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Methods to Accelerate the Learning of Bayesian Network Structures

Rénan Daly
School of Informatics
University of Edinburgh
Edinburgh, EH8 9LE
Ronan.Daly@ed.ac.uk

Abstract

Bayesian networks have become a standard
technique in the representation of uncertain
knowledge. This paper proposes methods that
can accelerate the learning of a Bayesian net-
work structure from a data set. These methods
are applicable when learning an equivalence
class of Bayesian network structures whilst us-
ing a score and search strategy. They work
by constraining the number of validity tests
that need to be done and by caching the re-
sults of validity tests. The results of experi-
ments show that the methods improve the per-
formance of algorithms that search through the
space of equivalence classes multiple times and
that operate on wide data sets. The experi-
ments were performed by sampling data from
six standard Bayesian networks and running an
ant colony optimization algorithm designed to
learn a Bayesian network equivalence class.

1 Introduction

The task of learning Bayesian networks from data has,
in a relatively short amount of time, become a main-
stream application in the process of knowledge dis-
covery and model building (Heckerman et al., 1995;
Friedman, 2004). The reasons for this are many.

For one, the model built by the process has an in-
tuitive feel — this is because a Bayesian network con-
sists of a directed acyclic graph (DAG), with condi-
tional probability tables annotating each node. Each
node in the graph represents a variable of interest in the
problem domain and the arcs can (with some caveats)
be seen to represent causal relations between these
variables — the nature of these causal relations is gov-
erned by conditional probability tables associated with
each node/variable. An example Bayesian network is
shown in Figure 1.

Another reason for the popularity of Bayesian net-
works is that aside from the visual attractiveness of the
model, the underlying theory is quite well understood
and has a solid foundation. A Bayesian network can
be seen as a factorisation of a joint probability distri-
bution, with the conditional probability distributions at
each node making up the factors and the graph struc-
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Figure 1: An example Bayesian network

ture making up their method of combination. Because
of this equivalence, the network can answer any proba-
bilistic question regarding the variables modelled, that
is put to it.

In addition, the popularity of Bayesian networks
has been increased by the accessibility of methods to
query the model and learn both the structure and pa-
rameters of the network. It has been shown that infer-
ence in Bayesian networks is NP-Complete (Dagum &
Luby, 1993; Shimony, 1994), but approximate meth-
ods have been found to perform this operation in an
acceptable amount of time. Learning the structure
of Bayesian networks is also NP-Complete (Chicker-
ing, 1996a), but here too, methods have been found to
render this operation tractable. These include greedy
search, iterated hill climbing and simulated annealing
(Chickering et al., 1995) and other, more sophisticated
strategies, such as ant colony optimization (de Campos
et al., 2002).

However, in general, more complicated strategies
imply more computationally complex algorithms and
hence longer running times. This can be especially
prevalent in algorithms that require multiple restarts
and data with a high dimensionality. This paper
will investigate strategies to speed up the learning



of Bayesian networks. Specifically, it will be used
to speed up the learning of an equivalence class of
Bayesian network structures. To this end, the rest of
this paper will be structured in the following fashion.

Firstly, there will be a more in-depth study of the
problem of searching for an optimum Bayesian net-
work, in both the space of Bayesian networks them-
selves and of equivalence classes of Bayesian net-
works. Then, new methods of speeding up this learn-
ing process will be introduced. Next, results of tests
against previous techniques will be discussed and fi-
nally, any conclusions and possible future directions
will be stated.

2 Searching for a Bayesian network
structure

There are, in general, three different methods used in
learning the structure of a Bayesian network from data.
The first finds conditional independencies in the data
and then uses these conditional independencies to pro-
duce the structure (Spirtes et al., 2000). The second
uses dynamic programming and optionally, clustering,
to construct a DAG (Ott et al., 2004; Ott & Miyano,
2003). The third method — which is to be dealt with
here — defines a search on the space of Bayesian net-
works. This method uses a scoring function defined
by the implementer, which says relatively how good a
network is compared to others. Before discussing how
this method works, some definitions and notation will
be introduced.

A graph G is given as a pair (V, E), where V' =
{v1,...,v,} is the set of vertices or nodes in the graph
and F is the set of edges or arcs between the nodes in
V. A directed graph is a graph where all the edges
have an associated direction from one node to another.
A directed acyclic graph or DAG, is a directed graph
without any cycles, i.e. it is not possible to return to
a node in the graph by following the direction of the
arcs. For illustration, the graph in figure 1 is a DAG.

A Bayesian network on a set of variables V' =
{v1,...,v,} is a pair (G,0), where G = (V, E) is
a DAG and © = {04,...,0,} is a set of conditional
probability distributions, where each 6; is associated
with each v;.

In learning a Bayesian network from data, both the
structure G and parameters © must be learned, nor-
mally separately. In the case of complete multinomial
data, the problem of learning the parameters is easy,
with a simple closed form formula for © (Heckerman,
1995). However, in the case of learning the structure,
no such formula exists and other methods are needed.
In fact, learning the structure is an NP-Hard problem
and consequently enumeration and test of all network
structures is not likely to succeed (Chickering, 1996a).
With just ten variables there are roughly 10'® possi-
ble DAGs, which leaves non-exact methods as possi-
bly the only tractable solution.

In order to create a space in which to search
through, three components are needed. Firstly all the
possible solutions must be identified as the set of states
in the space. Secondly a representation mechanism for
each state is needed. Finally a set of operators must be
given, in order to move from state to state in the space.

Once the search space has been defined, two other
pieces are needed to complete the search algorithm, a
scoring function which evaluates the “goodness of fit”
of a structure with a set of data and a search procedure
that decides which operator to apply, normally using
the scoring function to see how good a particular oper-
ator application might be. An example of a search pro-
cedure is greedy search, that at every stage applies the
operator that produces the best change in the structure,
according to the scoring function. As for the scoring
function, various formula have been found to see how
well a DAG fits a data sample.

One of these is given by computing the posterior
probability of a structure G given a sample of data D,

PDIGIP(G)

P(D) M

S(G, D) = P(G|D) =
Here the value P(D) is a constant across all net-
work structures and so can be ignored. This gives
S(G,D) = P(G,D) = P(D|G)P(G), i.e. the relative
posterior probability.

The likelihood term above can take many forms.
One popular method is called the Bayesian Dirichlet

(BD) metric. Here,
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In this formula, there are n variables in the graph, so
the first product is one over each variable. There are
q; configurations of the parents of node i, so the sec-
ond product is over all possible parent configurations,
i.e. the cross product of the number of possible values
each parent variable can take on. Each variable 7 can
take on one of 7; possible values. The value N;jy, is
the number of times the configuration where i = k
and the parents of ¢ are in configuration j, comes up
in the data sample D. IV;; is given as Ek 1 Nijk,
i.e. the sum of N, over all p0551ble values that 7 can
take on. With Ni’ Z U » the values N/ 1, are
given as parameters that glve different variants of the
BD metric. E.g. if Vj;; is set to 1 the K2 metric re-
sults, as given by Cooper & Herskovits (1992). With
N}, setto N'/(r;-g;) (where N', known as the equiv-
alent sample size is a measure of the confidence in the
prior value P(G)), the BDeu metric results which was
proposed by Buntine (1991).
The prior value P(G) is a measure of how probable
a particular structure is before any data is seen. These
values can often be hard to estimate and are often given
as uniform over all possible network structures, possi-
bly favouring structures with less arcs.



Operator \ Before \ After
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Insert_Arc(X,Y)

®

®

Delete_Arc(X,Y)

5
!

Reverse_Arc(X,Y)

Table 1: Basic Modification Operators

Other forms used for the scoring function are
S(G.D) = logP(D|G,0) — 4log N, known as the
Bayesian information criterion (BIC) (Schwarz, 1978)
and S(G,D) = logP(D|G,0) — d, known as the
Akaike Information Criterion (AIC) (Akaike, 1974).
In these models, the parameter 6 gives the maximum
likelihood estimate of the likelihood, d is the number
of free parameters in the structure and [V is the number
of samples in the data D.

Traditionally, in searching for a Bayesian network
structure, the set of states was the set of possible
Bayesian network structures, the representation was a
DAG and the set of operators were various small local
changes to a DAG, e.g. adding, removing or reversing
an arc, as illustrated in table 1. This is possible be-
cause of the decomposition properties of most score
functions,

Zs v, Pa% (v;), D), (3)
=1

where s is a scoring function that takes a node v; and
the parents of this node in graph G, PaY (v;). Popular
scoring functions such as the BD metric are decom-
posable in this manner. If

S(ga D ) =

P(DIG)P(G), Q)

and since the logarithm is a monotonically increasing
function, the scoring function S can be redefined to

log (P (D|G)P (G))
log P(D|G) + log P(G).

S(G, D)

(&)

Now by the likelihood given in equation 2,
log P(D|g )=
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Therefore, for the BD metric,
s (vi,Pag (v;),D) =
di T T(N!., + Nijk)
lo 1]1@ J 7
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The log function is often distributed into the right
hand term of this equation in order to avoid the insta-
bility of the gamma function at high values, giving

s (v;,Pa? (v;), D) =
qi
Z log T(N};) — log T'(N/; + Ni)

Jj=1
+ Z log T'(Nyjj, + Niji.) —log T(Nyj;.)
k=1
®)

Successful application of the operators was also de-
pendent on the changed graph being a DAG, i.e. that
no cycle was formed in applying the operator.

3 Searching in the space of equivalence
classes

According to many scoring criteria, there are DAGs
that are equivalent to one another, in the sense that
they will produce the same score as each other. Look-
ing at this in more depth, it is found that these equiva-
lent DAGs produce the same set of independence con-
straints as each other, even though the structures are
different. Independence constraints show how a set of
variables are influenced or dependent on another set of
variables, given a certain third set of variables. These
constraints can be checked by analysing the DAG for
certain structures. It turns out, according to a theorem
by Verma and Pearl (Verma & Pearl, 1991), that two
DAGs are equivalent iff they have the same skeletons
and the same v-structures. By skeleton, it is meant the
undirected graph that results in undirecting all edges
in a DAG and by v-structure (sometimes referred to as
a morality), it is meant a head-to-head meeting of two
arcs, where the tails of the arcs are not joined. From
this notion of equivalence, a class of DAGs that are
equivalent to each other can be defined, notated here
as Class(G).

3.1 Representation of equivalence classes

Because of this apparent redundancy in the space of
DAGs, attempts have been made to conduct the search
for Bayesian network structures in the space of equiv-
alence classes of DAGs (Chickering, 1996b, 2002a;
Munteanu & Bendou, 2001). The search set of this
space is the set of equivalence classes of DAGs and
will be referred to as E-space. To represent the states
of this set, a different type of structure is used, known
as a partially directed acyclic graph (PDAG). A PDAG
(an example of which is shown in Figure 2) is a graph
that contains both undirected and directed edges and
that contains no directed cycles and will be notated
herein as /P. The equivalence class of DAGs corre-
sponding to a PDAG is denoted as Class(P), with a
DAG G € Class(P) iff G and P have the same skele-



Figure 2: An example of a PDAG

ton and same set of v-structures.

Related to this is the idea of a consistent extension.
If a DAG G has the same skeleton and the same set of
directed edges as a PDAG P then it is said that G is a
consistent extension of P. Not all PDAGs have a DAG
that is a consistent extension of itself. If a consistent
extension exists, then it is said that the PDAG admits a
consistent extension. Only PDAGs that admit a consis-
tent extension can be used to represent an equivalence
class of DAGs and hence a Bayesian network.

Directed edges in a PDAG can be either com-
pelled, or made to be directed that way, whilst oth-
ers are reversible, in that they could be undirected and
the PDAG would still represent the same equivalence
class. From this idea, a completed PDAG (CPDAG)
can be defined, where every undirected edge is re-
versible in the equivalence class and every directed
edge is compelled in the equivalence class. Such a
CPDAG will be denoted as as PC. It can be shown
that there is a one-to-one mapping between a CPDAG
PC and Class(PC). With this isomorphism, a state in
the space of equivalence classes can be represented by
a CPDAG.

3.2 Advantages of searching in E-space

With this representation of equivalence classes of
Bayesian network structures and a set of operators that
modify the CPDAGs which represent them (e.g. insert
an undirected arc, insert a directed arc etc.), a search
procedure can proceed. However, what reasons are
there for pursuing this type of search? For one, an
equivalence class can represent many different DAGs
in a single structure. Search in the space of DAGs of-
ten moves between states with the same equivalence
class and so, in a sense, is wasted effort. This also af-
fects the connectivity of the search space, in that the
ability to move to a particular neighbouring equiva-
lence class can be constrained by the particular repre-
sentation given by a DAG.

There is also the problem given by the prior prob-
ability used in the scoring function. Whilst search-
ing through the space of DAGS, certain equivalence
classes can be over represented by this prior, because
there are many more DAGs contained in the class.

These concerns have motivated researchers. In
particular, recent implementations of algorithms that
search through the space of equivalence classes have

produced results that show a marked improvement in
execution time and a small improvement in learning
accuracy, depending on the type of data set (Chicker-
ing, 2002a,b).

3.3 Techniques for searching through
equivalence classes

Note that below, a move is referred to as an application
of an operator to a particular state in the search space.

To be able to conduct a search through the space
of equivalence classes, a method must be able to find
out whether a particular move is valid and if valid,
how good that move is. These tasks are relatively
easy whilst searching through the space of DAGs — a
check whether a move is valid is equivalent to a check
whether a move keeps a DAG acyclic. The goodness
of such a move is found out by using the scoring func-
tion, but rather then scoring each neighbouring DAG
in the search space, the decomposability of most scor-
ing criterion can be taken advantage of, with the result
that only nodes whose parent sets have changed need
to be scored.

However, this task of checking move validity and
move score is not as easy in the space of equivalence
classes. For one, instead of just checking for cycles,
checks also have to be made so that unintended v-
structures are not created in a consistent extension of a
PDAG. Scoring a move also creates difficulties, as it is
hard to know what extension and hence what changes
in parent sets of nodes will occur, without actually
performing this extension. Also, a local change in
a PDAG might make a non-local change in a corre-
sponding extension and so force unnecessary applica-
tions of the score function.

These problems were voiced as concerns by Chick-
ering (1996b). In that paper, validity checking of
moves is performed by trying to obtain a consistent
extension of the resulting PDAG — if none exists then
the move is not valid. Scoring the move was achieved
by scoring the changed nodes in the consistent exten-
sion given. These methods were very generic, but re-
sulted in a significant slowdown in algorithm execu-
tion, compared to search in the space of DAGs.

To alleviate this problem, authors proposed im-
provements that would allow move validity and move
score to be computed without needing to obtain a con-
sistent extension of the PDAG (Munteanu & Bendou,
2001; Chickering, 2002a). This was done by defining
an explicit set of operators, with each operator having
a validity test and corresponding score change func-
tion, that could be calculated on the PDAG. These
changes led to a speedup of the execution time of
the algorithm, with the result that search in the space
of equivalence classes of Bayesian networks became
competitive with search in the space of Bayesian net-
works. An example of one set of these operators is
given in table 2. The variables x and y refer to nodes



Operator \ Effect \

Validity Tests

\ Change in Score

. 1. Every undirected path from e
InsertU Add an undirected to y contains a node in N, s (y, Njz Ull,)
T—y arc between x and y —5(y, Ny y UIL)
2. I, =11, ’
DeleteU Delete an undirected N . s(y, Ny UIL)
«,y 18 a clique ‘o
T—y arc between x and y -5 (y, NyyU Hy)
1. Every semi-directed path from
to = contains a node in {2 .
InsertD Add a directed arc Y oy 5 (Y, oy UILFT)
=y from x to y 2. Q. , is aclique —5(y, Qg UIL)
3. I, # 11,
i . . SN, UIL®
DeleteD Delete a directed arc N, is a clique s (y, Ny UTL,®)
T —y from x to y s (y, N, UTL,)
1. Every semi-directed path from x
to y that does not include the edge S (Z/» H; w)
ReverseD Reverse a directed & — y contains a node in Q, , U | 5 (2, TV Uy, .)
T —y arc from z to y N, —s(y,1I,)
_ . —5(z, I UQy )
2. €y . is aclique
. _ s (= IV U N, 2+0)
Direct undirected i “y
MakeV trect undirecte Every undirected path between x + s (y, I, UN;Z)
arcs from x and y to . . v z.Y
T—z—y - and y contains a node in IV, , — 3 (z, I, U N;Zﬂ)
—s(y, I, UN )

Table 2: Validity conditions and change in score for each operator

in a graph, so e.g. the InsertU operator takes two nodes
as arguments,  and y. It can be seen that all the oper-
ators take two arguments, except MakeV, which takes
three arguments. Each operator also has a set of va-
lidity tests that must be passed in order for the appli-
cation of the operator with its particular arguments to
be valid. Finally, the score difference between the old
and new PDAGs is given in the last column. In this ta-
ble, I1, is the parent set of node x, IV is the neighbour
set of node z, N , is the set of shared neighbours of
nodes x and y and €, ,, is the set of parents of x that
are neighbours of 3. Also, as a convenience, M 1% is
notation for M U{x} and M ~* is notation for M\ {z}.

4 Accelerating the learning process

Whilst the execution time of searching for equiva-
lence classes of Bayesian networks has decreased, it
still remains quite high for problem instances with
many variables. This is especially so if the search al-
gorithm needs multiple traversals through the search
space. Therefore, a typical method of speeding up per-
formance is to cache the values of the score function
— this normally gives a large cut in execution time.
With this situation, multiple identical runs over a typi-
cal greedy search using the operators given by Chick-
ering (in Table 2) were analysed. From this analysis, it
was found that much of the time was spent computing

two main quantities.

In the first run, the dominant factor was the time
needed to compute the values given by the score func-
tion. However, in the succeeding runs, it was found
that practically all the execution time was used in cal-
culating the validity tests for the various operators.
This was because values given by the score function
had been cached. In particular, checking the valid-
ity conditions for the operators InsertU, InsertD and
MakeV was taking the most time. Upon further anal-
ysis, it was seen that checking the “path” condition in
each of these operators was the main culprit. In or-
der to reduce this time taken, two new methods were
examined.

4.1 Reducing the number of checked nodes

As shown in Table 2, five of the operators take two
nodes as parameters and one takes three nodes. In the
naive case, where n = |V, the number of nodes in the
graph, this would mean O(n?) and O(n?®) checks. If
the validity test includes a “path” condition, this will
take time in O(n + €), where e is the number of edges
on the graph. This could mean time in O(n? + n2e)
and O(n* + n3e) to check the operators.

However, looking at the validity tests more closely,
it can be seen that not all combinations of nodes need
be checked. In particular, given a node, we can find a



Operator Validity Tests VALID-NODES
1. Every undirected path from x 1. V\ Xy UCHECK (Nn, \ (N2 U {z}))
Lniar;U to y contains a node in N, , (€]€ € V.€ £ 2, |Te| = 0} if |IL| =0
2. 1, =11, " | CHECK (Zq,) otherwise
DeleteU N,y is a clique CHECK (N,)
r—=y
1. Every semi-directed path from 1. V\ X U CHECK (N, \ 1)
InsertD y to x contains a node in £2, 2. V\ X UCHECK (Np, \ II,)
T — 2. Qp i li .
Y .y 1s aclique . (€€ € V, || £ 0} if T =0
3. 10, #11, " | cHECK (Zm,) otherwise
DeleteD . . -
N, 1 =
.y y s a clique CHECK (Z; U {z})
1. Every semi-directed path from z
to y that does not include the edge =
1. CHECK (=,
ReverseD x — y contains a node in Q, , U (Z2)
r—y Ny 2. CHECK (Z,)
2. §y 5 is aclique
MakeV Every undirected path between x
CHECK (N N, U
Tz and y contains a node in IV, ,, (N, A ( {z}))

Table 3: Validity conditions and set of valid nodes for a node x

subset of the nodes V' that are valid and a subset that
need to be checked by the original conditions.

Table 3 shows for each operator, the original va-
lidity tests used, and the set of nodes for which this
test is valid. In this table, some extra notation is used.
CHECK is a function that uses the original validity test.
= is used to refer to the children of a node. Xz is
used to refer to those nodes that can be reached from
node z by following neighbours (), children (=)
or parents (II). E.g. X yz are those nodes reachable
by following the neighbours and children from node
x. Finally when the notation /N7, is used it means
the union over the neighbours of the parents of z, i.e.
Usen, N

From looking at Table 3, it can be seen that the
number of validity checks for a given node z is now
bounded by e.g. Ny_, i.e. by the number of nodes that
are of distance 2 from x. If the number of parents, chil-
dren and neighbours a node can have is given an upper
bound k (as is normally the case) then there are at most
k? checks. This means the number of times an opera-
tor now needs to be checked is in O(nk?) as opposed
to O(n?). This behaviour should lead to a speed up of
validity checking, especially for large values of n.

4.2 Caching

Looking again at the behaviour of a search though the
problem space, it can be seen that most moves affect

Algorithm 1 UPDATE-CACHE

Input: PDAG Prew, peld,
Cache
Output: Cache Cache
C «CHANGED-NODES (P"e®, Poid)
for each operator o € O do
for each changed node ¢ € C' do
Check U= CHECK-NODES (o, ¢, P°'?)
Check U= CHECK-NODES (o, ¢, P™*")
end for
for each node x € Check do
Cache \ = CACHE-VALID(o, z, Cache)
valid =VALID-NODES (0, P™", z)
Cache U=(o, x,valid)
end for
end for
return C'ache

Operators O, Cache

only a subset of the nodes V. As an example, if node
x is not connected to node y or z then adding an undi-
rected arc between y and z will not affect the validity
of adding an undirected arc from x to y or z. This
behaviour can be taken advantage of, by caching the
values of validity tests for particular moves. Once this
is done, a method needs to be found to update the
cache after a particular move, by removing invalid and
adding new valid moves. One particular procedure is
given in Algorithm 1. An explanation of the algorithm
is as follows.



] \ Alarm \ Barley \ Diabetes \ HailFinder \ Mildew \ Win95pts ‘
Original 3.560 x 10% | 8.5345 x 10% | 3.8889 x 103 | 1.1404 x 10* | 2.3267 x 103 | 7.3302 x 10*
Fast 0.9753 x 10° | 2.7647 x 10% | 1.0241 x 10° | 0.1431 x 10" | 0.6540 x 10® | 0.6527 x 10*
Original/Fast 3.6503 3.0870 3.7976 7.9687 3.5579 11.2307
V| 37 48 36 56 35 76
Table 4: Running times at t = 100

Operator CHECK-NODES \ (Table 2), a BDeu scoring function and the parameters

InsertU XN tmaz = 100, tstep =6, m =5, P = 0.1, do = 0.9

DeleteU N, U {z} and 8 = 3. The results of the experiments can be

InsertD Xn= seen in Figure 3. Here, the run time is shown for an

DeleteD N, U{z} experiment at each iteration of the ACO-E algorithm,

ReverseD Xnm averaged across the 100 experiment runs. Note that

MakeV Xn the graphs are designed to show the relative difference

Table 5: The nodes that must be checked for a change
at node x

The algorithm receives as input, the PDAG that has
been modified by the last move in the search space
Prev the PDAG before this modification took place
Peold, the set of operators being used O and a set of
cached validity tests C'ache. The algorithm returns
the modified cache C'ache at the end of the procedure.
Firstly, UPDATE-CACHE calculates the nodes that have
changed from PDAG P to P"¢. By this is meant
those nodes where there has been a change in the edges
connected to them. Next, for each operator o and each
changed node ¢, the other nodes that might have been
affected by this change are identified by the CHECK-
NODES procedure. The value for this is calculated dif-
ferently for each operator — Table 5 gives values for
each of Chickering’s six operators. Then, for each op-
erator and each node x that must be checked, the cache
entries with x as the first argument are deleted. Next,
the new set of nodes that are valid given the operator
o and the node x are calculated as in Table 3. Finally
the new set of valid nodes are entered into the cache.

It is hard to quantify the effect of the caching op-
erations on the complexity of operator validity testing.
In any event, it is likely to lower the amount of nodes
checked from n.

5 Experimental results

In order to test the applicability of the above-
mentioned techniques, a series of experiments were
run using an algorithm that would benefit from faster
move validity checking — i.e. one with multiple
restarts. This algorithm was the ACO-E algorithm by
Daly & Shen (2007). Six example Bayesian networks
were used in the overall experiment — Alarm, Bar-
ley, Diabetes, HailFinder, Mildew and Win95pts.! For
each network, 100 experiments were run. Each indi-
vidual run sampled 5000 data from the network and
ran the ACO-E algorithm with Chickering’s operators

between the two experimental conditions. As such the
absolute scale on each graph varies according to the
example network. As can be seen from the diagrams,
the validity checking techniques explored in this paper
have resulted in a speed up over the original running
times. To quantify these results further, the original
running times and improved running times for each of
the test networks at iteration ¢ = 100 are shown in Ta-
ble 4. Also given are the ratio of original to improved
running times and the number of nodes |V| in each
network. The Pearson correlation coefficient was cal-
culated over the ratio and number of nodes and came
to the figure r = 0.9287. The critical value of r for
v = 4 degrees of freedom and p = 0.01 was found
to be r = 0.917. Therefore there is a 99% probabil-
ity that a positive correlation exists between the num-
ber of variables in a model and the factor of speed up
given by the methods introduced in this paper. This
would imply that the methods given are effective for
wide data sets.

6 Conclusions and future directions

This paper has introduced two methods for speeding
up the learning of equivalence classes of Bayesian net-
work structures. The first decreases the amount of va-
lidity testing that needs to be done by constraining the
nodes that are tested. The second uses a cache to store
the result of validity tests and to reuse them where pos-
sible. The methods were shown to be effective in al-
gorithms with multiple restarts and in wide data sets.

In the future, more tests need to be run on wider
data sets, e.g. those with hundreds of variables instead
of tens of variables. This would confirm the applica-
bility of the methods for domains with a very large
number of attributes. Also, tests need to be run across
a range of different algorithms, such as simulated an-
nealing, random walking or indeed any stochastic lo-
cal search that might benefit from restarting. These
would show the generalisation capability of the tech-
niques given in this paper.

1. http://www.norsys.com/netlibrary/index.htm



Real Time (s)

Real Time (s)

Real Time (s)

4000 T T T T T T T T T 9000 T T T T T T T T T
Original Validity Te: Original Validity Testg P
Faster Validity Tests Faster Validity Tests
35001 = 80001 7
-
-
-
4 7000
30001 - T
-
-~
7 6000
25001 P T
- @
e ‘o 5000
- £
20001 P 4 &
- —
g T 4000
- 14
15001
3000
10001
2000
5001 1000
o | I I I I I I I I 0
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Ant Iteration Ant Iteration
(a) Alarm (b) Barley
4000 T T T T T T T T T 12000 T T T T T T T T T
Original Validity Test s rig P
Faster Validity Tests - Faster Validity Tests
3500 e B P
7 10000 - B
-
3000f .7 B -
-
- s
.7 8000 - 4
25001 e 1 e
- @ s
- ~ e
- 2 -
20001 P B £ 6000F P B
- = -
2 -7
1500F . b e
g 40000 e ]
,
1000 7
.
20001 - T
500
0 I I I I I I I I I 0 I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Ant Iteration Ant Iteration
(c) Diabetes (d) HailFinder
x 10"
2500 T T T T T T T T T 8 T T T T T T T T T
Original Validity Te: Original Validity Testg
aster Validity Tests e aster Validity Tests
e - 7 -
-
2000 - B e
-
I 6 . b
- -
-
.
e -
- 5| - B
1500 s b @ -
-
e o -
2 -
ad E 4r L7 4
- b
10001 q -
-7 3r e b
-
,
-
2r 7 4
5001 P
1r - b
0 | I I I I I I I I 0 I I | I I I I I
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

Ant Iteration

(e) Mildew

Ant Iteration

(f) Win95pts

Figure 3: Comparison of original and fast validity checking
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