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Performing Feature Selection with ACO

Richard Jensen

Department of Computer Science, The University of Wales, Aberystwyth, UK
rkj@aber.ac.uk

Summary. The main aim of feature selection is to determine a minimal feature sub-
set from a problem domain while retaining a suitably high accuracy in representing
the original features. In real world problems FS is a must due to the abundance of
noisy, irrelevant or misleading features. However, current methods are inadequate
at finding optimal reductions. This chapter presents a feature selection mechanism
based on Ant Colony Optimization in an attempt to combat this. The method is
then applied to the problem of finding optimal feature subsets in the fuzzy-rough
data reduction process. The present work is applied to two very different challenging
tasks, namely web classification and complex systems monitoring.

1 Introduction

Many problems in machine learning involve high dimensional descriptions of
input features. It might be expected that the inclusion of an increasing number
of features would increase the likelihood of including enough information to
distinguish between classes. Unfortunately, this is not true if the size of the
training dataset does not also increase rapidly with each additional feature
included. This is the so-called curse of dimensionality. A high-dimensional
dataset increases the chances that a data-mining algorithm will find spurious
patterns that are not valid in general. It is therefore not surprising that much
research has been carried out on dimensionality reduction [6, 18]. However,
existing work tends to destroy the underlying semantics of the features after
reduction.

The task of feature selection is to significantly reduce dimensionality by
locating minimal subsets of features, at the same time retaining data se-
mantics. The use of rough set theory (RST) [21] to achieve such data reduction
has proved very successful. Over the past twenty years, rough set theory has
become a topic of great interest to researchers and has been applied to many
domains (e.g. classification [8], systems monitoring [29], clustering [12], ex-
pert systems [32]). This success is due in part to the following aspects of the



theory: only the facts hidden in data are analysed, no additional information
about the data is required (such as thresholds or expert knowledge), and it
finds a minimal knowledge representation. Given a dataset with discretized
attribute values, it is possible to find a subset (termed a reduct) of the original
attributes using RST that are the most informative; all other attributes can
be removed from the dataset with minimal information loss.

However, it is most often the case that the values of attributes may be both
crisp and real-valued, and this is where traditional rough set theory encounters
a problem. It is not possible in the theory to say whether two attribute values
are similar and to what extent they are the same; for example, two close values
may only differ as a result of noise, but in RST they are considered to be as
different as two values of a different order of magnitude.

It is, therefore, desirable to develop these techniques to provide the means
of data reduction for crisp and real-value attributed datasets which utilises
the extent to which values are similar. This could be achieved through the
use of fuzzy-rough sets. Fuzzy-rough set theory is an extension of crisp rough
set theory, allowing all memberships to take values in the range [0,1]. This
permits a higher degree of flexibility compared to the strict requirements
of crisp rough sets that only deal with full or zero set membership. They
encapsulate the related but distinct concepts of vagueness (for fuzzy sets [37])
and indiscernibility (for rough sets [21]), both of which occur as a result of
imprecision, incompleteness and/or uncertainty in knowledge [9].

Ant Colony Optimization (ACO) techniques are based on the behaviour of
real ant colonies used to solve discrete optimization problems [2]. These have
been successfully applied to a large number of difficult combinatorial prob-
lems such as the quadratic assignment and the traveling salesman problems.
This method is particularly attractive for feature selection as there seems
to be no heuristic that can guide search to the optimal minimal subset (of
features) every time. Additionally, it can be the case that ants discover the
best feature combinations as they proceed throughout the search space. This
chapter investigates how ant colony optimization may be applied to the diffi-
cult problem of finding optimal feature subsets, using fuzzy-rough sets, within
web classification and systems monitoring programs.

The rest of this chapter is structured as follows. The second section de-
scribes the theory of rough sets and particularly focuses on its role as a feature
selection tool. The extension to this approach, fuzzy-rough set feature selec-
tion, is detailed in the third section. Section 4 introduces the main concepts in
ACO and details how this may be applied to the problem of feature selection
in general, and fuzzy-rough feature selection in particular. The fifth section
describes the experimentation carried out using the crisp ACO-based feature
selector. The application of the fuzzy-rough techniques to web content clas-
sification and complex system monitoring is detailed in section 6. Section 7
concludes the chapter, and proposes further work in this area.
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2 Rough Feature Selection

Rough set theory [10, 20, 21] is an extension of conventional set theory that
supports approximations in decision making. It possesses many features in
common (to a certain extent) with the Dempster-Shafer theory of evidence
[30] and fuzzy set theory [35]. The rough set itself is the approximation of a
vague concept (set) by a pair of precise concepts, called lower and upper ap-
proximations, which are a classification of the domain of interest into disjoint
categories. The lower approximation is a description of the domain objects
which are known with certainty to belong to the subset of interest, whereas
the upper approximation is a description of the objects which possibly belong
to the subset.

Rough Set Attribute Reduction (RSAR) [3] provides a filter-based tool by
which knowledge may be extracted from a domain in a concise way; retaining
the information content whilst reducing the amount of knowledge involved.
The main advantage that rough set analysis has is that it requires no addi-
tional parameters to operate other than the supplied data [11]. It works by
making use of the granularity structure of the data only.

2.1 Theoretical Background

Central to RSAR is the concept of indiscernibility. Let I = (U, A) be an
information system, where U is a non-empty set of finite objects (the universe)
and A is a non-empty finite set of attributes such that a : U → Va for every
a ∈ A. Va is the set of values that attribute a may take. For a decision table,
A = {C ∪ D} where C is the set of input features and D is the set of class
indices. Here, a class index d ∈ D is itself a variable d : U → {0, 1} such that
for a ∈ U, d(a) = 1 if a has class d and d(a) = 0 otherwise.
With any P ⊆ A there is an associated equivalence relation IND(P ):

IND(P ) = {(x, y) ∈ U
2|∀a ∈ P, a(x) = a(y)} (1)

The partition of U, generated by IND(P) is denoted U/IND(P) (or U/P) and
can be calculated as follows:

U/IND(P ) = ⊗{a ∈ P : U/IND({a})}, (2)

where
A⊗B = {X ∩ Y : ∀X ∈ A, ∀Y ∈ B, X ∩ Y 6= ∅} (3)

If (x, y) ∈ IND(P ), then x and y are indiscernible by attributes from P .
The equivalence classes of the P -indiscernibility relation are denoted [x]P .
Let X ⊆ U. X can be approximated using only the information contained
within P by constructing the P-lower and P-upper approximations of X :

PX = {x | [x]P ⊆ X} (4)
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PX = {x | [x]P ∩X 6= ∅} (5)

Let P and Q be equivalence relations over U, then the positive, negative
and boundary regions can be defined as:

POSP (Q) =
⋃

X∈U/Q PX

NEGP (Q) = U−⋃
X∈U/Q PX

BNDP (Q) =
⋃

X∈U/Q PX −⋃
X∈U/Q PX

The positive region contains all objects of U that can be classified to
classes of U/Q using the information in attributes P. The boundary region,
BNDP (Q), is the set of objects that can possibly, but not certainly, be clas-
sified in this way. The negative region, NEGP (Q), is the set of objects that
cannot be classified to classes of U/Q.

An important issue in data analysis is discovering dependencies between
attributes. Intuitively, a set of attributes Q depends totally on a set of attrib-
utes P, denoted P ⇒ Q, if all attribute values from Q are uniquely determined
by values of attributes from P. If there exists a functional dependency between
values of Q and P, then Q depends totally on P. In rough set theory, depend-
ency is defined in the following way:

For P, Q ⊂ A, it is said that Q depends on P in a degree k (0 ≤ k ≤ 1),
denoted P ⇒k Q, if

k = γP (Q) =
|POSP (Q)|

|U| (6)

If k = 1, Q depends totally on P, if 0 < k < 1, Q depends partially (in a
degree k) on P, and if k = 0 then Q does not depend on P .

By calculating the change in dependency when an attribute is removed
from the set of considered conditional attributes, a measure of the significance
of the attribute can be obtained. The higher the change in dependency, the
more significant the attribute is. If the significance is 0, then the attribute is
dispensable. More formally, given P,Q and an attribute a ∈ P,

σP (Q, a) = γP (Q)− γP−{a}(Q) (7)

2.2 Reduction Method

The reduction of attributes is achieved by comparing equivalence relations
generated by sets of attributes. Attributes are removed so that the reduced set
provides the same predictive capability of the decision feature as the original.
A reduct is defined as a subset of minimal cardinality Rmin of the conditional
attribute set C such that γR( D) = γC(D).

R = {X : X ⊆ C, γX(D) = γC(D)} (8)
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Rmin = {X : X ∈ R, ∀Y ∈ R, |X | ≤ |Y |} (9)

The intersection of all the sets in Rmin is called the core, the elements of
which are those attributes that cannot be eliminated without introducing more
contradictions to the dataset. In RSAR, a subset with minimum cardinality
is searched for.

The problem of finding a reduct of an information system has been the
subject of much research. The most basic solution to locating such a subset
is to simply generate all possible subsets and retrieve those with a maximum
rough set dependency degree. Obviously, this is an expensive solution to the
problem and is only practical for very simple datasets. Most of the time only
one reduct is required as, typically, only one subset of features is used to
reduce a dataset, so all the calculations involved in discovering the rest are
pointless.

To improve the performance of the above method, an element of pruning
can be introduced. By noting the cardinality of any pre-discovered reducts, the
current possible subset can be ignored if it contains more elements. However,
a better approach is needed - one that will avoid wasted computational effort.

QuickReduct(C,D).
C, the set of all conditional features;
D, the set of decision features.

(1) R← {}
(2) do
(3) T ← R
(4) ∀x ∈ (C−R)
(5) if γR∪{x}(D) > γT (D)
(6) T ← R ∪ {x}
(7) R← T
(8) until γR(D) == γC(D)
(9) return R

Fig. 1. The QuickReduct Algorithm

The QuickReduct algorithm given in Fig. 1 (adapted from [3]), attempts
to calculate a reduct without exhaustively generating all possible subsets. It
starts off with an empty set and adds in turn, one at a time, those attrib-
utes that result in the greatest increase in the rough set dependency metric,
until this produces its maximum possible value for the dataset. Other such
techniques may be found in [23].

Determining the consistency of the entire dataset is reasonable for most
datasets. However, it may be infeasible for very large data, so alternative
stopping criteria may have to be used. One such criterion could be to terminate
the search when there is no further increase in the dependency measure. This
will produce exactly the same path to a reduct due to the monotonicity of the
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measure [3], without the computational overhead of calculating the dataset
consistency.

The QuickReduct algorithm, however, is not guaranteed to find a min-
imal subset as has been shown in [4]. Using the dependency function to dis-
criminate between candidates may lead the search down a non-minimal path.
It is impossible to predict which combinations of attributes will lead to an
optimal reduct based on changes in dependency with the addition or dele-
tion of single attributes. It does result in a close-to-minimal subset, though,
which is still useful in greatly reducing dataset dimensionality. However, when
maximal data reductions are required, other search mechanisms must be em-
ployed. Although these methods also cannot ensure optimality, they provide
a means by which the best feature subsets might be found.

3 Fuzzy-Rough Feature Selection

The selection process described previously based on crisp rough sets (RSAR)
can only operate effectively with datasets containing discrete values. However,
most datasets contain real-valued features and so it is necessary to perform
a discretization step beforehand. This is typically implemented by standard
fuzzification techniques. As membership degrees of feature values to fuzzy
sets are not exploited in the process of dimensionality reduction, important
information has been lost. By employing fuzzy-rough sets, it is possible to use
this information to better guide feature selection.

A fuzzy-rough set is defined by two fuzzy sets, fuzzy lower and upper
approximations, obtained by extending the corresponding crisp rough set no-
tions. In the crisp case, elements that belong to the lower approximation (i.e.
have a membership of 1) are said to belong to the approximated set with
absolute certainty. In the fuzzy-rough case, elements may have a membership
in the range [0,1], allowing greater flexibility in handling uncertainty.

3.1 Fuzzy Equivalence Classes

Fuzzy equivalence classes [9, 19] are central to the fuzzy-rough set approach
in the same way that crisp equivalence classes are central to classical rough
sets. For typical applications, this means that the decision values and the con-
ditional values may all be fuzzy. The concept of crisp equivalence classes can
be extended by the inclusion of a fuzzy similarity relation S on the universe,
which determines the extent to which two elements are similar in S. The usual
properties of reflexivity (µS(x, x) = 1), symmetry (µS(x, y) = µS(y, x)) and
transitivity (µS(x, z) ≥ µS(x, y) ∧ µS(y, z)) hold.

Using the fuzzy similarity relation, the fuzzy equivalence class [x]S for
objects close to x can be defined:

µ[x]S (y) = µS(x, y) (10)
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The following axioms should hold for a fuzzy equivalence class F :

• ∃x, µF (x) = 1
• µF (x) ∧ µS(x, y) ≤ µF (y)
• µF (x) ∧ µF (y) ≤ µS(x, y)

The first axiom corresponds to the requirement that an equivalence class
is non-empty. The second axiom states that elements in y’s neighbourhood
are in the equivalence class of y. The final axiom states that any two elements
in F are related via the fuzzy similarity relation S. Obviously, this definition
degenerates to the normal definition of equivalence classes when S is non-
fuzzy. The family of normal fuzzy sets produced by a fuzzy partitioning of the
universe of discourse can play the role of fuzzy equivalence classes [9].

3.2 Fuzzy Lower and Upper Approximations

The fuzzy lower and upper approximations are fuzzy extensions of their crisp
counterparts. Informally, in crisp rough set theory, the lower approximation
of a set contains those objects that belong to it with certainty. The upper
approximation of a set contains the objects that possibly belong. From the
literature, the fuzzy P -lower and P -upper approximations are defined as [9]:

µPX(Fi) = infxmax{1− µFi(x), µX (x)} ∀i (11)

µPX(Fi) = supxmin{µFi(x), µX(x)} ∀i (12)

where U/P stands for the partition of the universe of discourse, U, with re-
spect to a given subset P of features, and Fi denotes a fuzzy equivalence class
belonging to U/P . Note that although the universe of discourse in feature
reduction is finite, this is not the case in general, hence the use of sup and
inf above. These definitions diverge a little from the crisp upper and lower
approximations, as the memberships of individual objects to the approxima-
tions are not explicitly available. As a result of this, the fuzzy lower and upper
approximations are redefined as [14]:

µPX(x) = sup
F∈U/P

min(µF (x), inf
y∈U

max{1− µF (y), µX(y)}) (13)

µP X(x) = sup
F∈U/P

min(µF (x), sup
y∈U

min{µF (y), µX(y)}) (14)

The tuple < PX, PX > is called a fuzzy-rough set. For this particular feature
selection method, the upper approximation is not used, though this may be
useful for other methods.

For an individual feature, a, the partition of the universe by {a} (denoted
U/IND({a})) is considered to be the set of those fuzzy equivalence classes for
that feature. For example, if the two fuzzy sets Na and Za are generated for
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feature a during fuzzification, the partition U/IND({a}) = {Na, Za}. If the
fuzzy-rough feature selection process is to be useful, it must be able to deal
with multiple features, finding the dependency between various subsets of the
original feature set. For instance, it may be necessary to be able to determine
the degree of dependency of the decision feature(s) with respect to feature set
P = {a, b}. In the crisp case, U/P contains sets of objects grouped together
that are indiscernible according to both features a and b. In the fuzzy case,
objects may belong to many equivalence classes, so the cartesian product of
U/IND({a}) and U/IND({b}) must be considered in determining U/P . In
general,

U/P = ⊗{a ∈ P : U/IND({a})} (15)

For example, if P = {a, b}, U/IND({a}) = {Na, Za} and U/IND({b}) =
{Nb, Zb}, then

U/P = {Na ∩Nb, Na ∩ Zb, Za ∩Nb, Za ∩ Zb}

Clearly, each set in U/P denotes an equivalence class. The extent to which
an object belongs to such an equivalence class is therefore calculated by using
the conjunction of constituent fuzzy equivalence classes, say Fi, i = 1, 2, ..., n:

µF1∩...∩Fn(x) = min(µF1(x), µF2 (x), ..., µFn(x)) (16)

3.3 Fuzzy-Rough Reduction Method

Fuzzy-Rough Feature Selection (FRFS) [14] builds on the notion of the fuzzy
lower approximation to enable reduction of datasets containing real-valued
features. The process becomes identical to the crisp approach when dealing
with nominal well-defined features.

The crisp positive region in the standard RST is defined as the union of
the lower approximations. By the extension principle, the membership of an
object x ∈ U, belonging to the fuzzy positive region can be defined by

µPOSP (Q)(x) = sup
X∈U/Q

µPX(x) (17)

Object x will not belong to the positive region only if the equivalence class
it belongs to is not a constituent of the positive region. This is equivalent
to the crisp version where objects belong to the positive region only if their
underlying equivalence class does so.

Using the definition of the fuzzy positive region, a new dependency func-
tion between a set of features Q and another set P can be defined as follows:

γ′P (Q) =
|µPOSP (Q)(x)|

|U| =
∑

x∈U
µPOSP (Q)(x)
|U| (18)
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As with crisp rough sets, the dependency of Q on P is the proportion of
objects that are discernible out of the entire dataset. In the present approach,
this corresponds to determining the fuzzy cardinality of µPOSP (Q)(x) divided
by the total number of objects in the universe.

FRQuickReduct(C,D).
C, the set of all conditional features;
D, the set of decision features.

(1) R← {}, γ′best ← 0, γ′prev ← 0
(2) do
(3) T ← R
(4) γ′prev ← γ′best

(5) ∀x ∈ (C −R)
(6) if γ′R∪{x}(D) > γ′T (D)
(7) T ← R ∪ {x}
(8) γ′best ← γ′T (D)
(9) R← T
(10) until γ′best = γ′prev

(11) return R

Fig. 2. The fuzzy-rough QuickReduct algorithm

A new QuickReduct algorithm, based on the crisp version [3], has been
developed as given in Fig. 2. It employs the new dependency function γ′ to
choose which features to add to the current reduct candidate. The algorithm
terminates when the addition of any remaining feature does not increase the
dependency. As with the original algorithm, for a dimensionality of n, the
worst case dataset will result in (n2 + n)/2 evaluations of the dependency
function. However, as fuzzy-rough set-based feature selection is used for di-
mensionality reduction prior to any involvement of the system which will
employ those features belonging to the resultant reduct, this operation has no
negative impact upon the run-time efficiency of the system.

3.4 A Worked Example

Table 1 contains three real-valued conditional attributes and a crisp-valued
decision attribute. To begin with, the fuzzy-rough QuickReduct algorithm
initializes the potential reduct (i.e. the current best set of attributes) to the
empty set.

Using the fuzzy sets defined in Fig. 3 (for all conditional attributes), and
setting A = {a}, B = {b}, C = {c} and Q = {q}, the following equivalence
classes are obtained:
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Object a b c q

1 −0.4 −0.3 −0.5 no
2 −0.4 0.2 −0.1 yes
3 −0.3 −0.4 −0.3 no
4 0.3 −0.3 0 yes
5 0.2 −0.3 0 yes
6 0.2 0 0 no

Table 1. Example dataset: crisp decisions

N Z

1

0
0.50−0.5

0.8

−0.4

Fig. 3. Fuzzifications for conditional features

U/A = {Na, Za}
U/B = {Nb, Zb}
U/C = {Nc, Zc}
U/Q = {{1, 3, 6}, {2, 4, 5}}

The first step is to calculate the lower approximations of the sets A, B
and C, using (13). To clarify the calculations involved, table 2 contains the
membership degrees of objects to fuzzy equivalence classes. For simplicity, only
A will be considered here; that is, using A to approximate Q. For the first
decision equivalence class X = {1,3,6}, µA{1,3,6}(x) needs to be calculated:

µA{1,3,6}(x) = sup
F∈U/A

min(µF (x), inf
y∈U

max{1− µF (y), µ{1,3,6}(y)})

Considering the first fuzzy equivalence class of A, Na:

min(µNa(x), inf
y∈U

max{1− µNa(y), µ{1,3,6}(y)})

For object 2 this can be calculated as follows. From table 2 it can be seen that
the membership of object 2 to the fuzzy equivalence class Na, µNa(2), is 0.8.
The remainder of the calculation involves finding the smallest of the following
values:
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Table 2. Membership values of objects to corresponding fuzzy sets

Object a b c q
Na Za Nb Zb Nc Zc {1, 3, 6} {2, 4, 5}

1 0.8 0.2 0.6 0.4 1.0 0.0 1.0 0.0
2 0.8 0.2 0.0 0.6 0.2 0.8 0.0 1.0
3 0.6 0.4 0.8 0.2 0.6 0.4 1.0 0.0
4 0.0 0.4 0.6 0.4 0.0 1.0 0.0 1.0
5 0.0 0.6 0.6 0.4 0.0 1.0 0.0 1.0
6 0.0 0.6 0.0 1.0 0.0 1.0 1.0 0.0

max(1-µNa(1), µ{1,3,6}(1)) = max(0.2,1.0) = 1.0
max(1-µNa(2), µ{1,3,6}(2)) = max(0.2,0.0) = 0.2
max(1-µNa(3), µ{1,3,6}(3)) = max(0.4,1.0) = 1.0
max(1-µNa(4), µ{1,3,6}(4)) = max(1.0,0.0) = 1.0
max(1-µNa(5), µ{1,3,6}(5)) = max(1.0,0.0) = 1.0
max(1-µNa(6), µ{1,3,6}(6)) = max(1.0,1.0) = 1.0

From the calculations above, the smallest value is 0.2, hence:

min(µNa(x), inf
y∈U

max{1− µNa(y), µ{1,3,6}(y)}) = min(0.8, inf{1, 0.2, 1, 1, 1, 1})
= 0.2

Similarly for Za

min(µZa(x), inf
y∈U

max{1− µZa(y), µ{1,3,6}(y)}) = min(0.2, inf{1, 0.8, 1, 0.6, 0.4, 1}
= 0.2

Thus,
µA{1,3,6}(2) = 0.2

Calculating the A-lower approximation of X = {1, 3, 6} for every object gives

µA{1,3,6}(1) = 0.2 µA{1,3,6}(2) = 0.2
µA{1,3,6}(3) = 0.4 µA{1,3,6}(4) = 0.4
µA{1,3,6}(5) = 0.4 µA{1,3,6}(6) = 0.4

The corresponding values for X = {2, 4, 5} can also be determined:

µA{2,4,5}(1) = 0.2 µA{2,4,5}(2) = 0.2
µA{2,4,5}(3) = 0.4 µA{2,4,5}(4) = 0.4
µA{2,4,5}(5) = 0.4 µA{2,4,5}(6) = 0.4

It is a coincidence here that µA{2,4,5}(x) = µA{1,3,6}(x) for this example. Using
these values, the fuzzy positive region for each object can be calculated via
using

µPOSA(Q)(x) = sup
X∈U/Q

µAX(x)

This results in:
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µPOSA(Q)(1) = 0.2 µPOSA(Q)(2) = 0.2
µPOSA(Q)(3) = 0.4 µPOSA(Q)(4) = 0.4
µPOSA(Q)(5) = 0.4 µPOSA(Q)(6) = 0.4

The next step is to determine the degree of dependency of Q on A:

γ′A(Q) =
∑

x∈U µPOSA(Q)(x)
|U | = 2/6

Calculating for B and C gives:

γ′B(Q) =
2.4
6

, γ′C(Q) =
1.6
6

From this it can be seen that attribute b will cause the greatest increase in
dependency degree. This attribute is chosen and added to the potential reduct.
The process iterates and the two dependency degrees calculated are

γ′{a,b}(Q) =
3.4
6

, γ′{b,c}(Q) =
3.2
6

Adding attribute a to the reduct candidate causes the larger increase of de-
pendency, so the new candidate becomes {a, b}. Lastly, attribute c is added
to the potential reduct:

γ′{a,b,c}(Q) =
3.4
6

As this causes no increase in dependency, the algorithm stops and outputs
the reduct {a, b}. The dataset can now be reduced to only those attributes
appearing in the reduct. When crisp RSAR is performed on this dataset (after
using the same fuzzy sets to discretize the real-valued attributes), the reduct
generated is {a, b, c}, i.e. the full conditional attribute set. Unlike crisp RSAR,
the true minimal reduct was found using the information on degrees of mem-
bership. It is clear from this example alone that the information lost by using
crisp RSAR can be important when trying to discover the smallest reduct
from a dataset.

Conventional hill-climbing approaches to feature selection such as the al-
gorithm presented above often fail to find maximal data reductions or minimal
reducts. Some guiding heuristics are better than others for this, but as no per-
fect heuristic exists there can be no guarantee of optimality. When maximal
data reductions are required, other search mechanisms must be employed. Al-
though these methods also cannot ensure optimality, they provide a means by
which the best feature subsets might be found. This motivates the develop-
ment of feature selection based on Ant Colony Optimization.

4 Ant-based Feature Selection

Swarm Intelligence (SI) is the property of a system whereby the collective be-
haviours of simple agents interacting locally with their environment cause co-
herent functional global patterns to emerge [2]. SI provides a basis with which
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it is possible to explore collective (or distributed) problem solving without
centralized control or the provision of a global model. One area of interest in
SI is Particle Swarm Optimization [17], a population-based stochastic optim-
ization technique. Here, the system is initialised with a population of random
solutions, called particles. Optima are searched for by updating generations,
with particles moving through the parameter space towards the current local
and global optimum particles. At each time step, the velocities of all particles
are changed depending on the current optima.

Ant Colony Optimization (ACO) [2] is another area of interest within SI.
In nature, it can be observed that real ants are capable of finding the shortest
route between a food source and their nest without the use of visual inform-
ation and hence possess no global world model, adapting to changes in the
environment. The deposition of pheromone is the main factor in enabling real
ants to find the shortest routes over a period of time. Each ant probabilistic-
ally prefers to follow a direction rich in this chemical. The pheromone decays
over time, resulting in much less pheromone on less popular paths. Given
that over time the shortest route will have the higher rate of ant traversal,
this path will be reinforced and the others diminished until all ants follow the
same, shortest path (the “system” has converged to a single solution). It is
also possible that there are many equally short paths. In this situation, the
rates of ant traversal over the short paths will be roughly the same, resulting
in these paths being maintained while others are ignored. Additionally, if a
sudden change to the environment occurs (e.g. a large obstacle appears on
the shortest path), the ACO system can respond to this and will eventually
converge to a new solution. Based on this idea, artificial ants can be deployed
to solve complex optimization problems via the use of artificial pheromone
deposition.

ACO is particularly attractive for feature selection as there seems to be
no heuristic that can guide search to the optimal minimal subset every time.
Additionally, it can be the case that ants discover the best feature combin-
ations as they proceed throughout the search space. This section discusses
how ACO may be applied to the difficult problem of finding optimal feature
subsets and, in particular, fuzzy-rough set-based reducts.

4.1 ACO Framework

An ACO algorithm can be applied to any combinatorial problem as far as it
is possible to define:

• Appropriate problem representation. The problem can be described as a
graph with a set of nodes and edges between nodes.

• Heuristic desirability (η) of edges. A suitable heuristic measure of the
“goodness” of paths from one node to every other connected node in the
graph.
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• Construction of feasible solutions. A mechanism must be in place whereby
possible solutions are efficiently created. This requires the definition of
a suitable traversal stopping criterion to stop path construction when a
solution has been reached.

• Pheromone updating rule. A suitable method of updating the pheromone
levels on edges is required with a corresponding evaporation rule, typically
involving the selection of the n best ants and updating the paths they
chose.

• Probabilistic transition rule. The rule that determines the probability of
an ant traversing from one node in the graph to the next.

Each ant in the artificial colony maintains a memory of its history - remem-
bering the path it has chosen so far in constructing a solution. This history
can be used in the evaluation of the resulting created solution and may also
contribute to the decision process at each stage of solution construction.

Two types of information are available to ants during their graph traversal,
local and global, controlled by the parameters β and α respectively. Local
information is obtained through a problem-specific heuristic measure. The
extent to which the measure influences an ant’s decision to traverse an edge
is controlled by the parameter β. This will guide ants towards paths that are
likely to result in good solutions. Global knowledge is also available to ants
through the deposition of artificial pheromone on the graph edges by their
predecessors over time. The impact of this knowledge on an ant’s traversal
decision is determined by the parameter α. Good paths discovered by past ants
will have a higher amount of associated pheromone. How much pheromone
is deposited, and when, is dependent on the characteristics of the problem.
No other local or global knowledge is available to the ants in the standard
ACO model, though the inclusion of such information by extending the ACO
framework has been investigated [2].

4.2 Feature Selection

The feature selection task may be reformulated into an ACO-suitable problem
[13, 16]. ACO requires a problem to be represented as a graph - here nodes
represent features, with the edges between them denoting the choice of the
next feature. The search for the optimal feature subset is then an ant traversal
through the graph where a minimum number of nodes are visited that satisfies
the traversal stopping criterion. Figure 4 illustrates this setup - the ant is
currently at node a and has a choice of which feature to add next to its path
(dotted lines). It chooses feature b next based on the transition rule, then c and
then d. Upon arrival at d, the current subset {a, b, c, d} is determined to satisfy
the traversal stopping criteria (e.g. a suitably high classification accuracy has
been achieved with this subset, assuming that the selected features are used
to classify certain objects). The ant terminates its traversal and outputs this
feature subset as a candidate for data reduction.
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Fig. 4. ACO problem representation for feature selection

A suitable heuristic desirability of traversing between features could be
any subset evaluation function - for example, an entropy-based measure [24]
or the fuzzy-rough set dependency measure. Depending on how optimality is
defined for the particular application, the pheromone may be updated accord-
ingly. For instance, subset minimality and “goodness” are two key factors so
the pheromone update should be proportional to “goodness” and inversely
proportional to size. How “goodness” is determined will also depend on the
application. In some cases, this may be a heuristic evaluation of the subset, in
others it may be based on the resulting classification accuracy of a classifier
produced using the subset.

The heuristic desirability and pheromone factors are combined to form the
so-called probabilistic transition rule, denoting the probability of an ant k at
feature i choosing to move to feature j at time t:

pk
ij(t) =

[τij(t)]α.[ηij ]β∑
l∈Jk

i
[τil(t)]α.[ηil]β

(19)

where Jk
i is the set of ant k’s unvisited features, ηij is the heuristic desirability

of choosing feature j when at feature i and τij(t) is the amount of virtual
pheromone on edge (i, j). The choice of α and β is determined experimentally.
Typically, several experiments are performed, varying each parameter and
choosing the values that produce the best results.

Selection Process

The overall process of ACO feature selection can be seen in Fig. 5. It begins by
generating a number of ants, k, which are then placed randomly on the graph
(i.e. each ant starts with one random feature). Alternatively, the number of
ants to place on the graph may be set equal to the number of features within
the data; each ant starts path construction at a different feature. From these
initial positions, they traverse edges probabilistically until a traversal stopping
criterion is satisfied. The resulting subsets are gathered and then evaluated.
If an optimal subset has been found or the algorithm has executed a certain
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Fig. 5. ACO-based feature selection overview

number of times, then the process halts and outputs the best feature subset
encountered. If neither condition holds, then the pheromone is updated, a new
set of ants are created and the process iterates once more.

Complexity Analysis

The time complexity of the ant-based approach to feature selection is O(IAk),
where I is the number of iterations, A the number of original features, and
k the number of ants. In the worst case, each ant selects all the features. As
the heuristic is evaluated after each feature is added to the reduct candidate,
this will result in A evaluations per ant. After one iteration in this scenario,
Ak evaluations will have been performed. After I iterations, the heuristic will
be evaluated IAk times.

Pheromone Update

Depending on how optimality is defined for the particular application, the
pheromone may be updated accordingly. To tailor this mechanism to find
fuzzy-rough set reducts, it is necessary to use the dependency measure given
in (18) as the stopping criterion. This means that an ant will stop building its
feature subset when the dependency of the subset reaches the maximum for
the dataset (the value 1 for consistent datasets). The dependency function may
also be chosen as the heuristic desirability measure, but this is not necessary. In
fact, it may be of more use to employ a non-rough set related heuristic for this
purpose. By using an alternative measure such as an entropy-based heuristic,
the method may avoid feature combinations that may mislead the fuzzy-rough
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set-based heuristic. Again, the time complexity of this fuzzy-rough ant-based
method will be the same as that mentioned earlier, O(IAk).

The pheromone on each edge is updated according to the following formula:

τij(t + 1) = (1− ρ).τij(t) + ∆τij(t) (20)

where

∆τij(t) =
n∑

k=1

(γ′(Sk)/|Sk|) (21)

This is the case if the edge (i, j) has been traversed; ∆τij(t) is 0 otherwise. The
value ρ is a decay constant used to simulate the evaporation of the pheromone,
Sk is the feature subset found by ant k. The pheromone is updated according
to both the rough (or fuzzy-rough) measure of the “goodness” of the ant’s
feature subset (γ′) and the size of the subset itself. By this definition, all ants
update the pheromone. Alternative strategies may be used for this, such as
allowing only the ants with the currently best feature subsets to proportionally
increase the pheromone.

5 Crisp Ant-based Feature Selection Evaluation

In order to compare several mainstream approaches to crisp rough set-based
feature selection with ACO-based selection, an investigation into how these
methods perform in terms of resulting subset optimality has been carried out
here. Several real and artificial datasets are used for this purpose. In particular,
it is interesting to compare those methods that employ an incremental-based
search strategy with those that adopt a more complex stochastic/probabilistic
mechanism. Five techniques for finding crisp rough set reducts are tested
here on 13 datasets. These techniques are: RSAR (using QuickReduct),
EBR (an entropy-based approach [15]), GenRSAR (genetic algorithm-based),
AntRSAR (ant-based) and SimRSAR (simulated annealing-based)1.

5.1 Experimental Setup

Before the experiments are described, a few points must be made about the
later three approaches, GenRSAR, AntRSAR and SimRSAR.

GenRSAR employs a genetic search strategy in order to determine rough
set reducts. The initial population consists of 100 randomly generated feature
subsets, the probabilities of mutation and crossover are set to 0.4 and 0.6
respectively, and the number of generations is set to 100. The fitness function
1 These algorithms and datasets (as well as FRFS and antFRFS) can be down-

loaded from the webpage: http://users.aber.ac.uk/rkj/index.html
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considers both the size of subset and its evaluated suitability, and is defined
as follows:

fitness(R) = γR(D) ∗ |C| − |R|
|C| (22)

AntRSAR follows the mechanism described in section 4.2. Here, the pre-
computed heuristic desirability of edge traversal is the entropy measure, with
the subset evaluation performed using the rough set dependency heuristic (to
guarantee that true rough set reducts are found). The number of ants used
is set to the number of features, with each ant starting on a different feature.
For the datasets used here, the performance is not affected significantly using
this number of ants. However, for datasets containing thousands of features
or more, fewer ants may have to be chosen due to computational limitations.
Ants construct possible solutions until they reach a rough set reduct. To avoid
fruitless searches, the size of the current best reduct is used to reject those sub-
sets whose cardinality exceed this value. Pheromone levels are set at 0.5 with
a small random variation added. Levels are increased by only those ants who
have found true reducts. The global search is terminated after 250 iterations,
α is set to 1 and β is set to 0.1.

SimRSAR employs a simulated annealing-based feature selection mechan-
ism [15]. The states are feature subsets, with random state mutations set to
changing three features (either adding or removing them). The cost function
attempts to maximize the rough set dependency (γ) whilst minimizing the
subset cardinality. For these experiments, the cost of subset R is defined as:

cost(R) =
[
γC(D)− γR(D)

γC(D)

]a

+
[ |R|
|C|

]b

(23)

where a and b are defined in order to weight the contributions of dependency
and subset size to the overall cost measure. In the experiments here, a = 1
and b = 3. The initial temperature of the system is estimated as 2 ∗ |C| and
the cooling schedule is T (t + 1) = 0.93 ∗ T (t).

The experiments were carried out on 3 datasets from [25], namely m-of-n,
exactly and exactly2. The remaining datasets are from the machine learning
repository [1]. Those datasets containing real-valued attributes have been dis-
cretized to allow all methods to be compared fairly.

5.2 Experimental Results

Table 3 presents the results of the five methods on the 13 datasets. It shows the
size of reduct found for each method, as well as the size of the optimal (min-
imal) reduct. RSAR and EBR produced the same subset every time, unlike
AntRSAR and SimRSAR that often found different subsets and sometimes
different subset cardinalities. On the whole, it appears to be the case that
AntRSAR and SimRSAR outperform the other three methods. This is at the
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Table 3. Subset sizes found for five techniques

Index Dataset Features Optimal RSAR EBR AntRSAR SimRSAR GenRSAR

0 M-of-N 13 6 8 6 6 6 6(6) 7(12)
1 Exactly 13 6 9 8 6 6 6(10) 7(10)
2 Exactly2 13 10 13 11 10 10 10(9) 11(11)
3 Heart 13 6 7 7 6(18) 7(2) 6(29) 7(1) 6(18) 7(2)
4 Vote 16 8 9 9 8 8(15) 9(15) 8(2) 9(18)
5 Credit 20 8 9 10 8(12) 9(4) 10(4) 8(18) 9(1) 11(1) 10(6) 11(14)
6 Mushroom 22 4 5 4 4 4 5(1) 6(5) 7(14)
7 LED 24 5 12 5 5(12) 6(4) 7(3) 5 6(1) 7(3) 8(16)
8 Letters 25 8 9 9 8 8 8(8) 9(12)
9 Derm 34 6 7 6 6(17) 7(3) 6(12) 7(8) 10(6) 11(14)
10 Derm2 34 8 10 10 8(3) 9(17) 8(3) 9(7) 10(2) 11(8)
11 WQ 38 12 14 14 12(2) 13(7) 14(11) 13(16) 14(4) 16
12 Lung 56 4 4 4 4 4(7) 5(12) 6(1) 6(8) 7(12)

expense of the time taken to discover these reducts as can be seen in Fig. 6
(results for RSAR and EBR do not appear as they are consistently faster than
the other methods). In all experiments the rough ordering of techniques with
respect to time is: RSAR < EBR ≤ SimRSAR ≤ AntRSAR ≤ GenRSAR.
AntRSAR and SimRSAR perform similarly throughout - for some datasets,
AntRSAR is better (e.g. Vote) and for others SimRSAR is best (e.g. LED).
The performance of these two methods may well be improved by fine-tuning
the parameters to each individual dataset.
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Fig. 6. Average runtimes for AntRSAR, SimRSAR and GenRSAR

From these results it can be seen that even for small and medium-sized
datasets, incremental hill-climbing techniques often fail to find minimal sub-
sets. For example, RSAR is misled early in the search for the LED dataset,
resulting in it choosing 7 extraneous features. Although this fault is due to
the non-optimality of the guiding heuristic, a perfect heuristic does not exist
rendering these approaches unsuited to problems where a minimal subset is
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essential. However, for most real world applications, the extent of reduction
achieved via such methods is acceptable. For systems where the minimal sub-
set is required (perhaps due to the cost of feature measurement), stochastic
feature selection should be used.

6 Fuzzy Ant-based Feature Selection Evaluation

To show the utility of fuzzy-rough feature selection and to compare the hill-
climbing and ant-based fuzzy-rough approaches, the two methods are applied
as pre-processors to web classification and within a complex systems monitor-
ing application. Both methods preserve the semantics of the surviving features
after removing redundant ones. This is essential in satisfying the requirement
of user readability of the generated knowledge model, as well as ensuring the
understandability of the pattern classification process.

6.1 Web Classification

There are an estimated 1 billion web pages available on the world wide web,
with around 1.5 million web pages being added every day. The task to find a
particular web page, which satisfies a user’s requirements by traversing hyper-
links, is very difficult. To aid this process, many web directories have been
developed - some rely on manual categorization whilst others make decisions
automatically. However, as web page content is vast and dynamic, manual
categorization is becoming increasingly impractical. Automatic web site cat-
egorization is therefore required to deal with these problems.

System Overview

TRAINING

TESTING
DatasetAcquisition

Keyword Keyword
Filtering
Keyword

Reduced
Keywords

Dataset
Reduced

Classifier

Acquisition Dataset
KeywordKeyword
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Reduced
Selection
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New
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Training

Fig. 7. Modular decomposition of the classification system
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The general overview of the classification system developed here can be
seen in Fig. 7. A key issue in the design of the system was that of modu-
larity; it should be able to integrate with existing (or new) techniques. The
current implementations allow this flexibility by dividing the overall process
into several independent sub-modules:

• Keyword Acquisition. From the collection of web documents, only the nat-
ural language terms are extracted and considered to be keywords. These
are then weighted according to their perceived importance in the docu-
ment, resulting in a new dataset of weight-term pairs. These weights are
almost always real-valued, hence the problem serves well to test the present
work. For this, the TF-IDF metric [27] is used which assigns higher weights
to those keywords that occur frequently in the current document but not
in most others. Note that in this work, no sophisticated keyword acquis-
ition techniques methods are used as the current focus of attention is on
the evaluation of attribute reduction. However, the use of more effective
keyword acquisition techniques recently built in the area of information
retrieval would help improve the system’s overall classification perform-
ance further.

• Keyword Selection. As the newly generated datasets are too large, mainly
due to keyword redundancy, a dimensionality reduction step is carried out
using the techniques described previously.

• Keyword Filtering. Employed only in testing, this simple module filters
the keywords obtained during acquisition, using the reduct generated in
the keyword selection module.

• Classification. This final module uses the reduced dataset to perform the
actual categorization of the test data. Four classifiers were used for com-
parison, namely C4.5 [24], JRip [5], PART [33] and a fuzzy rule inducer,
QSBA [26]. Both JRip and PART are available from [34].
C4.5 creates decision trees by choosing the most informative features and
recursively partitioning the data into subtables based on their values. Each
node in the tree represents a feature with branches from a node represent-
ing the alternative values this feature can take according to the current
subtable. Partitioning stops when all data items in the subtable have the
same classification. A leaf node is then created, and this classification as-
signed.
JRip learns propositional rules by repeatedly growing rules and pruning
them. During the growth phase, antecedents are added greedily until a
termination condition is satisfied. Antecedents are then pruned in the next
phase subject to a pruning metric. Once the ruleset is generated, a further
optimization is performed where rules are evaluated and deleted based on
their performance on randomized data.
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PART generates rules by means of repeatedly creating partial decision
trees from data. The algorithm adopts a separate-and-conquer strategy in
that it removes instances covered by the current ruleset during processing.
Essentially, a rule is created by building a pruned tree for the current set
of instances; the leaf with the highest coverage is made into a rule.
QSBA induces fuzzy rules by calculating the fuzzy subsethood of lin-
guistic terms and the corresponding decision variables. These values are
also weighted by the use of fuzzy quantifiers. This method utilises the same
fuzzy sets as those involved in the fuzzy-rough reduction methods.

Experimentation and Results

Initially, datasets were generated from large textual corpora collected from
Yahoo [36] and separated randomly into training and testing sets. Each data-
set is a collection of web documents. Five classification categories were used,
namely Art & Humanity, Entertainment, Computers & Internet, Health, Busi-
ness & Economy. A total of 280 web sites were collected from Yahoo categories
and classified into these categories. From this collection of data, the keywords,
weights and corresponding classifications were collated into a single dataset.

Table 4 shows the resulting degree of dimensionality reduction, performed
via selecting informative keywords, by the standard fuzzy-rough method
(FRFS) and the ACO-based approach (AntFRFS). AntFRFS is run several
times, and the results averaged both for classification accuracy and number
of features selected. It can be seen that both methods drastically reduce the
number of original features. AntFRFS performs the highest degree of reduc-
tion, with an average of 14.1 features occurring in the reducts it locates.

Table 4. Extent of feature reduction

Original FRFS AntFRFS

2557 17 14.10

To see the effect of dimensionality reduction on classification accuracy,
the system was tested on the original training data and a test dataset. The
results are summarised in table 5. Clearly, the fuzzy-rough methods exhibit
better resultant accuracies for the test data than the unreduced method for
all classifiers. This demonstrates that feature selection using either FRFS or
AntFRFS can greatly aid classification tasks. It is of additional benefit to rule
inducers as the induction time is decreased and the generated rules involve
significantly fewer features. AntFRFS improves on FRFS in terms of the size
of subsets found and resulting testing accuracy for QSBA and PART, but not
for C4.5 and JRip.

The challenging nature of this particular task can be seen in the overall low
accuracies produced by the classifiers, though improved somewhat after fea-
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Table 5. Classification performance

Original (%) FRFS (%) AntFRFS (%)
Classifier Train Test Train Test Train Test

C4.5 95.89 44.74 86.30 57.89 81.27 48.39
QSBA 100.0 39.47 82.19 46.05 69.86 50.44

JRip 72.60 56.58 78.08 60.53 64.84 51.75
PART 95.89 42.11 86.30 48.68 82.65 48.83

ture selection. Both fuzzy-rough approaches require a reasonable fuzzification
of the input data, whilst the fuzzy sets are herein generated by simple statist-
ical analysis of the dataset with no attempt made at optimizing these sets. A
fine-tuned fuzzification will certainly improve the performance of FRFS-based
systems. Finally, it is worth noting that the classifications were checked auto-
matically. Many websites can be classified to more than one category, however
only the designated category is considered to be correct here.

6.2 Systems Monitoring

In order to further evaluate the fuzzy-rough approaches and to illustrate its
domain-independence, another challenging test dataset was chosen, namely
the Water Treatment Plant Database [1]. The dataset itself is a set of his-
torical data charted over 521 days, with 38 different input features measured
daily. Each day is classified into one of thirteen categories depending on the
operational status of the plant. However, these can be collapsed into just two
or three categories (i.e. Normal and Faulty, or OK, Good and Faulty) for plant
monitoring purposes as many classifications reflect similar performance. Be-
cause of the efficiency of the actual plant the measurements were taken from,
all faults appear for short periods (usually single days) and are dealt with im-
mediately. This does not allow for a lot of training examples of faults, which
is a clear drawback if a monitoring system is to be produced. Collapsing 13
categories into 2 or 3 classes helps reduce this difficulty for the present ap-
plication. Note that this dataset has been utilised in many previous studies,
including that reported in [29] (to illustrate the effectiveness of applying crisp
RSAR as a pre-processing step to rule induction).

It is likely that not all of the 38 input features are required to determine
the status of the plant, hence the dimensionality reduction step. However,
choosing the most informative features is a difficult task as there will be
many dependencies between subsets of features. There is also a monetary cost
involved in monitoring these inputs, so it is desirable to reduce this number.

Note that the original monitoring system (Fig. 8) developed in [29] con-
sisted of several modules; it is this modular structure that allows the FRFS
techniques to replace the existing crisp method. Originally, a precategoriza-
tion step preceded feature selection where feature values were quantized. To
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Fig. 8. Modular decomposition of the implemented system

reduce potential loss of information, the original use of just the dominant sym-
bolic labels of the discretized fuzzy terms is now replaced by a fuzzification
procedure. This leaves the underlying feature values unchanged but generates
a series of fuzzy sets for each feature. These sets are generated entirely from
the data while exploiting the statistical properties attached to the dataset (in
keeping with the rough set ideology in that the dependence of learning upon
information provided outside of the training dataset is minimized). This mod-
ule may be replaced by alternative fuzzifiers, or expert-defined fuzzification if
available. Based on these fuzzy sets and the original real-valued dataset, the
feature selection module calculates a reduct and reduces the dataset accord-
ingly. Finally, rule induction is performed on the reduced dataset. For this set
of experiments, the decision tree method C4.5 [24] is used for induction and
the learned rules for classification.

The first set of experiments compares the hill-climbing and ACO-based
fuzzy-rough methods. An investigation into another feature selector based on
the entropy measure is then presented. This is followed by comparisons with
a transformation-based dimensionality reduction approach, PCA [7] and a
support vector classifier [22].

Comparison of Fuzzy-Rough Methods

Three sets of experiments were carried out on both the (collapsed) 2-class
and 3-class datasets. The first bypasses the feature selection part of the sys-
tem, using the original water treatment dataset as input to C4.5, with all 38
conditional attributes. The second method employs FRFS to perform the fea-
ture selection before induction is carried out. The third uses the ACO-based
method, AntFRFS, to perform feature selection over a number of runs, and
the results averaged.
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Table 6. Results for the 2-class dataset

Method Attributes γ’ value Training accuracy (%) Testing accuracy (%)

Unreduced 38 - 98.5 80.9
FRFS 10 0.58783 89.2 74.8

AntFRFS 9.55 0.58899 93.5 77.9

The results for the 2-class dataset can be seen in table 6. Both FRFS and
AntFRFS significantly reduce the number of original attributes with Ant-
FRFS producing the greatest data reduction on average. As well as generat-
ing smaller reducts, AntFRFS finds reducts of a higher quality according to
the fuzzy-rough dependency measure. This higher quality is reflected in the
resulting classification accuracies for both the training and testing datasets,
with AntFRFS outperforming FRFS.

Table 7. Results for the 3-class dataset

Method Attributes γ’ value Training accuracy (%) Testing accuracy (%)

Unreduced 38 - 97.9 83.2
FRFS 11 0.59479 97.2 80.9

AntFRFS 9.09 0.58931 94.8 80.2

Table 7 shows the results for the 3-class dataset experimentation. The hill-
climbing fuzzy-rough method chooses 11 out of the original 38 features. The
ACO-based method chooses fewer attributes on average, however this is at the
cost of a lower dependency measure for the generated reducts. Again the effect
of this can be seen in the classification accuracies, with FRFS performing
slightly better than AntFRFS. For both fuzzy methods, the small drop in
accuracy as a result of feature selection is acceptable.

By selecting a good feature subset from data it is usually expected that
the applied learning method should benefit, producing an improvement in
results. For some applications, less features may result in a better classifica-
tion performance due to the removal of heavy noise attached to those features
removed. The ant-based approach should improve upon C4.5 in these situ-
ations. However, when the original training (and test) data is very noisy,
selected features may not necessarily be able to reflect all the information
contained within the original entire feature set. As a result of removing less
informative features, partial useful information may be lost. The goal of se-
lection methods in this situation is to minimise this loss, while reducing the
number of features to the greatest extent. Therefore, it is not surprising that
the classification performance for this challenging dataset can decrease upon
data reduction, as shown in table 7. However, the impact of feature selection
can have different effects on different classifiers. With the use of an alternative
classifier in section 6.2, performance can be seen to improve for the test data.
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The results here also show a marked drop in classification accuracy for
the test data. This could be due to the problems encountered when dealing
with datasets of small sample size. Overfitting can occur, where a learning al-
gorithm adapts so well to a training set, that the random disturbances present
are included in the model as being meaningful. Consequently, as these disturb-
ances do not reflect the underlying distribution, the performance on the test
data will suffer. Although such techniques as cross-validation and bootstrap-
ping have been proposed as a way of countering this, these still often exhibit
high variance in error estimation.

Comparison with Entropy-based Feature Selection

To support the study of the performance of the fuzzy-rough methods for use
as pre-processors to rule induction, a conventional entropy-based technique
is used for comparison. This approach utilizes the entropy heuristic typically
employed by machine learning techniques such as C4.5 [24]. Those features
that provide the most gain in information are selected. A summary of the
results of this comparison can be seen in table 8.

Table 8. Results for the three selection methods

Approach No. of No. of Training Testing
Classes Features Accuracy (%) Accuracy (%)

FRFS 2 10 89.2 74.8
AntFRFS 2 9.55 93.5 77.9
Entropy 2 13 97.7 80.2

FRFS 3 11 97.2 80.9
AntFRFS 3 9.09 94.8 80.2
Entropy 3 14 98.2 80.9

For both the 2-class and 3-class datasets, FRFS and AntFRFS select
at least three fewer features than the entropy-based method. However, the
entropy-based method outperforms the other two feature selectors with the
resulting C4.5 classification accuracies. This is probably due to the fact that
C4.5 uses exactly the same entropy measure in generating decision trees. In
this case, the entropy-based measure will favour those attributes that will be
the most influential in the decision tree generation process. The use of more
features here may also contribute to the slightly better classification perform-
ance.

Comparison with the use of PCA

The effect of using a different dimensionality reduction technique, namely
Principal Components Analysis (PCA) [7], is also investigated. PCA trans-
forms the original features of a dataset with a (typically) reduced number of
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uncorrelated ones, termed principal components. It works on the assumption
that a large feature variance corresponds to useful information, with small
variance equating to information that is less useful. The first principle com-
ponent indicates the direction of maximum data variance. Data is transformed
in such a way as to allow the removal of those transformed features with small
variance. This is achieved by finding the eigenvectors of the covariance mat-
rix of data points (objects), constructing a transformation matrix from the
ordered eigenvectors, and transforming the original data by matrix multiplic-
ation.

Here, PCA is applied to the dataset and the first n principal components
are used. A range of values is chosen for n to investigate how the perform-
ance varies with dimensionality. As PCA irreversibly destroys the underlying
dataset semantics, the resulting decision trees are not human-comprehensible
nor directly measurable but may still provide useful automatic classifications
of new data. Table 9 shows the results from applying PCA to the datasets.

Table 9. Results for the 2-class and 3-class datasets using PCA

No. of Features
Accuracy Class 5 6 7 8 9 10 11 12 13

Training (%) 2 80.0 80.0 80.0 80.0 80.3 80.3 80.3 80.8 82.1
Testing (%) 2 72.5 72.5 72.5 72.5 73.3 73.3 73.3 35.1 34.4

Training (%) 3 73.6 73.6 73.6 73.6 73.6 75.9 75.9 75.9 76.4
Testing (%) 3 80.9 80.9 80.9 80.9 80.9 80.9 80.9 80.9 80.2

Both AntFRFS and FRFS significantly outperform PCA on the 2-class
dataset. Of particular interest is when 10 principal components are used as
this is roughly the same number chosen by AntFRFS and FRFS. The result-
ing accuracy for PCA is 80.3% for the training data and 73.3% for the test
data. For AntFRFS the accuracies were 93.5% (training) and 77.9% (testing),
and for FRFS 89.2% (training) and 74.8% (testing). In the 3-class dataset ex-
perimentation, both fuzzy-rough methods produce much higher classification
accuracies than PCA for the training data. For the test data, the perform-
ance is about the same, with PCA producing a slightly higher accuracy than
AntFRFS on the whole. It is worth reiterating, however, that PCA does not
carry out feature selection but transformation. Hence, the classifier built with
such transformed features is hard for human users to understand.

Comparison with the use of a Support Vector Classifier

A possible limitation of employing C4.5 in this context is that it performs a
degree of feature selection itself during the induction process. The resulting
decision trees do not necessarily contain all the features present in the original
training data. As a result of this, it is beneficial to evaluate the use of an al-
ternative classifier that uses all the given features. For this purpose, a support
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vector classifier [28] is employed, trained by the sequential minimal optimiza-
tion (SMO) algorithm [22]. The results of the application of this classifier can
be found in table 10.

Table 10. Results for the 2-class and 3-class datasets using SMO

Approach No. of No. of Training Testing
Classes Features Accuracy (%) Accuracy (%)

Unreduced 2 38 80.0 71.8
FRFS 2 10 80.0 72.5

AntFRFS 2 9.55 80.0 72.5
Unreduced 3 38 74.6 80.9

FRFS 3 11 73.6 80.2
AntFRFS 3 9.09 73.6 80.9

For the 2-class dataset, the training accuracy for both FRFS and Ant-
FRFS is the same as that of the unreduced approach. However, this is with
significantly fewer attributes. Additionally, the resulting testing accuracy is
increased with these feature selection methods. With the more challenging
3-class problem, the training accuracies are slightly worse (as seen with the
C4.5 analysis). The AntFRFS method performs better than FRFS for the test
data and is equal to the unreduced method, again using fewer features.

7 Conclusion

This chapter has presented an ACO-based method for feature selection, with
particular emphasis on fuzzy-rough feature selection. This novel approach
has been applied to aid classification of web content and to complex systems
monitoring, with very promising results. In all experimental studies there has
been no attempt to optimize the fuzzifications or the classifiers employed. It
can be expected that the results obtained with such optimization would be
even better than those already observed.

The techniques presented here focus mainly on the use of ACO for rough
and fuzzy-rough feature selection. However, many alternative selection meas-
ures exist that are used within incremental hill-climbing search strategies to
locate minimal subsets. Such measures could be easily incorporated into the
existing ACO-framework. For AntFRFS, it can be expected that it is best
suited for the optimization of fuzzy classifiers, as the feature significance meas-
ure utilizes the fuzzy sets required by these techniques.

There are many issues to be explored in the area of ACO-based feature
selection. The impact of parameter settings should be investigated - how the
values of α, β and others influence the search process. Other important factors
to be considered include how the pheromone is updated and how it decays.
There is also the possibility of using different static heuristic measures to

XXXII



determine the desirability of edges. A further extension would be the use of
dynamic heuristic measures which would change over the course of feature
selection to provide more search information.
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