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Fuzzy Entropy-Assisted Fuzzy-Rough Feature Selection

Neil Mac Parthaláin, Richard Jensen and Qiang Shen

Abstract— Feature Selection (FS) is a dimensionality reduc-
tion technique that aims to select a subset of the original
features of a dataset which offer the most useful information.
The benefits of feature selection include improved data visu-
alisation, transparency, reduction in training and utilisation
times and improved prediction performance. Methods based on
fuzzy-rough set theory (FRFS) have employed the dependency
function to guide the process with much success. This paper
presents a novel fuzzy-rough FS technique which is guided by
fuzzy entropy. The use of this measure in fuzzy-rough feature
selection can result in smaller subset sizes than those obtained
through FRFS alone, with little loss or even an increase in
overall classification accuracy.

I. INTRODUCTION

The task of feature selection is to select a subset of the
original features present in a given dataset which provides
most of the useful information. Hence, after selection has
taken place, most of the important information of the dataset
should still remain. In fact, good FS techniques should be
able to detect and ignore noisy and misleading features. The
result of this, is that dataset quality may even increase after
selection.

There are several potential benefits of feature selection:
1) Facilitating data visualisation. By reduction of the

data to fewer dimensions, trends within the data can
be more easily identified. This can be very important
where only a few features have an influence on data
outcomes.

2) Reduction of measurement and storage requirements.
In domains where features correspond to particular
measurements (for instance, a water treatment plant
[15]), fewer features are highly desirable due to the
expense and time-cost of taking such measurements.

3) Reduction of training and utilisation times. With
smaller datasets, the runtimes of learning algorithms
can improve significantly, for both training and classi-
fication phases.

4) Improvements in prediction performance. Classifier ac-
curacy can be increased as a result of feature selection,
through the removal of noisy or misleading features.

For those methods that extract knowledge from data (e.g.
rule induction) the benefits of FS also include improvements
in the readability of the discovered knowledge. When in-
duction algorithms are applied to reduced data, the resulting
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rules are more compact. A good feature selection step will
remove unnecessary attributes which may affect both rule
comprehension and rule prediction performance.

The work on rough set theory (RST) offers an alternative,
and formal methodology that can be employed to reduce
dimensionality of datasets, as a preprocessing step to assist
any chosen modelling method for learning from data. It helps
to select the most information-rich features in a dataset,
without transforming the data, whilst at the same time
attempting to minimise information loss during the selection
process. Computationally, the approach is highly efficient,
relying on simple set operations, which makes it suitable as
a preprocessor for techniques that are much more complex.
Unlike statistical correlation-reduction approaches [5], RST
requires no human input or intervention. Most importantly
however, it retains the underlying semantics of the data,
which results in models that are more transparent to human
scrutiny.

It is most often the case that the values of attributes may be
both crisp and real-valued, and this is where many feature
selectors, particularly those based on traditional rough set
theory, encounter a problem. It is not possible to determine
whether two attribute values are similar and how far this
similarity extends; for example, two close values may only
differ as a result of noise, but in RST they are considered
to be as different as two values of a different order of
magnitude. One answer to this problem has been to discretise
the dataset beforehand, thus producing a new dataset with
crisp values. This however, is often still inadequate, as
the degrees of membership of values to discretised values
are not considered whatsoever. This consequently leads to
information loss, which contradicts the rough set ideology
of information content retention.

A solution to this problem is to use a fuzzy-rough
approach. As discussed previously, RST can only operate
effectively on datasets which contain discrete values, and
there is no internal process which can be used to deal
with real-valued and/or noisy data. Fuzzy-rough feature
selection (FRFS) builds on rough set FS, but includes a
fuzzification process which is carried out on the data of a
given dataset. This fuzzification can be derived from the
data itself, requiring no further information. This avoids any
need for a separate data discretisation step of the rough set
approach mentioned above, and hence associated information
loss. Object memberships to the resulting fuzzy sets are used
to guide the selection process, unlike the crisp method.

From previous experimentation with crisp rough sets and
entropy [8] it was observed that entropy-based methods often
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found smaller reducts than those based on the dependency
function. This motivates a new fuzzy-rough technique using
fuzzy entropy [10] to guide search, in order to locate optimal
fuzzy-rough subsets.

The remainder of this paper is structured as follows.
Section 2 summarises the theoretical basis and ideas of
FRFS, along with a look at the fuzzy-rough QUICKREDUCT

algorithm. Section 3 describes a fuzzy entropy-assisted ap-
proach to FRFS and corresponding algorithm. Section 4
shows the results of applying both FRFS, and entropy-
based FRFS approaches to a number of datasets, along
with a comparison of run times, classification accuracies,
and dimensionality reduction. Section 5 concludes the paper
along with suggestions for further work.

II. FUZZY-ROUGH FEATURE SELECTION

The principal focus of this paper lies in Fuzzy-entropy
assisted FRFS (FEFRFS), however an in-depth view of the
current FRFS methodology is necessary to appreciate the
FEFRFS approach fully.

The rough set selection process described in [2] can only
operate effectively with datasets containing discrete values.
However, most datasets contain real-valued features and
so it is necessary to perform a discretisation step before-
hand. This is typically implemented by standard fuzzification
techniques. As membership degrees of feature values to
fuzzy sets are not exploited in the process of dimensionality
reduction, important information has been lost. By employing
fuzzy-rough sets, it is possible to use this information to better
guide feature selection.

A fuzzy-rough set is defined by two fuzzy sets, fuzzy
lower and upper approximations, obtained by extending the
corresponding crisp rough set notions. In the crisp case,
elements that belong to the lower approximation (i.e. have
a membership of 1) are said to belong to the approximated
set with absolute certainty. In the fuzzy-rough case, elements
may have a membership in the range [0,1], allowing greater
flexibility in handling uncertainty.

Fuzzy-Rough Feature Selection [8] is concerned with the
reduction of information or decision systems through the
use of fuzzy-rough sets. Let I = (U, A) be an information
system, where U is a non-empty set of finite objects (the
universe) and A is a non-empty finite set of attributes such
that a : U→ Va for every a ∈ A. Va is the set of values that
attribute a may take. For decision systems, A = {C ∪ D}
where C is the set of input features and D is the set of
decision values.

A. Fuzzy Equivalence Classes

Fuzzy equivalence classes [6], [12] are central to the fuzzy-
rough set approach in the same way that crisp equivalence
classes are central to classical rough sets. For typical applica-
tions, this means that the decision values and the conditional
values may all be fuzzy. The concept of crisp equivalence
classes can be extended by the inclusion of a fuzzy similarity
relation S on the universe, which determines the extent to

which two elements are similar in S. The usual properties of
reflexivity (µS(x, x) = 1), symmetry (µS(x, y) = µS(y, x))
and transitivity (µS(x, z) ≥ µS(x, y) ∧ µS(y, z)) hold.

Using the fuzzy similarity relation, the fuzzy equivalence
class [x]S for objects close to x can be defined:

µ[x]S (y) = µS(x, y) (1)

The following axioms should hold for a fuzzy equivalence
class F :

• ∃x, µF (x) = 1
• µF (x) ∧ µS(x, y) ≤ µF (y)
• µF (x) ∧ µF (y) ≤ µS(x, y)
The first axiom corresponds to the requirement that an

equivalence class is non-empty. The second axiom states that
elements in y’s neighbourhood are in the equivalence class
of y. The final axiom states that any two elements in F are
related via the fuzzy similarity relation S. Obviously, this
definition degenerates to the normal definition of equivalence
classes when S is non-fuzzy. The family of normal fuzzy sets
produced by a fuzzy partitioning of the universe of discourse
can play the role of fuzzy equivalence classes [6].

B. Fuzzy Lower and Upper Approximations

The fuzzy lower and upper approximations are fuzzy
extensions of their crisp counterparts. Informally, in crisp
rough set theory, the lower approximation of a set contains
those objects that belong to it with certainty. The upper
approximation of a set contains the objects that possibly
belong. From the literature, the fuzzy P -lower and P -upper
approximations are defined as [6]:

µPX(Fi) = infxmax{1− µFi
(x), µX(x)} ∀i (2)

µPX(Fi) = supxmin{µFi
(x), µX(x)} ∀i (3)

where U/P stands for the partition of the universe of
discourse, U, with respect to a given subset P of features, and
Fi denotes a fuzzy equivalence class belonging to U/P . Note
that although the universe of discourse in feature reduction
is finite, this is not the case in general, hence the use of sup
and inf above. These definitions diverge a little from the
crisp upper and lower approximations, as the memberships
of individual objects to the approximations are not explicitly
available. As a result of this, the fuzzy lower and upper
approximations are redefined as [7]:

µPX(x) = sup
F∈U/P

min(µF (x), inf
y∈U

max{1−µF (y), µX(y)})
(4)

µPX(x) = sup
F∈U/P

min(µF (x), sup
y∈U

min{µF (y), µX(y)})
(5)

The tuple < PX,PX > is called a fuzzy-rough set. For this
particular feature selection method, the upper approximation
is not used, though this may be useful for other methods.
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For an individual feature, a, the partition of the universe
by {a} (denoted U/IND({a})) is considered to be the
set of those fuzzy equivalence classes for that feature. For
example, if the two fuzzy sets Na and Za are generated for
feature a during fuzzification, the partition U/IND({a})
= {Na, Za}. If the fuzzy-rough feature selection process
is to be useful, it must be able to deal with multiple
features, finding the dependency between various subsets of
the original feature set. For instance, it may be necessary to
be able to determine the degree of dependency of the decision
feature(s) with respect to feature set P = {a, b}. In the crisp
case, U/P contains sets of objects grouped together that are
indiscernible according to both features a and b. In the fuzzy
case, objects may belong to many equivalence classes, so the
cartesian product of U/IND({a}) and U/IND({b}) must
be considered in determining U/P . In general,

U/P = ⊗{a ∈ P : U/IND({a})} (6)

For example, if P = {a, b}, U/IND({a}) = {Na, Za} and
U/IND({b}) = {Nb, Zb}, then

U/P = {Na ∩Nb, Na ∩ Zb, Za ∩Nb, Za ∩ Zb}
Clearly, each set in U/P denotes an equivalence class. The

extent to which an object belongs to such an equivalence
class is therefore calculated by using the conjunction of
constituent fuzzy equivalence classes, say Fi, i = 1, 2, ..., n:

µF1∩...∩Fn
(x) = min(µF1(x), µF2(x), ..., µFn

(x)) (7)

C. Fuzzy-Rough Reduction Method

Fuzzy-Rough Feature Selection builds on the notion of the
fuzzy lower approximation to enable reduction of datasets
containing real-valued features. The process becomes iden-
tical to the crisp approach when dealing with nominal well-
defined features.

The crisp positive region in the standard RST is defined
as the union of the lower approximations. By the extension
principle, the membership of an object x ∈ U, belonging to
the fuzzy positive region can be defined by

µPOSP (Q)(x) = sup
X∈U/Q

µPX(x) (8)

Object x will not belong to the positive region only if the
equivalence class it belongs to is not a constituent of the
positive region. This is equivalent to the crisp version where
objects belong to the positive region only if their underlying
equivalence class does so.

Using the definition of the fuzzy positive region, a new
dependency function between a set of features Q and another
set P can be defined as follows:

γ′
P (Q) =

|µPOSP (Q)(x)|
|U| =

∑
x∈U

µPOSP (Q)(x)
|U| (9)

As with crisp rough sets, the dependency of Q on P
is the proportion of objects that are discernible out of the

entire dataset. In the present approach, this corresponds to
determining the fuzzy cardinality of µPOSP (Q)(x) divided
by the total number of objects in the universe.

FRQUICKREDUCT(C,D).
C, the set of all conditional features;
D, the set of decision features.

(1) R← {}, γ′
best ← 0, γ′

prev ← 0
(2) do
(3) T ← R
(4) γ′

prev ← γ′
best

(5) ∀x ∈ (C−R)
(6) if γ′

R∪{x}(D) > γ′
T (D)

(7) T ← R ∪ {x}
(8) γ′

best ← γ′
T (D)

(9) R← T
(10) until γ′

best == γ′
prev

(11) return R

Fig. 1. The fuzzy-rough QUICKREDUCT algorithm

A fuzzy-rough QUICKREDUCT algorithm, based on the
crisp version [2], has been developed as given in Fig. 1. It
employs the fuzzy-rough dependency function γ′ to choose
which features to add to the current reduct candidate. The
algorithm terminates when the addition of any remaining fea-
ture does not increase the dependency. As with the original
algorithm, for a dimensionality of n, the worst case dataset
will result in (n2 + n)/2 evaluations of the dependency
function. However, as fuzzy-rough set-based feature selection
is used for dimensionality reduction prior to any involvement
of the system which will employ those features belonging to
the resultant reduct, this operation has no negative impact
upon the run-time efficiency of the system.

III. FUZZY ENTROPY-ASSISTED FRFS

Fuzzy Entropy-assisted FRFS uses the FRFS methodology
as a basis for dimensionality reduction, while using a fuzzy-
entropy measure to guide the FS process, rather than the
dependency function value as described in the previous
section.

A. Classical and Information Entropy (IE)

Classical Entropy may be defined as a measure of the
degradation or dispersal of energy and also as the energy
form of a system that relates to its internal state of disorder
or randomness. Entropy may also be described as a measure
of progress of a process of equalisation. It is often used in
relation to thermodynamic or metabolic biological processes.
High entropy values are indicative of disordered states, and
low entropy values are characteristic of ordered states.

Information entropy (IE) or Shannon entropy [14] is also
a measure of the amount of disorder in a system and can be
defined as:
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H(X) = −
N∑

i=0

pi log2 pi (10)

The entropy of the event X is the sum, over all possible
outcomes i of X , of the product of the probability of outcome
i times the log of the probability of i. This can also be applied
to a general probability distribution, rather than a discrete-
valued event.

The IE value tends to zero with increasing order in any
system. It is interesting to note at this point that the fuzzy-
rough dependency function value tends to 1 with any increase
in order. Having considered this fact, the motivation for
investigation of a fuzzy entropy-based approach may not
be clear. However, as noted previously, the use of fuzzy-
entropy-based techniques often discovered smaller reducts
than dependency function-based methods [8].

A fuzzy entropy-assisted approach selects subsets with
respect to their entropy value and uses this value to guide
the feature selection process.

B. Fuzzy Entropy Measure

Again, let I = (U, A) be a decision system, where U is a
non-empty set of finite objects. A = {C∪D} is a non-empty
finite set of attributes, where C is the set of input features and
D is the set of classes. An attribute a ∈ A has corresponding
fuzzy subsets F1, F2, ..., Fn. The fuzzy entropy for a fuzzy
subset Fi can be defined as:

H(Fi) = −
∑

D∈U/D

p(D|Fi) log2 p(D|Fi) (11)

where, p(D|Fi) is the relative frequency of the fuzzy subset
Fi of attribute a with respect to the decision D, and is
defined:

p(D|Fi) =
|D ∩ Fi|
|Fi| (12)

The cardinality of a fuzzy set is denoted by | · |. Based on
these definitions, the fuzzy entropy for an attribute subset R
is defined as follows:

E(R) =
∑

Fi∈U/R

|Fi|∑
Yi∈U/R |Yi|H(Fi) (13)

This fuzzy entropy can be used to gauge the utility of
attribute subsets in a similar way to that of the fuzzy-rough
measure. However, the fuzzy entropy measure decreases
with increasing subset utility, whereas the fuzzy-rough de-
pendency measure increases. With these definitions, a new
feature selection mechanism can be constructed that uses
fuzzy entropy to guide the search for the best fuzzy-rough
feature subset.

FREQUICKREDUCT(C,D).
C, the set of all conditional features;
D, the set of decision features.

(1) T ← {}, γ′
prev ← 0

(2) do
(3) R← T
(4) γ′

prev ← γ′
T (D)

(5) ∀x ∈ (C−R)
(6) if E(R ∪ {x}) < E(T )
(7) T ← R ∪ {x}
(8) until γ′

T (D) ≤ γ′
prev

(9) return R

Fig. 2. The fuzzy-rough fuzzy entropy-based QUICKREDUCT algorithm

C. Fuzzy-Rough Entropy-based QUICKREDUCT

Figure 2 below shows a fuzzy-rough entropy-based
QUICKREDUCT algorithm based on the previously described
fuzzy-rough algorithm in figure 1.

FREQUICKREDUCT is similar to the fuzzy-rough algo-
rithm but uses the entropy value of a data subset to guide
the feature selection process. If the fuzzy entropy value of
the current reduct candidate is smaller than the previous, then
this reduct is retained and used in the next iteration of the
loop. It is important to point out that the reduct is evaluated
by examining its entropy value, termination only occurs when
the addition of any remaining features results in a decrease
in the dependency function value (γ′

prev). The fuzzy-entropy
value therefore is not used as a termination criteria.

The algorithm begins with an empty subset R and with
γ′

prev initialised to zero. The do-until loop works by ex-
amining the entropy value of a subset and incrementally
adding one conditional feature at a time, until the dependency
function value begins to fall to a value that is lower or equal
to that of the last subset. For each iteration, a conditional
feature that has not already been evaluated will be temporar-
ily added to the subset R. The entropy of the subset currently
being examined (5) is then evaluated and compared with the
entropy of T, (the previous subset). If the entropy value of
the current subset is lower (6), then the attribute added in
(5) is retained as part of the new reduct T (7).

The loop continues to evaluate in the above manner by
adding conditional features, until the dependency value of the
current reduct candidate (γ′

R(D)) falls to a value lower than
or equal to that of the previously evaluated reduct candidate.

D. A Worked Example

To illustrate the operation of the new fuzzy entropy-based
algorithm, a small example dataset (given in table I) is
considered, containing real-valued conditional attributes with
nominal decisions.

Table I contains three real-valued conditional attributes and
a crisp-valued decision attribute. To begin with, the algorithm
initializes the potential reduct (i.e. the current best set of
attributes) to the empty set.
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Object a b c q
1 −0.4 −0.3 −0.1 no
2 −0.4 0.2 −0.2 yes
3 −0.3 −0.4 −0.1 no
4 0.3 −0.3 0 yes
5 0.2 −0.3 0 yes
6 0.2 0 0 no

TABLE I

EXAMPLE DATASET: CRISP DECISIONS

N Z

1

0 -0.5 0.50

Fig. 3. Fuzzifications for conditional features

Using the fuzzy sets defined in figure 3 (for all conditional
attributes), and setting A = {a}, B = {b}, C = {c} and
D = {q}, the following equivalence classes are obtained:

U/A = {Na, Za}
U/B = {Nb, Zb}
U/C = {Nc, Zc}
U/D = {{1, 3, 6}, {2, 4, 5}} = {D1,D2}

The algorithm begins with an empty subset, and considers
the addition of individual features. The attribute that results
in the greatest decrease in fuzzy entropy will ultimately be
added to the reduct candidate. For attribute a, the fuzzy
entropy is calculated as follows (A = {a}):

E(A) =
|Na|

|Na|+ |Za|H(Na) +
|Za|

|Na|+ |Za|H(Za)

For the first part of the summation, the value H(Na)
must be determined. This is achieved in the following way:

H(Na) = –
∑

D∈U/D
p(D|Na) log2 p(D|Na)

= −p(D1|Na) log2 p(D1|Na)
+ −p(D2|Na) log2 p(D2|Na)

The required probabilities are p(D1|Na) = 0.6363637,
p(D2|Na) = 0.3636363. Hence, H(Na) = 0.94566023. In
a similar way, H(Za) can be calculated, giving a value of
1.0.

To determine the fuzzy entropy for a, the values |Na|
|Na|+|Za|

and |Za|
|Na|+|Za| must also be determined. This is achieved

through the standard fuzzy cardinality, resulting in a fuzzy
entropy value of:

E(A) = (0.47826084.H(Na)) + (0.5217391.H(Za))
= (0.47826084× 0.94566023)

+ (0.5217391× 1.0)
= 0.9740114

Repeating this process for the remaining attributes gives:

E(B) = 0.99629750
E(C) = 0.99999994

From this it can be seen that attribute a will cause the
greatest decrease in fuzzy entropy. This attribute is chosen
and added to the potential reduct, R ← R ∪ {a}. This
subset is then evaluated using the fuzzy-rough dependency
measure, resulting in γR(D) = 0.3333333. The previous
dependency value is 0 (the algorithm started with the empty
set), hence the search continues. The process iterates and
the two fuzzy entropy values calculated are

E({a, b}) = 0.7878490
E({a, c}) = 0.9506136

Adding attribute b to the reduct candidate causes the larger
decrease of fuzzy entropy, so the new candidate becomes
{a, b}. The resulting dependency value for this, γ{a,b}(D),
is 0.56666666. This is, again, larger than the previous
dependency value, and so search continues. Lastly, attribute
c is added to the potential reduct:

E({a, b, c}) = 0.7412282
(γ{a,b,c}(D) = 0.56666666)

As this causes no increase in dependency, the algorithm stops
and outputs the reduct {a, b}. The dataset can now be reduced
to only those attributes appearing in the reduct.

IV. EXPERIMENTATION

This section presents the results of experimental studies
using the datasets described in table II. These datasets are
small-to-medium in size, with between 120 and 390 objects
per dataset and feature sets ranging from 5 to 39. All datasets
have been obtained from [1] and [11]. A comparison of the
entropy and FRFS-based dimensionality reduction techniques
is given based on classification accuracy, reduct size and time
taken.

The method employed uses a pre-categorisation step which
generates associated fuzzy sets for a dataset. The FS process
then generates a reduced dataset and associated reduced
fuzzy sets. These reduced datasets are then classified using
the relevant classifier (J48, JRip, PART). (Note that the FS
step is not employed for the unreduced dataset)

A. Classifiers

In the generation of results for classification accuracies,
three classifiers were employed – J48, JRip, and PART [17].

J48 [13] creates decision trees by choosing the most
informative features and recursively partitioning the data
into subtables based on their values. Each node in the tree
represents a feature with branches from a node representing
the alternative values this feature can take according to the
current subtable. Partitioning stops when all data items in
the subtable have the same classification. A leaf node is then
created, and this classification assigned.
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Dataset Objects Features Decision feat. type Description
water 2 390 39 binary Water treatment database
water 3 390 39 3-class Water treatment database

cleveland 297 14 binary Heart Disease database
glass 214 10 6-class Glass identification database
heart 270 14 binary Heart Disease database

ionosphere 230 35 binary Ionosphere radar classification
iris 150 5 3-class Plant classification database

olitos 120 26 4-class Chemical analysis database
wine 178 14 3-class Wine recognition database

TABLE II

DATASET DESCRIPTION

J48 JRip PART
Dataset Unreduced FRFS Entropy Unreduced FRFS Entropy Unreduced FRFS Entropy
water 2 83.33 80.26 81.79 83.85 84.36 84.36 85.64 82.56 85.38
water 3 77.44 79.74 78.46 81.28 82.05 84.62 79.49 78.97 81.28

cleveland 51.85 55.22 52.53 52.19 54.55 53.87 50.17 52.19 51.52
glass 67.29 69.63 69.63 71.50 69.63 69.63 67.76 68.22 68.22
heart 76.67 78.89 78.52 77.41 78.89 82.59 73.33 78.52 80.0

ionosphere 87.83 91.30 88.7 86.52 87.83 89.13 88.27 91.30 89.57
iris 96.00 96.00 96.00 94.00 94.00 95.33 94.00 94.00 95.33

olitos 67.50 67.50 68.33 70.83 70.83 67.50 57.50 62.50 70.83
wine 94.38 92.14 93.26 92.70 88.76 89.89 93.82 93.82 91.57

TABLE III

AVERAGE CLASSIFICATION ACCURACY

Original number Reduct size Final dependency value Time taken to locate reduct Time to build model
Dataset of features FRFS Entropy FRFS Entropy FRFS Entropy FRFS Entropy
water 2 39 11 8 0.588 0.540 96.58 68.29 0.034 0.027
water 3 39 12 11 0.595 0.549 158.73 1657.44 0.08 0.067

cleveland 14 11 10 0.516 0.535 24.11 130.63 0.09 0.1
glass 10 9 9 0.359 0.359 1.61 4.89 0.047 0.13
heart 14 11 9 0.578 0.607 11.84 56.48 0.027 0.074

ionosphere 35 11 11 0.673 0.677 61.80 962.56 0.087 0.037
iris 5 5 3 0.707 0.658 0.031 0.031 0.001 0.007

olitos 26 10 8 0.572 0.620 11.20 22.36 0.023 0.02
wine 14 10 9 0.844 0.862 1.42 9.83 0.023 0.013

TABLE IV

COMPARISON OF REDUCT SIZE, DEPENDENCY VALUE, & RUN TIMES

JRip [3] learns propositional rules by repeatedly grow-
ing rules and pruning them. During the growth phase, an-
tecedents are added greedily until a termination condition
is satisfied. Antecedents are then pruned in the next phase
subject to a pruning metric. Once the ruleset is generated, a
further optimization is performed where rules are evaluated
and deleted based on their performance on randomized data.

PART [18] generates rules by means of repeatedly creating
partial decision trees from data. The algorithm adopts a
divide-and-conquer strategy such that it removes instances
covered by the current ruleset during processing. Essentially,
a rule is created by building a pruned tree for the current set
of instances; the leaf with the highest coverage is promoted
to a rule.

B. Comparison of Classification Accuracy

The data which are presented in table III shows the average
classification accuracy as a percentage obtained using the 10-
fold cross validation method. The classification was initially
performed on the unreduced dataset, followed by the reduced
datasets which were obtained by using both FRFS, and
entropy-based dimensionality reduction techniques.

In most cases the classification accuracy increases or
remains at the same level (for both FRFS and entropy-based
methods). There are some notable exceptions however, where
a decrease in classification accuracy is observed. When such
decreases are compared to the reduction in dimensionality
achieved using entropy-based reduction techniques, it is
apparent that they are not significant. For example, for the
data set water 2 in table IV, the reduction of the feature set
from 39 to 11 (for both FRFS and entropy-based techniques)
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translates to an overall reduction in dimensionality of 71.8%.
The corresponding decrease in classification accuracy how-
ever is only in the order of 1.9%.

When comparing both entropy and FRFS-based tech-
niques, the results show that for the entropy-based approach,
there are more instances of increases in classification than
for the same datasets using the FRFS based approach.

In summary, although there are some instances where the
classification accuracy may decrease slightly, the general
trend is to an increase in classification accuracy. Where
there is a decrease, it is small in comparison to the overall
reduction of dimensionality.

The results for JRip show that it has fewer instances of
increase in classification accuracy than either J48 or PART.
Indeed there are instances where the accuracy has decreased
when applied to the reduced datasets for both FRFS and
entropy-based methods.

The J48 classifier offers improved results over JRip but
still has some instances where the classification values de-
crease when classifying the reduced datasets.

The classifier results for PART show the most consistent
increase in classification accuracy which shows improvement
on the JRip and J48 classifiers.

C. Reduct Size, Runtimes, and Dependency Function

Presented in table IV is a comparison of reduct size,
dependency value and runtime data, using both FRFS and
entropy-based approaches.

There is an obvious and clear advantage to the entropy-
based approach in relation to reduct size. The entropy-based
method consistently returns reducts that are at least equal in
size to the reduct returned by the FRFS method, but usually
smaller. In fact the entropy-based approach returns reducts
that are smaller in size for nearly 78% of the datasets listed,
– there are only 2 cases where reducts are equal in size to
those returned by the FRFS method.

It is clear from the data that the entropy-based tech-
nique runtimes are considerably longer than the FRFS-based
method. The water 3 database is one particular example that
demonstrates this - the FRFS method takes 158.73s to run
while the entropy-based method takes 1567.44s (15.6 min)
- nearly 91% longer. The computational overhead of the
entropy-based method in comparison to FRFS is significant,
and it must also be considered that no attempt has been made
to optimise the FEFRFS algorithm.

As mentioned previously, the overall runtime efficiency of
both approaches can be summarised by the times returned
for the water 3 dataset, which is considerably larger than
the FRFS-based approach. This indicates that on average the
entropy-based method takes significantly longer to discover
reducts than the FRFS-based approach.

Whilst the entropy-based FS approach is guided by the
fuzzy entropy value, it would be expected that the depen-
dency function value results would not reach the same level
as those of the FRFS method (as the FRFS method is guided
solely by the dependency function value). However, the
average dependency function values returned for both FRFS

and entropy-based approaches are almost indistinguishable
(FRFS–0.603 and entropy-based–0.601), with some results
for the entropy-based method even returning higher individ-
ual values.

When considering the relationship of the dependency
function value to the classification accuracy. There is a
trend towards an increase of dependency function value with
increases in classification accuracy. Figures 4 and 5 show
this clearly, however once again the entropy-based method
shows a small but clear improvement over the FRFS method.

Fig. 4. FRFS Approach–Average Classification and Dependency Function
value

Fig. 5. Entropy-based Approach–Average Classification and Dependency
Function value

V. CONCLUSIONS

Comparison of both FRFS and fuzzy entropy-based FRFS
has shown that although the fuzzy entropy-based method
will find smaller reducts than FRFS, this often occurs at the
expense of runtime. However, it must be remembered that
the entropy-based method is computationally more complex
than FRFS.

Classification accuracy on average has been shown to
increase or remain at the same level using the fuzzy entropy-
based method. Where a decrease has been observed in
relation to FRFS, it has been small and has always resulted
in reducts that are smaller than the corresponding FRFS

1505



reducts. As discussed previously, the actual decrease in value
of classification accuracy is not significant.

The dependency function values of the entropy-based
method are very close to those of the FRFS method but also
marginally lower. When the average over all of the datasets
is considered this is to be expected as the entropy-based
approach is not guided using the dependency function.

It is clear from the results obtained in the previous section
that an increase in the efficiency of the fuzzy entropy-based
algorithm is highly desirable. The experimental work detailed
in this paper did not take advantage of any optimisation
for the fuzzifications or classifiers. It is expected that the
results obtained through the use of optimisation would reflect
a marked improvement. Future work would include the
implementation of such optimisation methods for the fuzzy
entropy-based algorithm. Also, due to the fuzzy nature of
the data examined during experimentation, the use of fuzzy
classifiers in place of the above listed classifiers would lead
to an increase in classification accuracy.

Other areas which warrant further investigation include
alternatives to the greedy forward selection approach em-
ployed here. Investigations have already been carried out
into the use of an ant colony optimization-based search
mechanism for FRFS [9]. This approach was shown to be
superior for locating optimal reducts. It is likely that similar
improvements can be obtained for FEFRFS when adopting
this search strategy.
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