

P (n21 : several |n5 : >, n12 : >) = 0.505

The complete scenario space for the ongoing example is a Bayesian network containing 43 variables, 28 condi-

tional probability tables and 15 prior probability distributions. Clearly, any representation of the full specification

of this network, and the computations required for belief propagation by means of this network, would signific-

antly add to the size of this paper while contributing little new knowledge. Thus, only a part of this BN is shown

in Figure 8 for illustration, which relates to the corresponding part of the scenario space of Figure 7.

24



5 Analysis of a Generated Space of Plausible Scenarios

Once constructed, the probabilistic scenario space can be analysed in conjunction with the structural one to com-

pute effective evidence collection strategies. The concepts of evidence, hypotheses, assumptions and facts are still

employed in the probabilistic scenario space, but they now refer to particular variable assignments. For imple-

mentational simplicity, hypotheses and investigating actions are assumed to be represented by (truth) assignments

to boolean variables (although this can be extended).

5.1 Hypothesis sets and query types

The approach shown herein aims to interpret the investigatory worth of different scenarios in relation to a setH of

hypotheses. This set must be exhaustive and the hypotheses within it mutually exclusive. The setH is exhaustive

if one of the hypotheses in the set is guaranteed to be true. This ensures that the approach will evaluate the scenario

space entirely. The hypotheses in a set aremutually exclusiveif no pair of hypotheses taken from the set can be

true simultaneously. This simplifies the interpretation of entropy values because it ensures that a situation of total

certainty corresponds to an entropy value of0. These conditions may seem to be rather strong in general, but they

are not strong for the present work. This is because the exhaustivity is only subject to the demand for the generated

space to be fully examined in the evaluation, while different scenarios naturally satisfy the requirement that only

one underlying scenario be true at any one time. An example of a hypothesis set that meets these criteria is:

H = {death of johndoe was homicide : >,

death of johndoe was suicide : >,

death of johndoe was accidental : >,

death of johndoe was natural : >}

Note that in implementing this work, hypothesis sets are given in the knowledge base along with a precompiled

taxonomy ofquery types. Query types represent important questions that the investigators need to address, such as

the type of death of the victim in a suspicious death case, or the killer of a victim in a homicide case.

5.2 Entropy

As indicated previously, the work here employs an information theory based approach, which is widely used in

areas such as machine learning [15] and model based diagnosis [12]. Information theory utilises the concept of

entropy, which is a measurement of how broadly doubt is distributed over a range of choices. Applied to the present

problem, the entropy over an exhaustive set ofm mutually exclusive hypothesesH = {h1, . . . , hm} is given by:
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ε(H) = −
∑
h∈H

P (h) logP (h)

where the log base is 2, and the valuesP (h) can be computed by conventional BN inference techniques. Intuitively,

entropy can be interpreted as a quantification of a lack of information. Under the exhaustiveness and mutual

exclusivity conditions, it can be shown thatε(H) reaches its highest valuelog(m) (which corresponds to a total lack

of information) whenP (h1) = . . . = P (hm) = 1
m , and thatε(H) reaches0, its lowest value (which corresponds

to a totally certain situation) when allP (hi) = 0, i = 1, . . . , j − 1, j + 1, . . . ,m andP (hj) = 1, j ∈ {1, . . . ,m}.

In crime investigation, additional information is created through evidence collection. The entropy, given evid-

enceE, known as the entropy metric, is used for the purpose of generating evidence collection strategies. The

entropy metric is the entropy over a set of hypothesesH, given a setE = {e1 : v1, . . . , en : vn} of pieces of

evidence:

ε(H | E) = −
∑
h∈H

P (h | E) logP (h | E) (7)

where the valuesP (h | E) (the probability of the truth of the hypothesis given the evidence) can be computed

through BN inference. This expression may be considered as a measure of the lack of information aboutH given

E. For the example problem from the sample scenario space, the following probabilities can be computed, withE1

containinghanging body of johndoe : > (which corresponds to the available evidence) andnogood : ⊥ (which

represents the absence of inconsistencies):

P (death of johndoe was homicide | E1) = 0.22

P (death of johndoe was suicide | E1) = 0.33

P (death of johndoe was accidental | E1) = 0.45

P (death of johndoe was natural | E1) = 0 (8)

Thus, as an instance,

P (H1 | E1) = −(0.22 log 0.22 + 0.33 log 0.33 + 0.45 log 0.45) = 1.53

A useful evidence collection strategy involves selecting investigating actionsa from a given setA according to

the criterion of minimising the expected lack of information aboutH givenE:
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min
a∈A

Exp(ε(H | E), a) (9)

whereExp(x) denotes the expected value (or expectation) of random variablex, which is defined to be the sum of

the probability of each possible outcome ofxmultiplied by its payoff (that is normally termed its ”value”). In other

words,Exp(x) represents the average amount thatx is expected to be ifx is repeatedly measured many times.

Note that the entropy values calculated by (7) are affected by the prior distributions assigned to the assump-

tions, as described in Section 4.1. Within the context of evidence evaluation (which often applies the likelihood

ratio based approach [1]), this is a controversial issue as decisions regarding the likelihood of priors, such as the

probability that a victim had autoerotic hanging habits, are a matter for the courts to decide. In the context of an

investigation, however, these prior distributions may provide helpful information often ignored by less experienced

investigators. For instance, it may be the case that the probability of suicides or autoerotic deaths may be under-

estimated by inexperienced investigators. As such, the strategy dictated by (9) offers a useful means to decide on

what evidence to collect next. Nevertheless, information yielded by the minimal entropy decision rule should not

be used for evidence evaluation in court.

5.3 Minimal entropy-based evidence collection

Let a denote an investigating action andEa be a set of the variable assignments corresponding to the possible

outcomes ofa (i.e. the pieces of evidence that may result from the investigating action). The expected posterior

entropy (EPE) after performinga can then be computed by calculating the average of the posterior entropies with

regard to the different possible outcomese ∈ Ea, weighted by the likelihood of obtaining each outcomee (given

the available evidence):

Exp(ε(H | E), a) =
∑
e∈Ea

P (e | a : >, E)ε(H | E ∪ {a : >, e}) (10)

where> refers to true. The ongoing example contains an investigating actiona = perform toxscreen on

johndoe: >, representing a toxicology test ofjohndoe searching for traces of anaesthetics and a correspond-

ing set of outcomesEa = {traces of anaesthetic in johndoe : >, traces of anaesthetic in johndoe : ⊥},

respectively denoting a positive toxscreen and a negative one, where⊥ refers to false. LetE2 be a set containing

hanging body of johndoe: >, andnogood: ⊥. Then, through exploitation of the probabilistic scenario space the

following can be computed:
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P (traces of anaesthetic in johndoe : > | E2) = 0.17

P (traces of anaesthetic in johndoe : ⊥ | E2) = 0.83

P (death of johndoe was homicide | E2 ∪ {traces of anaesthetic in johndoe : >}) = 0.40

P (death of johndoe was suicide | E2 ∪ {traces of anaesthetic in johndoe : >}) = 0.49

P (death of johndoe was accidental | E2 ∪ {traces of anaesthetic in johndoe : >}) = 0.11

P (death of johndoe was homicide | E2 ∪ {traces of anaesthetic in johndoe : ⊥}) = 0.19

P (death of johndoe was suicide | E2 ∪ {traces of anaesthetic in johndoe : ⊥}) = 0.43

P (death of johndoe was accidental | E2 ∪ {traces of anaesthetic in johndoe : ⊥}) = 0.38

Intuitively, these probabilities can be explained as follows. In a homicide, anaesthetics may have been used

by the murderer to gain control overjohndoe, and in a suicide case,johndoe may have used anaesthetics during

the suicide process. In the accidental (autoerotic) death case, there is no particular reason forjohndoe to be

anaesthetised. Therefore, the discovery of traces of anaesthetics injohndoe’s body supports both the homicidal

and suicidal death hypotheses whilst disaffirming the accidental death hypothesis. By means of these probabilities,

the EPEs for traces of anaesthetic can be computed as the following instance:

Exp(ε(H | E1), a) =0.17×−(0.40 log 0.40 + 0.49 log 0.49 + 0.11 log 0.11)+

0.83×−(0.19 log 0.19 + 0.44 log 0.44 + 0.38 log 0.38)

=0.17× 1.38 + 0.83× 1.51 = 1.49

The investigating action that is expected to provide the most information is the one that minimises the corres-

ponding EPE. For example, Table 2 shows a number of possible investigating actions that can be undertaken (in

column 1) and the corresponding EPEs in the sample probabilistic scenario space (in column 2) computed on the

assumption that the aforementioned toxicology screen yielded a positive result. The most effective investigating

actions in this case are therefore established to be a search for a cutting instrument and a knot analysis. This res-

ult can be intuitively explained by the fact that these investigating actions are effective at differentiating between

homicidal and suicidal deaths, which have both been the most likely hypotheses if anaesthetics are discovered in

the body.

5.4 Extensions

The approach presented above offers a possible alternative to the conventional likelihood ratio approach. Several

further improvements of this technique are proposed here. As these extensions are not difficult to conceive, detailed
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examples are omitted below.

5.4.1 Local optima and action sequences

Although the minimum EPE evidence collection technique guarantees to return an effective investigating action, it

does not ensure globally optimal evidence collection. This limitation is inherent to any such one-step lookahead

optimisation approach. The likelihood of obtaining low quality locally optimal evidence collection strategies can

be reduced by considering the EPEs after performing a sequence of actionsa1, . . . , av (of course, with incurred

overheads over computation and potential difficulty in considering multiple actions at one time):

Exp(ε(H | E), a1, . . . , av)

=
∑

e1∈Ea1

. . .
∑

ev∈Eav

P (e1, . . . , ev | a1 : >, . . . , av : >, E) (11)

ε(H | e1, a1 : >, . . . , ev, av : >, E)

In order to determineExp(ε(H | E), a1, . . . , av), equation (11) can be simplified as follows:

Exp(ε(H | E), a1, . . . , av)

=
∑

e1∈Ea1

. . .
∑

ev∈Eav

P (e1, . . . , ev, a1 : >, . . . , av : >, E)
a1 : >, . . . , av : >, E

ε(H | E ∪ {e1, a1 : >, . . . , ev, av : >})

=
∑

e1∈Ea1

. . .
∑

ev∈Eav

( v∏
i=1

P (ei, a1 : >, . . . , av : >, E)
a1 : >, . . . , av : >, E

)
(12)

ε(H | E ∪ {e1, a1 : >, . . . , ev, av : >})

=
∑

e1∈Ea1

. . .
∑

ev∈Eav

( v∏
i=1

P (ei | a1 : >, . . . , av : >, E)
)

ε(H | E ∪ {e1, a1 : >, . . . , ev, av : >})

5.4.2 Multiple evidence sets

Certain investigating actions may be associated with multiple sets of evidence. For example, a careful examination

of the body of a man found hanging may yield various observations such as petechiae on the eyes, defensive wounds

on the hands and lower arms, and various types of discolouration of the body. The consequences of some types of

investigating action, e.g. the examination of a dead body, are better modelled by multiple evidence sets since the
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outcomes may occur in any combination of such pieces of evidence. The above approach can be readily extended

to account for this by computing the EPEs after performing actiona with associated evidence setsEa,1, . . . , Ea,w:

Exp(ε(H | E), a)

=
∑

e1∈Ea,1

. . .
∑

ew∈Ea,w

P (e1, . . . , ew | a : >, E)

ε(H | e1, . . . , ew, a : >, E) (13)

=
∑

e1∈Ea,1

. . .
∑

ew∈Ea,w

( w∏
i=1

P (ei | a : >, E)
)

ε(H | E ∪ {e1, . . . , ew, a : >})

5.4.3 Multiple hypothesis sets

Finally, it may also be useful to consider multiple hypothesis sets instead of just one. This enables the decision

support system to propose evidence collection strategies that are effective at answering multiple queries. To con-

sider multiple hypothesis setsH1, . . . ,Ht by measuring entropy over these sets, given a set of pieces of evidence

E, the following is required:

ε(H1, . . . ,Ht | E)

= −
∑
h1∈H1

. . .
∑
ht∈Ht

P (h1, . . . , ht | E) logP (h1, . . . , ht | E) (14)

= −
∑
h1∈H1

. . .
∑
ht∈Ht

( t∏
i=1

P (hi | E)
)

log
( t∏
i=1

P (hi | E)
)

5.5 User interface

While a detailed discussion of the user interface developed for the present system is beyond the scope of this

paper, it is important to point out that a mere representation of the outcomes of the decision rules is inadequate

for realising the objectives of the system. Investigators may have a number of considerations that are beyond the

scope of the current implementation. These may include perishability of evidence, legal restrictions, limitations on

resources and overall workload. Therefore, the implemented system has been devised to list alternative evidence

collection strategies in increasing order of EPEs.

The benefits of each strategy is indicated by either thenormalised expected entropy reduction(NEER) or the

relative expected entropy reduction(REER). The NEER represents the reduction in EPE, due to performing an
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Investigating action EPE NEER REER

Knot analysis 0.98 26% 29%

Examine body 1.12 17% 19%

Search for cutting instrument 0.19 13% 14%

Search for signs of previous hangings1.36 1.3% 1.5%

Check eyes for petechiae 1.38 0% 0%

Table 2: Evaluation of investigating actions

investigating actiona (i.e. ε(H | E)−Exp(ε(H | E), a)) as a proportion of the maximal entropy under total lack

of information. As such, it provides a means of assessing case progress:

NEER(H | E, a) =
ε(H | E)− Exp(ε(H | E), a)

ε(H)
(15)

The REER represents EPE reduction as a proportion of the entropy under the current set of available evidence; it

focuses on the relative benefits of each alternative investigating action possible:

REER(H | E, a) =
ε(H | E)− Exp(ε(H | E), a)

ε(H | E)
(16)

The results of these calculations are listed in Table 2 for the running example. This table presents the evaluation

of a number of investigating actions after traces of anaesthetics have been discovered injohndoe’s body. In

particular, the second column displays the EPEs for investigating actions while the third and fourth columns show

the corresponding NEER and REER values, respectively. Thus, the expected entropy reduction is the highest for

knot analysis. In other words, knot analysis is likely to yield the most informative evidence and hence, it should

be performed first (assuming that there are no other factors that need to be considered, such as the perishability of

evidence).

To illustrate the computation, consider the investigating actiona = knot analysis. The current entropy, given

that traces of anaesthetic have been found injohndoe’s body (and before performing investigating actiona), is
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calculated as follows:

ε(H | E) =− (P (death of johndoe was homicide | E2 ∪ {traces of anaesthetic in johndoe : >})×

logP (death of johndoe was homicide | E2 ∪ {traces of anaesthetic in johndoe : >}))−

(P (death of johndoe was suicide | E2 ∪ {traces of anaesthetic in johndoe : >})×

logP (death of johndoe was suicide | E2 ∪ {traces of anaesthetic in johndoe : >}))−

(P (death of johndoe was accidental | E2 ∪ {traces of anaesthetic in johndoe : >})×

logP (death of johndoe was accidental | E2 ∪ {traces of anaesthetic in johndoe : >}))

=− 0.40× log 0.40− 0.49× log 0.49− 0.11× log 0.11 = 1.38

In addition, as previously shown, the entropy in the absence of any evidence, other than the hanging dead body

of johndoe equalsε(H) = ε(H | E1) = 1.53. The expected posterior entropy after performinga (and after the

detection of traces of anaesthetics) can be computed in the same way as the illustrative example given in Section

5.3. This results in

Exp(ε(H | E2), a) = 0.98

From this, the NEER and REER can be calculated such that:

NEER(H|E2, a) =
1.38− 0.98

1.53
= 0.26

and

REER(H|E2, a) =
1.38− 0.98

1.38
= 0.29

6 Conclusions and Future Work

This paper has introduced a novel approach to generate plausible crime scenarios that are each sufficient to explain

a given set of evidence. Such a scenario space is represented as a causal network of plausible states and events,

factually and potentially available evidence, and investigating actions and hypotheses. The work offers an efficient

means of storing a wide range of scenarios as the elements that different scenarios have in common need only be

recorded once.

The paper has also extended Bayesian network-based techniques to identify, and further to refine, the most

likely hypotheses by proposing effective evidence collection strategies. A set of maximum expected entropy re-

duction techniques have been devised that can determine the investigating actions that are expected to yield the

most conclusive evidence. As such, this research enables the development of an intelligent decision support sys-

tem for aiding police investigators in efficiently deciding on effective investigating actions. Clearly, this reflects

the intended application of the present work – to assist the investigators to make, under uncertainty, decisions on

how to reduce this uncertainty and therefrom, on how to optimise their “information acquisition strategy”.
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It is worth reiterating that the system described here is not intended to assist crime investigators in deciding

whether or not the evidence against a suspect is sufficient, but how to find that evidence in the first place. This

is categorically different from that faced by evidence evaluation in court. There, all relevant investigating actions

have typically been carried out, and the issue is to decide on the basis of the results of these actions whether they

prove the defendant’s guilt to the required standards. However, the capability to consider more plausible scenarios

and to gather the most likely useful evidence with limited resources will help deliver convincing evidence more

timeously. This should ultimately help to reduce the likelihood of miscarriages of justice in court.

While the proposed system is promising, further improvements are required. As the probability distributions

in the scenario fragments refer to prespecified assessments of the likely outcomes, which are typically subjectively

given by expert investigators, they will often be described only generally. Thus, the use of numeric probabilities

conveys an inappropriate degree of precision. It would be more appropriate to incorporate a measurement of

imprecision within the probability distributions. A number of approaches can provide a means of representing

and reasoning with such imprecision, such as second-order probability theory [5, 9, 27] and linguistic probability

theory [11]. Investigation into the use of symbolic probabilities therefore forms an interesting immediate future

work.

Another piece of important further work concerns the relaxation of the important presumption made within

this research that probability distributions governing the outcomes of different causal influences (and hence rep-

resented in distinct scenario fragments) which affect the same variable must be independent. Fortunately, the

knowledge representation scheme adopted herein allows for this. In fact, information on the correlation amongst

causal influences, specified by certain scenario fragments, could be added to the knowledge base, thereby ex-

plicitly representing how influences are interdependent. Implementation of this, however, requires considerable

further studies.
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Appendix: Notations

Symbol Meaning

> true

⊥ false

∧ conjunction (”and” operator)

∨ disjunction (”or” operator)∑
sum∏
product

xi a variable

ai an antecedent, assumption or action variable

ni a non-assumption variable

Dxi the domain of variablexi (i.e. the set of all values that can be assigned toxi)

f : Dx 7→ [0, 1] a functionf that maps values from the domain ofx to the interval[0, 1].

P (x : v) the probability thatx is assigned valuev

P (x1 : v1|x2 : v2) the probability thatx1 is assigned valuev1 given that it is known thatx2 is assigned valuev2

vi a value from a variable’s domain

ci a value from a consequent variable’s domain

x : v an assignment of valuev to variablex

A a set of assignments

SFi a scenario fragment

⊕ combination operator of a scenario fragment

A
SFi→ x : c scenario fragmentSFi assigns valuec to x given the set of assignmentsA

H a set of hypotheses

ε(H) entropy overH

E a set of pieces of evidence

ε(H|E) entropy overH givenE

Exp(ε(H|E), a1, . . . , av) expected entropy overH givenE after performing investigating actionsa1, . . . , av
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