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Fuzzy-Rough Attribute Reduction

with Application to Web Categorization

Richard Jensen and Qiang Shen
{richjens,qiangs}@dai.ed.ac.uk

Centre for Intelligent Systems and their Applications

Division of Informatics, The University of Edinburgh

Abstract

Due to the explosive growth of electronically stored information, automatic methods
must be developed to aid users in maintaining and using this abundance of informa-
tion effectively. In particular, the sheer volume of redundancy present must be dealt
with, leaving only the information-rich data to be processed. This paper presents
a novel approach, based on an integrated use of fuzzy and rough set theories, to
greatly reduce this data redundancy. Formal concepts of fuzzy-rough attribute re-
duction are introduced and illustrated with a simple example. The work is applied
to the problem of web categorization, considerably reducing dimensionality with
minimal loss of information. Experimental results show that fuzzy-rough reduction
is more powerful than the conventional rough set-based approach. Classifiers that
use a lower dimensional set of attributes which are retained by fuzzy-rough reduc-
tion outperform those that employ more attributes returned by the existing crisp
rough reduction method.

1 Introduction

It is well known that the amount of electronically stored information increases
exponentially with time. Sorting through even a fraction of the available data
by hand can be very difficult. Information filtering and retrieval systems are
therefore acquiring increasing prominence as automated aids in quickly sifting
through information.

The World Wide Web (WWW) is an information resource, whose full potential
may not be realised unless its content is adequately organised and described.
This not only applies to the vast network of web pages, but also to users’
personal repositories of web page bookmarks. However, due to the immense
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size and dynamicity of the web, manual categorization is not a practical solu-
tion to this problem. There is a clear need for automated classification of web
content.

Many classification problems involve high dimensional descriptions of input
features. It is therefore not surprising that much research has been done on
dimensionality reduction [4,11,12]. However, existing work tends to destroy the
underlying semantics of the features after reduction (e.g. transformation-based
approaches [5]) or require additional information about the given data set for
thresholding (e.g. entropy-based approaches [15]). A technique that can reduce
dimensionality using information contained within the data set and preserving
the meaning of the features is clearly desirable. Rough set theory (RST) can
be used as such a tool to discover data dependencies and reduce the number
of attributes contained in a dataset by purely structural methods [17].

Over the past ten years, RST has indeed become a topic of great interest to
researchers and has been applied to many domains. This success is due in part
to the following aspects of the theory:

• Only the facts hidden in data are analysed,
• No additional information about the data is required such as thresholds or

expert knowledge, and
• A minimal knowledge representation can be attained.

Given a dataset with discretized attribute values, it is possible to find a subset
(termed a reduct) of the original attributes using RST that are the most in-
formative; all other attributes can be removed from the dataset with minimal
information loss.

However, it is most often the case that the values of attributes may be both
crisp and real-valued, and this is where traditional rough set theory encounters
a problem. It is not possible in the theory to say whether two attribute values
are similar and to what extent they are the same; for example, two close values
may only differ as a result of noise, but in RST they are considered to be as
different as two values of a different order of magnitude.

One answer to this problem has been to discretise the dataset beforehand, pro-
ducing a new dataset with crisp values. This is often still inadequate, however,
as the degrees of membership of values to discretised values are not consid-
ered at all. For example, two values may both be mapped to the same class
“Negative”, but one may be much more negative than the other. This is a
source of information loss, which is against the rough set ideology of retaining
information content.

It is, therefore, desirable to develop these techniques to provide the means of
data reduction for crisp and real-value attributed datasets which utilises the
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extent to which values are similar. This could be achieved through the use of
fuzzy-rough sets. Fuzzy-rough sets encapsulate the related but distinct con-
cepts of vagueness (for fuzzy sets [27]) and indiscernibility (for rough sets),
both of which occur as a result of uncertainty in knowledge [6]. This pa-
per, based on initial work reported in [9,10], presents such a method which
employs fuzzy-rough sets to improve the handling of this uncertainty. Newly
introduced concepts for fuzzy-rough attribute reduction are formally defined
and illustrated with a simple example. The work is applied to the domain of
website classification with very promising results. In particular, the present
approach retains less attributes than the crisp RST-based reduction method,
whilst entailing higher classification accuracy.

The rest of this paper is structured as follows. Section 2 discusses the funda-
mentals of rough set theory, in particular focusing on dimensionality reduction.
The third section introduces the hybrid of rough and fuzzy sets and builds on
these definitions to outline a procedure for fuzzy-rough attribute reduction.
To help in the understanding of this procedure, a demonstrative case is given
to show the key stages involving the use of the introduced concepts. The work
is then applied to website categorization and compared with traditional crisp
RSAR, demonstrating the power of the new approach. Finally, the paper con-
cludes with a discussion of the results and outlines future work to be carried
out.

2 Background

The theory of rough sets provides rigorous mathematical techniques for cre-
ating approximate descriptions of objects for data analysis, optimization and
recognition. A rough set itself is an approximation of a vague concept by a pair
of precise concepts, called lower and upper approximations [7,17]. The lower
approximation is a description of the domain objects which are known with
certainty to belong to the subset of interest, whereas the upper approximation
is a description of the objects which possibly belong to the subset.

2.1 Rough Set Attribute Reduction

Rough sets have been employed to remove redundant conditional attributes
from discrete-valued datasets, while retaining their information content. A suc-
cessful example of this is the Rough Set Attribute Reduction (RSAR) method
[21]. Central to RSAR is the concept of indiscernibility. Let I = (U, A) be an
information system, where U is a non-empty set of finite objects (the universe
of discourse); A is a non-empty finite set of attributes such that a : U → Va
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∀a ∈ A, Va being the value set of attribute a. In a decision system, A = {C∪D}
where C is the set of conditional attributes and D is the set of decision at-
tributes. With any P ⊆ A there is an associated equivalence relation IND(P ):

IND(P ) = {(x, y) ∈ U
2 | ∀ a ∈ P, a(x) = a(y)} (1)

The partition of U, generated by IND(P) is denoted U /P and can be calcu-
lated as follows:

U/P = ⊗{a ∈ P : U/IND({a})}, (2)

where
A⊗B = {X ∩ Y : ∀X ∈ A, ∀Y ∈ B, X ∩ Y 6= Ø} (3)

If (x, y) ∈ IND(P ), then x and y are indiscernible by attributes from P .
The equivalence classes of the P -indiscernibility relation are denoted [x]P . Let
X ⊆ U, the P-lower approximation of a set can now be defined as:

PX = {x | [x]P ⊆ X} (4)

Let P and Q be equivalence relations over U, then the positive region can be
defined as:

POSP (Q) =
⋃

X∈U/Q

PX (5)

In terms of classification, the positive region contains all objects of U that can
be classified to classes of U/Q using the knowledge in attributes P.

An important issue in data analysis is discovering dependencies between at-
tributes. Intuitively, a set of attributes Q depends totally on a set of attributes
P, denoted P ⇒ Q, if all attribute values from Q are uniquely determined by
values of attributes from P. Dependency can be defined in the following way:

For P,Q ⊆ A, Q depends on P in a degree k (0 ≤ k ≤ 1), denoted P ⇒k Q, if

k = γP (Q) =
|POSP (Q)|

|U|
(6)

where |S| stands for the cardinality of set S.

If k = 1 Q depends totally on P, if 0 < k < 1 Q depends partially (in a degree
k) on P, and if k = 0 Q does not depend on P.
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By calculating the change in dependency when an attribute is removed from
the set of considered conditional attributes, a measure of the significance of
the attribute can be obtained. The higher the change in dependency, the more
significant the attribute is. If the significance is 0, then the attribute is dis-
pensible. More formally, given P,Q and an attribute x ∈ P, the significance of
attribute x upon Q is defined by

σP (Q, x) = γP (Q)− γP−{x}(Q) (7)

2.2 Reducts

The reduction of attributes is achieved by comparing equivalence relations
generated by sets of attributes. Attributes are removed so that the reduced
set provides the same quality of classification as the original. In the context of
decision systems, a reduct is formally defined as a subset R of the conditional
attribute set C such that γR(D) = γC(D). A given dataset may have many
attribute reduct sets, and the collection of all reducts is denoted by

R = {X : X ⊆ C, γX(D) = γC(D)} (8)

The intersection of all the sets in R is called the core, the elements of which
are those attributes that cannot be eliminated without introducing more con-
tradictions to the dataset. In RSAR, a reduct with minimum cardinality is
searched for; in other words an attempt is made to locate a single element of
the minimal reduct set Rmin ⊆ R :

Rmin = {X : X ∈ R, ∀Y ∈ R, |X| ≤ |Y |} (9)

A basic way of achieving this is to calculate the dependencies of all possible
subsets of C. Any subset X with γX(D) = 1 is a reduct; the smallest subset
with this property is a minimal reduct. However, for large datasets this method
is impractical and an alternative strategy is required.

The QuickReduct algorithm given in figure 1, borrowed from [9,21], at-
tempts to calculate a minimal reduct without exhaustively generating all pos-
sible subsets. It starts off with an empty set and adds in turn, one at a time,
those attributes that result in the greatest increase in γP (Q), until this pro-
duces its maximum possible value for the dataset (usually 1). However, it has
been proved that this method does not always generate a minimal reduct, as
γP (Q) is not a perfect heuristic. It does result in a close-to-minimal reduct,
though, which is still useful in greatly reducing dataset dimensionality.
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1. R← {}
2. do
3. T ← R
4. ∀x ∈ (C −R)
5. if γR∪{x}(D) > γT (D)
6. T ← R ∪ {x}
7. R← T
8. until γR(D) = γC(D)
9. return R

Fig. 1. The QuickReduct Algorithm

An intuitive understanding of QuickReduct implies that, for a dimension-
ality of n, n! evaluations of the dependency function may be performed for the
worst-case dataset. From experimentation, the average complexity has been
determined to be approximately O(n) [21].

3 Fuzzy-Rough Attribute Reduction

The RSAR process described previously can only operate effectively with
datasets containing discrete values. As most datasets contain real-valued at-
tributes, it is necessary to perform a discretization step beforehand. This
is typically implemented by standard fuzzification techniques [21]. However,
membership degrees of attribute values to fuzzy sets are not exploited in the
process of dimensionality reduction. By using fuzzy-rough sets [6,16], it is pos-
sible to use this information to better guide feature selection. This forms the
central contribution of this paper.

3.1 Fuzzy Equivalence Classes

In the same way that crisp equivalence classes are central to rough sets, fuzzy
equivalence classes are central to the fuzzy-rough set approach [6,23,26]. For
typical RSAR applications, this means that the decision values and the con-
ditional values may all be fuzzy. The concept of crisp equivalence classes can
be extended by the inclusion of a fuzzy similarity relation S on the universe,
which determines the extent to which two elements are similar in S. The usual
properties of reflexivity (µS(x, x) = 1), symmetry (µS(x, y) = µS(y, x) ) and
transitivity (µS(x, z) ≥ µS(x, y) ∧ µS(y, z)) hold.

Using the fuzzy similarity relation, the fuzzy equivalence class [x]S for objects

6



close to x can be defined:

µ[x]S(y) = µS(x, y) (10)

The following axioms should hold for a fuzzy equivalence class F [8]:

• ∃x, µF (x) = 1
• µF (x) ∧ µS(x, y) ≤ µF (y)
• µF (x) ∧ µF (y) ≤ µS(x, y)

The first axiom corresponds to the requirement that an equivalence class is
non-empty. The second axiom states that elements in y’s neighbourhood are
in the equivalence class of y. The final axiom states that any two elements
in F are related via S. Obviously, this definition degenerates to the normal
definition of equivalence classes when S is non-fuzzy.

The family of normal fuzzy sets produced by a fuzzy partitioning of the uni-
verse of discourse can play the role of fuzzy equivalence classes [6]. Consider
the crisp partitioning U/Q = {{1,3,6},{2,4,5}}. This contains two equivalence
classes ({1,3,6} and {2,4,5}) that can be thought of as degenerated fuzzy sets,
with those elements belonging to the class possessing a membership of one,
zero otherwise. For the first class, for instance, the objects 2, 4 and 5 have a
membership of zero. Extending this to the case of fuzzy equivalence classes is
straightforward: objects can be allowed to assume membership values, with
respect to any given class, in the interval [0,1]. U/Q is not restricted to crisp
partitions only; fuzzy partitions are equally acceptable.

3.2 Fuzzy Lower and Upper Approximations

From the literature, the fuzzy P -lower and P -upper approximations are de-
fined as [6]:

µPX(Fi) = infxmax{1− µFi
(x), µX(x)} ∀i (11)

µPX(Fi) = supxmin{µFi
(x), µX(x)} ∀i (12)

where Fi denotes a fuzzy equivalence class belonging to U/P . Note that al-
though the universe of discourse in attribute reduction is finite, this is not
the case in general, hence the use of sup and inf . These definitions diverge
a little from the crisp upper and lower approximations, as the memberships
of individual objects to the approximations are not explicitly available. As a
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result of this, the fuzzy lower and upper approximations are herein redefined
as:

µPX(x) = sup
F∈U/P

min(µF (x), inf
y∈U

max{1− µF (y), µX(y)}) (13)

µPX(x) = sup
F∈U/P

min(µF (x), sup
y∈U

min{µF (y), µX(y)}) (14)

In implementation, not all y ∈ U are needed to be considered - only those
where µF (y) is non-zero, i.e. where object y is a fuzzy member of (fuzzy)
equivalence class F . The tuple < PX, PX > is called a fuzzy-rough set. It
can be seen that these definitions degenerate to traditional rough sets when
all equivalence classes are crisp. It is useful to think of the crisp lower approx-
imation as characterized by the following membership function:

µPX(x) =











1, x ∈ F, F ⊆ X

0, otherwise
(15)

This states that an object x belongs to the P -lower approximation of X if it
belongs to an equivalence class that is a subset of X. The behaviour of the
fuzzy lower approximation must be exactly that of the crisp definition for crisp
situations. This is indeed the case as the fuzzy lower approximation may be
rewritten as

µPX(x) = sup
F∈U/P

min(µF (x), inf
y∈U

{µF (y)→ µX(y)}) (16)

where → denotes the fuzzy implication operator. In the crisp case, µF (x) and
µX(x) will take values from {0,1}. Hence, it is clear that the only time µPX(x)
will be zero is when at least one object in its equivalence class F fully belongs
to F but not to X. This is exactly the same as the definition for the crisp
lower approximation. Similarly, the definition for the P -upper approximation
can be established to make sense.

Other generalizations are possible [18]. In their work, Beaubouef et al. [2]
relate the concepts of information theoretic measures to rough sets, comparing
these to established rough set models of uncertainty. They apply the work to
the rough and fuzzy-rough relational database models. However, they choose
an alternative definition of fuzzy-rough sets which originates from the rough
membership function [17].

Rough sets may be expressed by a fuzzy membership function to represent
the negative, boundary and positive regions [24]. All objects in the positive
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region have a membership of one and those belonging to the boundary region
have a membership of 0.5. Those that are contained in the negative region
(and therefore do not belong to the rough set) have zero membership. In so
doing, a rough set can be expressed as a fuzzy set, with suitable modifications
to the rough union and intersection operators.

The reason for integrating fuzziness into the rough set model is to quantify
the levels of roughness in the boundary region by using fuzzy membership
values. It is necessary, therefore, to allow elements in the boundary region to
have membership values in the range of 0 to 1, not just the value 0.5. Hence,
a fuzzy rough set Y is defined (by this approach) as a membership function
µY (x) that associates a grade of membership from the interval [0,1] with every
element of U. For a rough set X and a crisp equivalence relation R:

µY (RX) = 1,
µY (U− RX) = 0,
0 < µY (RX − RX) < 1

However, this is not a true hybridization of the two approaches, it merely as-
signs a degree of membership to the elements depending on the crisp positive,
boundary or negative region they belong to. Fuzzy equivalence classes are not
used and so this does not offer a particularly useful approach for fuzzy-rough
attribute reduction.

3.3 Fuzzy-Rough Reduction Process

Fuzzy RSAR builds on the notion of the fuzzy lower approximation to en-
able reduction of datasets containing real-valued attributes. As will be shown,
the process becomes identical to the traditional approach when dealing with
nominal well-defined attributes.

The crisp positive region in traditional rough set theory is defined as the union
of the lower approximations. By the extension principle, the membership of
an object x ∈ U, belonging to the fuzzy positive region can be defined by

µPOSP (Q)(x) = sup
X∈U/Q

µPX(x) (17)

Object x will not belong to the positive region only if the equivalence class
it belongs to is not a constituent of the positive region. This is equivalent
to the crisp version where objects belong to the positive region only if their
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underlying equivalence class does so.

Using the definition of the fuzzy positive region, the new dependency function
can be defined as follows

γ′
P (Q) =

|µPOSP (Q)(x)|

|U|
=

∑

x∈U µPOSP (Q)(x)

|U|
(18)

As with crisp rough sets, the dependency of Q on P is the proportion of
objects that are discernible out of the entire dataset. In the present approach,
this corresponds to determining the fuzzy cardinality of µPOSP (Q)(x) divided
by the total number of objects in the universe.

The definition of dependency degree covers the crisp case as its specific in-
stance. This can be easily shown by recalling the definition of the crisp depen-
dency degree given in (6). If a function µPOSP (Q)(x) is defined which returns
1 if the object x belongs to the positive region, 0 otherwise, then the above
definition may be rewritten as:

γP (Q) =

∑

x∈U µPOSP (Q)(x)

|U|
(19)

which is identical to (18).

If the fuzzy-rough reduction process is to be useful, it must be able to deal
with multiple attributes, finding the dependency between various subsets of
the original attribute set. For example, it may be necessary to be able to
determine the degree of dependency of the decision attribute(s) with respect
to P = {a, b}. In the crisp case, U/P contains sets of objects grouped together
that are indiscernible according to both attributes a and b. In the fuzzy case,
objects may belong to many equivalence classes, so the cartesian product of
U/IND({a}) and U/IND({b}) must be considered in determining U/P . In
general,

U/P = ⊗{a ∈ P : U/IND({a})} (20)

Each set in U/P denotes an equivalence class. For example, if P = {a, b},
U/IND({a}) = {Na, Za} and U/IND({b}) = {Nb, Zb}, then

U/P = {Na ∩Nb, Na ∩ Zb, Za ∩Nb, Za ∩ Zb}

The extent to which an object belongs to such an equivalence class is therefore
calculated by using the conjunction of constituent fuzzy equivalence classes,
say Fi, i = 1, 2, ..., n:

µF1∩...∩Fn
(x) = min(µF1

(x), µF2
(x), ..., µFn

(x)) (21)
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3.4 Reduct Computation

A problem may arise when this approach is compared to the crisp approach.
In conventional RSAR, a reduct is defined as a subset R of the attributes
which have the same information content as the full attribute set A. In terms
of the dependency function this means that the values γ(R) and γ(A) are
identical and equal to 1 if the dataset is consistent. However, in the fuzzy-
rough approach this is not necessarily the case as the uncertainty encountered
when objects belong to many fuzzy equivalence classes results in a reduced
total dependency.

1. R← {}, γ′
best ← 0, γ′

prev ← 0
2. do
3. T ← R
4. γ′

prev ← γ′
best

5. ∀x ∈ (C −R)
6. if γ′

R∪{x}(D) > γ′
T (D)

7. T ← R ∪ {x}
8. γ′

best ← γ′
T (D)

9. R← T
10. until γ′

best = γ′
prev

11. return R

Fig. 2. The fuzzy-rough QuickReduct algorithm

A possible way of combatting this would be to determine the degree of depen-
dency of the full attribute set and use this as the denominator (for normaliza-
tion rather than |U|), allowing γ ′ to reach 1. With these issues in mind, a new
QuickReduct algorithm has been developed as given in figure 2. It employs
the new dependency function γ ′ to choose which attributes to add to the cur-
rent reduct candidate in the same way as the original QuickReduct process.
The algorithm terminates when the addition of any remaining attribute does
not increase the dependency (such a criterion could be used with the original
QuickReduct algorithm). As with the original QuickReduct algorithm,
for a dimensionality of n, the worst case dataset will result in (n2 + n)/2
evaluations of the dependency function. However, as fuzzy RSAR is used for
dimensionality reduction prior to any involvement of the system which will
employ those attributes belonging to the resultant reduct, this potentially
costly operation has no negative impact upon the run-time efficiency of the
system.

Note that it is also possible to reverse the search process; that is, start with the
full set of attributes and incrementally remove the least informative attributes.
This process continues until no more attributes can be removed without re-
ducing the total number of discernible objects in the dataset.
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3.5 Fuzzy RSAR Example

To illustrate the operation of fuzzy RSAR, an example dataset is given here.
In crisp RSAR, the dataset would be discretized using the non-fuzzy sets.
However, in the new approach membership degrees are used in calculating
the fuzzy lower approximations and fuzzy positive regions. To begin with, the
fuzzy-rough QuickReduct algorithm initializes the potential reduct (i.e. the
current best set of attributes) to the empty set.

Fig. 3. Dataset and corresponding fuzzy sets

Object a b c q

1 -0.4 -0.3 -0.5 no

2 -0.4 0.2 -0.1 yes

3 -0.3 -0.4 -0.3 no

4 0.3 -0.3 0 yes

5 0.2 -0.3 0 yes

6 0.2 0 0 no

N Z

1

0 -0.5 0.50

Using the fuzzy sets defined in figure 3 (for all conditional attributes), and
setting A = {a}, B = {b}, C = {c} and Q = {q}, the following equivalence
classes are obtained:

U/A = {Na, Za}

U/B = {Nb, Zb}

U/C = {Nc, Zc}

U/Q = {{1, 3, 6}, {2, 4, 5}}

The first step is to calculate the lower approximations of the sets A, B and C.
For simplicity, only A will be considered here; that is, using A to approximate
Q. For the first decision equivalence class X = {1,3,6}, µA{1,3,6}(x) needs to
be calculated:

µA{1,3,6}(x) = sup
F∈U/A

min(µF (x), inf
y∈U

max{1− µF (y), µ{1,3,6}(y)})

Considering the first fuzzy equivalence class of A, Na:

min(µNa
(x), inf

y∈U

max{1− µNa
(y), µ{1,3,6}(y)})

12



For object 2 this can be calculated as follows:

min(0.8, inf{1, 0.2, 1, 1, 1, 1}) = 0.2

Similarly for Za

min(0.2, inf{1, 0.8, 1, 0.6, 0.4, 1} = 0.2

Thus,

µA{1,3,6}(2) = 0.2

Calculating the A-lower approximation of X = {1, 3, 6} for every object gives

µA{1,3,6}(1) = 0.2 µA{1,3,6}(2) = 0.2

µA{1,3,6}(3) = 0.4 µA{1,3,6}(4) = 0.4

µA{1,3,6}(5) = 0.4 µA{1,3,6}(6) = 0.4

The corresponding values for X = {2, 4, 5} can also be determined this way.
Using these values, the fuzzy positive region for each object can be calculated
via using

µPOSA(Q)(x) = sup
X∈U/Q

µAX(x)

This results in:

µPOSA(Q)(1) = 0.2 µPOSA(Q)(2) = 0.2

µPOSA(Q)(3) = 0.4 µPOSA(Q)(4) = 0.4

µPOSA(Q)(5) = 0.4 µPOSA(Q)(6) = 0.4

It is a coincidence here that µPOSA(Q)(x) = µA{1,3,6}(x) for this example. The
next step is to determine the degree of dependency of Q on A:

γ′
A(Q) =

∑

x∈U µPOSA(Q)(x)

|U |
= 2/6

Calculating for B and C gives:

γ′
B(Q) =

2.4

6
, γ′

C(Q) =
1.6

6

From this it can be seen that attribute b will cause the greatest increase in
dependency degree. This attribute is chosen and added to the potential reduct.
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3.4 3.2
{a,b} {b,c}

2.0 2.4 1.6

{}

{c}{a} {b}

Fig. 4. Path taken by the fuzzy-rough QuickReduct algorithm

The process iterates and the two dependency degrees calculated are

γ′
{a,b}(Q) =

3.4

6
, γ′

{b,c}(Q) =
3.2

6

Adding attribute a to the reduct candidate causes the larger increase of de-
pendency, so the new candidate becomes {a, b}. Lastly, attribute c is added
to the potential reduct:

γ′
{a,b,c}(Q) =

3.4

6

As this causes no increase in dependency, the algorithm stops and outputs the
reduct {a, b}. The steps taken by the fuzzy-rough QuickReduct algorithm
in reaching this decision can be seen in figure 4. The dataset can now be
reduced to only those attributes appearing in the reduct. When crisp RSAR
is performed on this dataset (after using the same fuzzy sets to discretize the
real-valued attributes), the reduct generated is {a, b, c}, i.e. the full conditional
attribute set [10]. Unlike crisp RSAR, the true minimal reduct was found using
the information on degrees of membership. It is clear from this example alone
that the information lost by using crisp RSAR can be important when trying
to discover the smallest reduct from a dataset.

4 Application to the Web

To demonstrate the applicability of the described methods, two relevant do-
mains of interest were selected, namely bookmark classification and website
classification. However, these domains are quite distinct, possessing features
and problems that must be independently addressed. This section will initially
present those features that are common to both before focusing on domain-
dependent issues.
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4.1 System Overview
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Fig. 5. Modular decomposition of the classification system

Both applications employ a similar general system architecture in order to
reduce dimensionality and perform categorization. A key issue in the design of
the system was that of modularity; it should be able to integrate with existing
(or new) techniques. The current implementations allow this flexibility by
dividing the overall process into several independent sub-modules (see figure
5):

• Splitting of Training and Testing Datasets. Datasets were generated from
large textual corpora and separated randomly into training and testing sets.
Each dataset is a collection of documents, either bookmarks or web pages
depending on the application.

• Keyword Acquisition. Given the output from the previous module, key-
words/terms are extracted and weighted according to their perceived impor-
tance in the document, resulting in a new dataset of weight-term pairs. Note
that in this work, no sophisticated keyword acquisition techniques methods
are used as the current focus of attention is on the evaluation of attribute
reduction. However, the use of more effective keyword acquisition techniques
recently built in the area of information retrieval would help improve the
system’s overall classification performance further.

• Keyword Selection. As the newly generated datasets are too large, mainly
due to keyword redundancy, to perform classification at this stage, a di-
mensionality reduction step is carried out using the techniques described
previously.

• Keyword Filtering. Used only in testing, this simple module filters the key-
words obtained during acquisition, using the reduct generated in the key-
word selection module.

• Classification. This final module uses the reduced dataset to perform the
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actual categorization of the test data. Classifiers used are the Vector Space
Model (VSM) [19] and the Boolean Inexact Model (BIM) [20]. Again, more
efficient and effective classifiers can be employed for this, but for simplicity
only these conventional classifiers are adopted here to show the power of
attribute reduction. Better classifiers are expected to produce more accurate
results, though not necessarily enhance the comparisons between classifiers
that use reduced or unreduced datasets.

4.2 Bookmark Classification

As the use of the World Wide Web becomes more prevalent and the size
of personal repositories grows, adequately organising and managing book-
marks becomes crucial. Several years ago, in recognition of this problem, web
browsers included support for tree-like folder structures for organising book-
marks. These enable the user to browse through their repository to find the
necessary information. However manual URL classification and organisation
can be difficult and tedious when there are more than a few dozen bookmarks
to classify - something that goes against the whole grain of the bookmarking
concept.

Many usability studies [13] indicate that a deep hierarchy results in less effi-
cient information retrieval as many traversal steps are required, so users are
more likely to make mistakes. Users also do not have the time and patience
to arrange their collection into a well-ordered hierarchy. The present work can
help extract information from this relatively information-poor domain in order
to classify bookmarks automatically.

In order to retain as much information as possible, all fields residing within
the bookmark database are considered. For every bookmark, the Uniform
Resource Locater (URL) is divided into its slash-separated parts, with each
part regarded as a keyword. In a similar fashion, the bookmark title is split
into terms with stop words removed.

Table 1
Classification accuracies using unreduced and reduced datasets.

Attributes Average Accuracy

Dataset URL Title BIM VSM

Unreduced 1397 1283 98.5% 98.7%

RS-reduced 514 424 94.3% 98.1%

For this domain, the fuzzy RSAR approach produces exactly the same results
as the crisp approach as all equivalence classes are crisp. In particular, as
shown in table 1, it can be seen that using the present work, the amount of
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attributes was reduced to around 35% of the original. This demonstrates the
large amount of redundancy present in the original datasets. In light of the
fact that bookmarks contain very little useful information, the results are a
little better than anticipated.

It is also interesting to compare how the use of reduced datasets may affect
the classification accuracy as compared to that of the unreduced dataset. The
results of this comparison are listed in table 1 as well. Importantly, the per-
formance of the reduced dataset is almost as good as the original. Although
a very small amount of important information may have been lost in the at-
tribute reduction, this information loss is not significant enough to reduce
classification accuracy significantly, while the reduction of dimensionality is
substantial.

4.3 Website Classification

There are an estimated 1 billion web pages available on the WWW with around
1.5 million web pages being added every day. The task to find a particular web
page, which satisfies a user’s requirements by traversing hyper-links, is very
difficult. To aid this process, many web directories have been developed -
some rely on manual categorization whilst others make decisions automati-
cally. However, as web page content is vast and dynamic, manual categoriza-
tion is becoming increasingly impractical. Automatic web site categorization
is therefore required to deal with these problems.

There is usually much more information contained in a web document than a
bookmark. Additionally, information can be structured within a web page that
may indicate a relatively higher or lower importance of the contained text. For
example, terms appearing within a <TITLE> tag would be expected to be
more informative than those appearing within the document body at large.
Because of this, keywords are weighted not only according to their statistical
occurrence but also to their location within the document itself. These weights
are almost always real-valued, hence the need for the fuzzy approach.

The training and testing datasets were generated using Yahoo [25]. Five classi-
fication categories were used, namely Art & Humanity, Entertainment, Com-
puters & Internet, Health, Business & Economy. A total of 280 web sites were
collected from Yahoo categories and classified into these categories. From this
collection of data, the keywords, weights and corresponding classifications were
collated into a single dataset.

For this set of experiments, crisp RSAR is compared with the new fuzzy
RSAR approach. As the unreduced dataset exhibits high dimensionality (2557
attributes), it is too large to evaluate (hence the need for keyword selection).
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Using crisp RSAR the original attribute set was reduced to 29 (1.13% of
the full set of attributes). However, using fuzzy RSAR the number of selected
attributes was only 23 (0.90% of the full attribute set). It is interesting to note
that the crisp RSAR reduct and fuzzy RSAR reduct share four attributes in
common. With such a large reduction in attributes, it must be shown that
classification accuracy does not suffer in a fuzzy RSAR-reduced system.

To see the effect of dimensionality reduction on classification accuracy, the
system was tested on the original training data first and the results are sum-
marised in table 2. The results are averaged over all the classification cat-
egories. Clearly, the fuzzy method exhibits better precision and error rates.
This performance was achieved using 20.7% fewer attributes than the crisp
approach.

Table 2
Performance: training data (using VSM)

Method Attributes Average Precision Average Error

Original 2557 - -

Crisp 29 73.7% 23.8%

Fuzzy 23 78.1% 16.7%

Table 3 contains the results for experimentation on 140 previously unseen
web sites. For the crisp case, the average precision is rather low and average
error high. With fuzzy RSAR there is a significant improvement in both the
precision and classification error. Again, this more accurate performance is
achieved while using 20.7% fewer attributes.

Table 3
Performance: unseen data

Method % Original Classifier Average Average

Attributes Precision Error

Crisp 1.13 BIM 23.3% 88.3%

VSM 45.2% 49.7%

Fuzzy 0.90 BIM 16.7% 80.0%

VSM 74.9% 35.9%

It must be pointed out here that although the testing accuracy is rather low,
this is largely to do with the poor performance of the simple classifiers used.
The fact that VSM-based results are much better than those using BIM-based
classifiers shows that when a more accurate classification system is employed,
the accuracy can be considerably improved with the involvement of the same
attributes. Nevertheless, the purpose of the present experimental studies is
to compare the performance of the two attribute reduction techniques, based
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on the common use of any given classifier. Thus, only the relative accuracies
are important. Also, the fuzzy RSAR approach requires a reasonable fuzzifi-
cation of the input data, whilst the fuzzy sets are herein generated by simple
statistical analysis of the dataset with no attempt made at optimizing these
sets. A fine-tuned fuzzification will certainly improve the performance of fuzzy
RSAR-based systems [14]. Finally, it is worth noting that the classifications
were checked automatically. Many websites can be classified to more than one
category, however only the designated category is considered to be correct
here.

5 Conclusion

This paper has presented a fuzzy-rough method for attribute reduction which
alleviates important problems encountered by traditional RSAR such as deal-
ing with noise and real-valued attributes. This novel approach has been applied
to aid classification of web content, with very promising results. In particular,
whilst retaining less attributes than the conventional crisp rough set-based
technique, the work entails the classifiers that employ the retained attributes
to have a higher classification rate. In all experimental studies there has been
no attempt to optimize the fuzzifications or the classifiers employed. It can
be expected that the results obtained with optimization would be even better
than those already observed.

There are several ways of improving the original QuickReduct algorithm.
Many modifications have since been added and are reported in [3]. Similar
optimizations may be included in the extended fuzzy-rough approach, yield-
ing significant performance improvements. Even though the method proposed
here is partially restricted (e.g. non minimal reducts, difficulty in handling
nested partitions of objects), it is still highly useful in locating close-to-minimal
reducts. Other developments include ReverseReduct where the strategy is
backward elimination of attributes as opposed to the current forward selec-
tion process. Initially, all attributes appear in the reduct candidate; the least
informative ones are incrementally removed until no further attribute can be
eliminated without introducing inconsistencies. As both forward and backward
methods perform well, it is thought that a combination of these within one
algorithm would be effective. Any version of the QuickReduct algorithm
can be readily extended to dealing with fuzzy-rough cases.

Although the present work is focussed on web categorization, the generality
of this approach should enable it to be applied to other domains. Relevant
in-house experiments (e.g. for physical systems monitoring) have empirically
demonstrated this with the results to be reported elsewhere. In addition, work
is being carried out on a fuzzified dependency function. Ordinarily, the depen-
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dency function returns values for sets of attributes in the range [0,1]; the
fuzzy dependency function will return qualitative fuzzy labels for use in the
new QuickReduct algorithm. Additionally, research is being carried out into
the potential utility of fuzzy reducts, which would allow attributes to have a
varying possibility of becoming a member of the resultant reduct.
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