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Abstract

At present, likelihood ratios for two-level models are determined with

the use of a normal kernel estimation procedure when the between-group

distribution is thought to be non-normal. An extension is described here

for a two-level model in which the between-group distribution is very posit-

ively skewed and an exponential distribution may be thought to represent

a good model. The theoretical likelihood ratio is derived. A likelihood

ratio based on a biweight kernel with an adaptation at the boundary is

developed. The performance of this kernel is compared alongside those of

normal kernels and normal and exponential parametric models. A com-

parison of performance is made for simulated data where results may be

compared with those of theory, using the theoretical model, as the true

parameter values for the models are known. There is also a comparison for

forensic data, using the concentration of aluminium in glass as an exem-

plar. Performance is assessed by determining the numbers of occasions on

which the likelihood ratios for sets of fragments from the same group are

supportive of the proposition that they are from different groups and the
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numbers of occasions on which the likelihood ratios for sets of fragments

from different group are supportive of the proposition that they are from

the same group.

1 Introduction

The value of evidence, E, in comparing the probabilities of the truth of two

propositions, Hp and Hd say, is taken to be the factor which converts the odds

in favour of Hp, relative to Hd, prior to consideration of E, to the odds in favour

of Hp, relative to Hd, posterior to consideration of E. From the odds form of

Bayes’ Theorem, the value of the evidence can be seen to be the likelihood ratio

Pr(E | Hp)

Pr(E | Hd)

such that

Pr(Hp | E)

Pr(Hd | E)

Pr(E | Hp)

Pr(E | Hd)
× Pr(Hp)

Pr(Hd)
. (1)

Trace evidence, as the name suggests, is evidence which is found in traces,

for example, stains of body fluids such as blood, or fragments of glass or a

pile of powdered drugs. Evidence whose source is known, such as fragments

of glass taken from a window at a crime scene is known as control evidence.

Evidence whose source is unknown, such as fragments of glass taken from the

clothing of a person suspected of committing the crime is known as recovered

evidence. Some evidence is in the form of measurements, such as the elemental

composition of glass or the chemical composition of drugs. The data from these

measurements are often nested with two levels. There are measurements from

within a source, such as from a single window, and measurements between
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sources, such as between different windows. Methods have been developed for

the evaluation of evidence where the data are univariate and the within- and

between-group distributions are both normal (Lindley, 1977) and where the

data are multivariate, the within-group distribution is normal and the between-

group distribution is non-normal (Aitken and Taroni, 2004, Aitken et al., 2007).

When the between-group distribution is non-normal, the distribution has been

estimated by a Gaussian kernel function.

The method described here for the evaluation of evidence is applicable to a

univariate two-level model where the within-group distribution is taken to be

normal and the between-group distribution is very highly positively skewed. It

is not amenable to a simple transformation to normality nor can it be modelled

satisfactorily by a Gaussian kernel function. An example is given of the between-

group distribution of the concentration of aluminium in glass which is very

positively skewed (see Figure 1). A closed-form expression is derived here for

the value of the evidence when the between-group distribution is exponential.

A kernel estimator, for incorporation in the expression for the likelihood ratio,

is developed based on biweight and boundary kernels (Silverman, 1986).

Simulation studies are carried out to compare various models for the value of

the evidence in different scenarios, based on different estimates for the between-

group distribution. Experimental results show within-group distributions to be

normal. The scenarios relate to the similarity to each other of the control and

recovered data and their rarity. Control and recovered data which are similar

and rare are expected to have a high value, namely a likelihood ratio consider-
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ably greater than one in (1). Control and recovered data which are dissimilar

are expected to have a low value, namely a likelihood ratio considerably less

than one in (1). Models compared with the theoretical results estimate the

between-group distribution with (a) a normal distribution, (b) a normal ker-

nel function, (c) an adaptive kernel function with several choices of sensitivity

parameter and (d) a biweight kernel. The methods are then applied to data of

elemental concentrations of aluminium.

The rest of the paper is developed as follows. Section 2 gives the derivation

of the likelihood ratio in (1) in an analytical form when the between-group dis-

tribution is exponential. A method for the estimation of the likelihood ratio for

highly skewed data is given in Section 3 using biweight and boundary kernels. In

Section 4, the performances of various methods of estimating the likelihood ratio

are assessed using simulations of various combinations of control and recovered

data which compare similarity and rarity. Section 5 provides an assessments of

the performances of the various methods using the example of the concentration

of aluminium in glass, as illustrated in Figure 1. Some conclusions are given

in Section 6 and an Appendix gives a few lines to explain the derivation of the

variance of the biweight kernel.

2 Derivation of likelihood ratio

Consider a two-level random effects model for a random variable X such that

(Xij | µi, σ
2) is normally distributed with expectation µi and variance σ2 and

µi is exponentially distributed with expectation α−1 with probability density
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function

f(µ | α) = α exp(−αµ).

The variance of µi is 1/α2.

Let {xij , i = 1, . . . , m, j = 1, . . . , k} be a random sample from this model

of k observations from each of m groups. Denote the m group means by

x̄1, . . . , x̄m where x̄i =
∑k

j=1
xij/k. The overall mean is denoted x̄. with

x̄. =
∑m

i=1

∑k
j=1

xij/km. The parameter α is estimated by (x̄.)
−1.

Data y1 = {y1j , j = 1, . . . , nc} of nc observations from one group from a

crime scene (control data) and data y2 = {y2j , 1, j = . . . , ns} of ns observations

from a group associated with a suspect (recovered data) are obtained. The

value, V , of the evidence of these data is to be determined.

The exponential distribution is investigated as it is not easy to transform

to a normal distribution and because a theoretical value for the likelihood ratio

may be obtained against which various estimative procedures may be compared.

Let ȳ1 =
∑nc

j=1
y1j/nc and ȳ2

∑ns

j=1
y2j/ns denote the means of the control

and recovered data, respectively. Let s2
y1 =

∑nc

j=1
(y1j − ȳ1)

2/(nc − 1) and

s2
y2

∑ns

j=1
(y2j − ȳ2)

2/(ns − 1) denote the variances of the control and recovered

data, respectively.

The within-group variance σ2 of the underlying population is assumed known.

Its value is taken to be s2
w =

∑m
i=1

∑k
j=1

(xij − x̄i)
2/(mk − m). The between-

group variance of the underlying population is also assumed known. Its value

is taken to be s2
b =

∑m
i=1

(x̄i − x̄.)
2/(m − 1) − s2

w/k.
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The value of the evidence (y1,y2) is given by

V =

∫

f(y1,y2 | µ, σ2)f(µ | α)dµ
∫

f(y1 | µ, σ2)f(µ | α)dµ
∫

f(y2 | µ, σ2)f(µ | α)dµ

First, consider the term in the denominator for the control data y1; de-

note this term D1. The within-group variance σ2 is assumed known and the

within-group distribution is assumed normal, thus the information in the data

is contained in the sufficient statistic Ȳ1. Then

D1 =

∫

f(ȳ1 | µ, σ2)f(µ | α)dµ

where

f(ȳ1 | µ, σ2)

√
nc

σ
√

2π
exp

{

− nc

2σ2
(ȳ1 − µ)2

}

.

Then

D1 =
α
√

nc

σ
√

2π

∫

exp{− nc

2σ2
(ȳ1 − µ)2 − αµ}dµ

=
α
√

nc

σ
√

2π
exp

{

− α

2
(2ȳ1 −

ασ2

nc
)
}

∫

exp
[

− nc

2σ2

{

µ − (ȳ1 −
ασ2

nc
)
}2]

dµ

= α exp
{

− α

2
(2ȳ1 −

ασ2

nc
)
}

.

Similarly, the second term, denoted D2, in the denominator, is given by

D2 = α exp
{

− α

2
(2ȳ2 −

ασ2

ns
)
}

.

Before considering the numerator, some extra notation is helpful.

σ2
12 = σ2

( 1

nc
+

1

ns

)

;
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σ2
3 =

σ2

nc + ns
+

1

α2
;

w = (ncȳ1 + nsȳ2)/(nc + ns).

If the between-group distribution of the data is not assumed to be expo-

nential, the term 1/α2 in the expression for σ2
3 is replaced by the variance of

the biweight kernel function. The derivation of this variance is described in

Appendix 1.

The numerator, N , is
∫

f(y1,y2 | µ, σ2)f(µ | α)dµ.

When y1 and y2 come from the same source, as is assumed in the numerator,

they are dependent within the marginal distribution. As before, with σ2 known,

the information in the data is contained in the sufficient statistics ȳ1 and ȳ2.

Following the argument of Lindley (1977), transform y1,y2 to independent

statistics (ȳ1 − ȳ2, w), with unit Jacobian. Also,

E(Ȳ1 − Ȳ2) = 0;

V ar(Ȳ1 − Ȳ2) = σ2

( 1

nc
+

1

ns

)

= σ2
12;

E(W ) = α−1;

V ar(W ) = α−2 + σ2

( 1

nc + ns

)

= σ2
3 .

Thus

N =

∫

f(ȳ1 − ȳ2)f(w | µ)f(µ | α)dµ

= f(ȳ1 − ȳ2)

∫

f(w | µ)f(µ | α)dµ

= f(ȳ1 − ȳ2)
α

σ3

√
2π

∫

exp
{

− 1

2σ2
3

(w − µ)2 − αµ
}

dµ

7



= f(ȳ1 − ȳ2) α exp
{α

2
(2w + ασ2

3)
}

=
α

σ12

√
2π

exp
{

− 1

2σ2
12

(ȳ1 − ȳ2)
2 +

α

2
(2w + ασ2

3)
}

.

The ratio N/(D1D2) gives the value, V , of the evidence as

V =
1

α σ12

√
2π

exp
[

− 1

2σ2
12

(

ȳ1−ȳ2

)2
+

α

2

{

2(w+ȳ1+ȳ2)+ασ2
3−ασ2

( 1

nc
+

1

ns

)

}]

.

(2)

In what follows, the performance of the estimates of the value of the evidence

obtained from various procedures will be compared with the theoretical value

obtained from (2). For simulations, the theoretical value is determined with

known α and σ. For estimations, using the techniques described below, the

parameters α and σ2 are replaced by their estimates from the population data

{xij , i = 1, . . . , m; j = 1, . . . , k}, namely, (x̄)−1 and s2
w, respectively.

3 Estimation of likelihood ratio

If the between-group distribution is assumed to be exponential then an estimate

of the value of evidence in a particular case with control data y1 and recovered

data y2 may be obtained with substitution of the appropriate numerical values

for ȳ1 and ȳ2 in (2).

In practice, a general approach is required which may then be applied to

data which are highly positively skewed. Four different models for the between-

group distribution are considered. Their values for the likelihood ratios are

compared with the theoretical likelihood ratio. The within-group distribution
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is considered to be normal throughout. The between-group distribution is taken

to be one of

(i) a normal distribution, mean θ, variance τ 2 and

(ii) an exponential distribution with expectation estimated from population

data.

3.1 Biweight kernel estimation

The use of a kernel density estimate based on the normal distribution is difficult

when there is an achievable lower bound to the range of the variable being

modelled and the data are highly positively skewed so that many of the data

are close to the lower bound. In the example to be discussed here, the lower

bound is zero and a kernel based on a normal distribution is very inaccurate

close to this lower bound. A more appropriate approach for modelling a highly

positively skewed distribution is the use of a biweight kernel (Wand and Jones,

1995) with a boundary kernel for use when the kernel comes close to the lower

bound of the range of the random variable, in this case zero.

The biweight kernel K(z) is defined as

K(z) =
15

16
(1 − z2)2; | z |< 1. (3)

This kernel is used to model the between-group distribution using the sample

means {x̄1, . . . , x̄m}. A general biweight kernel, with smoothing parameter h,

and with a between-group variance of τ 2 is given by

1

hτ
K

(µ − x̄

hτ

)

=
15

16hτ

{

1 −
(µ − x̄

hτ

)2}2

; x̄ − hτ < µ < x̄ + hτ. (4)
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There are two candidates for the estimation of the between-group variance,

(i) s2
b =

∑m
i=1

(x̄i − x̄.)
2/(m − 1) − s2

w/k,

(ii) 1/(x̄)2,

the least-squares estimate and the method of moments estimate, respectively,

of τ2, the between-group variance.

The problem of a fixed lower bound at zero is tackled with a boundary

kernel. When an observation, x̄, is close to zero, a different kernel, known as

the boundary kernel (Wand and Jones, 1995), is used. Closeness is defined as

x̄ < hτ . For x̄ > hτ , the biweight kernel (4) is used. For x̄ < hτ , a boundary

kernel

Kh(z) =
ν2 − ν1z

ν0ν2 − ν2
1

K(z) (5)

is used where K(z) is as given in (3). For ease of notation, denote hτ by δ. The

terms ν0, ν1 and ν2 are constants, functions of δ. For the kernel (3) these are

defined as

νt =

∫ δ

−1

ztK(z)dz, t = 0, 1, 2,

where the dependency of ν on δ is suppressed. They can be shown to be

ν2 =
1

14

{

1 +
1

8
δ3(35− 42δ2 + 15δ4)

}

,

ν1 =
5

32

{

δ2(3 − 3δ2 + δ4) − 1
}

,

ν0 =
1

2
+

15

16
(δ − 2

3
δ3 +

1

5
δ5).

In practice, the factor (ν2 − ν1z)/(ν0ν2 − ν2
1 ) is close to 1.
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An optimal value of the smoothing parameter h is given by

hopt =
(1

7

)

−
2

5

(15

21

)
1

5

{

∫

f ′′(x)2dx
}

−
1

5

m−
1

5

(Silverman, 1986). Then, it can be shown that, when f(x)α exp{−αx},

hopt =
(70

m

)
1

5

α−1

which can be estimated by

hopt =
(70

m

)
1

5

x̄.

.

3.2 Likelihood ratio with biweight and boundary kernels

3.2.1 Biweight kernel

First, consider the denominator and the factor which is associated with the

control sample {y1i, i1, . . . , nc}. Denote this as Dc. This may be written as

Dc =

∫

f(y11, . . . , y1nc
| µ, σ2)f(µ | α)dµ.

The factor associated with the recovered sample may be derived analogously

and denote this as Ds. The between-group exponential distribution f(µ | α) is

replaced with the kernel

f̂(µ | x̄1, . . . , x̄m) =
1

mhτ

m
∑

i=1

K
(µ − x̄i

hτ

)

=
1

mhτ

m
∑

i=1

{

1 −
(µ − x̄i

hτ

)2}2

. (6)
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It is convenient to make a transformation zi = (µ − x̄i)/(hτ) with µ =

x̄i + hτzi, Jacobian dµ = h τ dzi, and −1 < zi < 1.

The distribution of Y , for both control and recovered sources, conditional on

µ, is normal so as for the derivation of (2), only the distribution of the sufficient

statistic Ȳ need be considered for the distributions of the terms in the expression

for the likelihood ratio.

The first term, Dc, in the denominator, with the biweight kernel (4) used

for f(µ | α), is given by

Dc =

∫

f(ȳ1 | µ, σ2)f̂(µ | x̄1, . . . , x̄m))dµ

=

√
nc

σ
√

2π

∫

exp
{

− nc

2σ2
(ȳ1 − µ)2

}[ 15

16 m h τ

m
∑

i=1

{

1 −
(µ − x̄i

h τ

)2}2]

dµ

=
15

√
nc

16 m σ
√

2π

m
∑

i=1

∫ 1

−1

(1 − z2
i )2 exp

{

− nc

2σ2
(ȳ1 − (x̄i + h τ zi))

2

}

d zi.

Similarly, the second term, Ds, in the denominator, with the biweight kernel

(4) used for f(µ | α), is given by

Ds =

∫

f(ȳ2 | µ, σ2)f̂(µ | x̄1, . . . , x̄m)dµ

=
15

√
ns

16 m σ
√

2π

m
∑

i=1

∫ 1

−1

(1 − z2
i )2 exp

{

− ns

2σ2
(ȳ2 − (x̄i + h τ zi))

2

}

d zi.

Now, consider the numerator. Denote this as Ncs. As previously

Ncs = f(ȳ1 − ȳ2)

∫

f(w | µ)f̂(µ | x̄1, . . . , x̄m)dµ.

Then

∫

f(w | µ)f̂(µ | x̄1, . . . , x̄m)dµ =

12



15

16 m h τ

1

σ3

√
2π

m
∑

i=1

∫

exp
{

− 1

2σ2
3

(w − µ)2
}{

1−
(µ − x̄i

h τ

)2
}2

dµ

=
15

16 m σ3

√
2π

m
∑

i=1

∫ 1

−1

(1 − z2
i )2 exp

[

− 1

2σ2
3

{

w − (x̄i + h τzi)
}2

]

d zi.

Thus

Ncs =
1

σ12

√
2π

exp
{

− 1

2σ2
12

(ȳ1 − ȳ2)
2

} 15

16 m σ3

√
2π

m
∑

i=1

∫ 1

−1

(1 − z2
i )2 exp

[

− 1

2σ2
3

{

w − (x̄i + h τ zi)
}2

]

dzi.

The likelihood ratio is then given by the ratio of Ncs to the product of Dc

and Ds. Numerical evaluation of the likelihood ratio may then be made with

the substitution of σ by sw, τ by sb and h by its optimal value (70/m)1/5x̄.

3.2.2 Boundary kernel

There is a boundary effect when (x̄i, i = 1, . . . , m) is within hτ of zero. For such

x̄i, the kernel expression

{

1 −
(µ − x̄i

hτ

)2}2

=
{

1 − z2
i

}2

has to be adjusted with the factor (ν2−ν1z)/(ν0ν2−ν2
1), where zi = (µ−x̄i)/(hτ)

and ν0, ν1, ν2 are as in (5), to give

(ν2 − ν1zi)

(ν0ν2 − ν2
1)

{

1 − z2
i

}2

which can be written as

(a − bzi)
{

1 − z2
i

}2

13



where a = ν2/(ν0ν2 − ν2
1) and bν1/(ν0ν2 − ν2

1). Define an indicator function

γ(zi) such that

γ(zi) = 1 if xi > hτ,

= (a − bzi) if xi < hτ.

Then the likelihood ratio Ncs/(DcDs) can be adapted to account for boundary

effects to give a value for the evidence of

1

σ12

√
2π

exp
{

− 1

2σ2
12

(ȳ1 − ȳ2)
2

} 15

16 m σ3

√
2π

m
∑

i=1

∫ 1

−1

γ(zi)(1 − z2
i )2 exp

[

− 1

2σ2
3

{

w − (x̄i + h τ zi)
}2

]

dzi,

divided by the product of

15
√

nc

16 m σ
√

2π

m
∑

i=1

∫ 1

−1

γ(zi)(1 − z2
i )2 exp

{

− nc

2σ2
(ȳ1 − (x̄i + h τ zi))

2

}

d zi

and

15
√

ns

16 m σ
√

2π

m
∑

i=1

∫ 1

−1

γ(zi)(1 − z2
i )2 exp

{

− ns

2σ2
(ȳ2 − (x̄i + h τ zi))

2
}

d zi.

4 Simulations

The likelihood ratio is calculated for various different scenarios. The between-

group distribution for µ is assumed to be exponential with density function

f(µ | α) = α exp(−αµ). The within-group distribution is assumed to be normal
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with expectation µ and variance σ2. Four different scenarios investigated are as

follows.

• Control data {y1i, i = 1, . . . , nc} and recovered data {y2i, i = 1, . . . , ns}

are generated from around the mean µ of one of the groups and µ is

generated from close to the population mean 1/α.

• Control data {y1i, i = 1, . . . , nc} and recovered data {y2i, i = 1, . . . , ns}

are generated from the periphery of one of the groups (e.g., outside the 95

percentile of the associated normal distribution) and µ is generated from

close to the population mean 1/α.

• Control data {y1i, i = 1, . . . , nc} and recovered data {y2i, i = 1, . . . , ns} are

generated from around the mean µ of one of the groups and µ is generated

from the periphery of the population (e.g., outside the 95 percentile of the

exponential distribution with expectation 1/α).

• Control data {y1i, i = 1, . . . , nc} and recovered data {y2i, i = 1, . . . , ns}

are generated from the periphery of one of the groups (e.g., outside the

95 percentile of the associated normal distribution) and µ is generated

from the periphery of the population (e.g., outside the 95 percentile of the

exponential distribution with expectation 1/α).

In all these cases, the control and recovered data come from the same group.

Thus, the likelihood ratios should all be greater than one.
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Population data {xij , i = 1, . . . , m, j = 1, . . . , k} are generated from a two-

level model in which the between-group distribution for µ is taken to be ex-

ponential with density function f(µ | α) = α exp(−αµ) and the within-group

distribution is taken to be normal with mean µ, generated from the exponen-

tial distribution, and variance σ2. Values for m, k and α are 50, 10 and 1.0

respectively, The former two are taken to be representative of values which may

be seen in casework and the value of 1.0 for α is taken as a value which provides

a reasonable level of skewness.

The likelihood ratios for the four generated control and recovered data scen-

arios are calculated for

(i) normal distribution, mean µ, variance τ 2;

(ii) exponential distribution with expectation estimated from the population

data;

(iii) non-normal distribution, estimated by a normal kernel function as de-

scribed in Aitken and Taroni (2004), adapted to allow for the correlation

between the control and recovered data ȳ1 and ȳ2 if they are assumed,

as in the numerator, to come from the same source and extended to an

adaptive kernel (see Section 4.1);

(iv) non-normal distribution, estimated by a biweight kernel function with a

boundary kernel as described in Silverman (1986) and Wand and Jones

(1995), and detailed in Section 3.2.
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4.1 Non-normal between-group distribution with normal

adaptive kernel function

The value of the evidence, when the between-group distribution is taken to be

non-normal and is estimated by a normal kernel function as described in Aitken

and Taroni (2004, equation (10.12)), is adapted to allow for the correlation

between the control and recovered data ȳ1 and ȳ2 if they are assumed, as in

the numerator, to come from the same source. A multivariate version of this

formulation is given in Aitken et al. (2007). This expression is then extended

to an adaptive kernel, where the smoothing parameter is dependent on xi and

is thus denoted hi.

The numerator is

1

m
(2π)−1{(nc + ns

nc ns
)σ2}−1/2{τ2 +

σ2

nc + ns
}−1/2(h2

i τ
2)−1/2

{(τ2 +
σ2

nc + ns
)−1 + (h2

i τ
2)−1}−1/2 exp{−1

2
(ȳ1 − ȳ2)

2[(
nc + ns

nc ns
)σ2]−1}

m
∑

i=1

exp{−1

2
(w − x̄i)

2(τ2 +
σ2

nc + ns
+ h2

i τ
2)−1}.

The first term in the denominator is

1

m
(2π)−1/2{τ2 +

σ2

nc
}−1/2(h2

i τ2)−1/2

{(τ2 +
σ2

nc
)−1 + (h2

i τ
2)−1}−1/2

m
∑

i=1

exp{−1

2
(ȳ1 − x̄i)

2(τ2 +
σ2

nc
+ h2

i τ
2)−1}.

The second term in the denominator is
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1

m
(2π)−1/2{τ2 +

σ2

ns
}−1/2(h2

i τ2)−1/2

{(τ2 +
σ2

ns
)−1 + (h2

i τ
2)−1}−1/2

m
∑

i=1

exp{−1

2
(ȳ2 − x̄i)

2(τ2 +
σ2

ns
+ h2

i τ
2)−1}.

The constant term in the ratio is then:

m
{

ncτ
2(h2

i + 1) + σ2

}1/2{

nsτ
2(h2

i + 1) + σ2

}1/2

σ
{

(nc + ns)τ2(h2
i + 1) + σ2

}1/2
.

The remaining term, that involving ȳ1, ȳ2 and x̄i, is the ratio of

exp{−1

2
(ȳ1−ȳ2)

2(σ2(
1

nc
+

1

ns
))−1}

m
∑

i=1

exp{−1

2
(w−x̄i)

2(τ2+
σ2

nc + ns
+h2

i τ
2)−1}

to

m
∑

i=1

exp{−1

2
(ȳ1−x̄i)

2(τ2+
σ2

nc
+h2

i τ
2)−1}

m
∑

i=1

exp{−1

2
(ȳ2−x̄i)

2(τ2+
σ2

ns
+h2

i τ
2)−1}.

The adaptive smoothing parameter hi is estimated using the procedure out-

lined in Silverman (1986).

First, a pilot estimate f̃(x) is obtained with a kernel density estimation

procedure using a Gaussian kernel, which automatically satisfies the condition

that f̃(xi) > 0 for all i. The smoothing parameter hi is then defined by

hi =
{

f̃(xi)/g
}

−β
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where g is the geometric mean of the f̃(xi) :

log g = m−1
∑

log f̃(xi)

and β is a sensitivity parameter, a number satisfying 0 ≤ β ≤ 1.

These likelihood ratios are compared with the theoretical values (2) by taking

the ratio of the estimated value to the theoretical value. Values for this ratio

close to one are good, values less than one show that the estimated value is

underestimating the true value, values greater than one show that the estimated

value is overestimating the true value.

4.2 Results

Likelihood ratios are calculated for data in which the between-group distribution

is exponential, with parameter α, and the within-group distribution is normal

with variance σ2 and whose mean is exponentially distributed. Control data

are y1j , j = 1, . . . , nc where nc = 5. Recovered data are y2j , j = 1, . . . , ns where

ns = 5. The overall population mean is α−1 and population variance is α−2.

The value 1.0 is used for α.

Nine pairs of control and recovered data are used. First, the control data are

simulated from normal distributions with expectations α−1, α−1+α−1 and α−1+

2α−1; i.e., at the mean of the between-group distribution and then one between-

group standard deviation and two between-group standard deviations away from

the mean, and with variance σ2. The recovered data are simulated from normal

19



distributions with expectations ȳ1, ȳ1+σ and ȳ1+2σ; i.e., at the sample mean of

the control data, and then one within-group standard deviation and two within-

group standard deviations of that sample mean. All nine combinations of control

and recovered data are simulated. There are 500 simulations of each combination

in total. The purpose of the simulations is to illustrate the changes in the

likelihood ratio for various combinations of similarity and rarity. Similarity

is when the distribution of y2 has the mean ȳ1 for example. Rarity is when

the control data are simulated from a normal distribution with expectation

α−1 + 2α−1.

The theoretical likelihood ratio (2) for the nine combinations is determined as

is the likelihood ratio using a biweight kernel, a normal kernel (Section 4.1) and

an assumption of between group normality with the between-group expectation

and variance taken to be α−1 and α−2, respectively. An adaptive kernel was

investigated with the adaptive parameter β taking values 0, 0.1, 0.2 and 0.5.

Results are given in Table 4.2

The adaptive kernel model of the between-group distribution provides reas-

onable results, as measured by the ratio of its estimated value to the true value,

at the expectation of the exponential. Results at one or two standard deviations

from the expectation are not so good. The normal model of the between-group

distribution does not provide good results. The biweight kernel model gives the

best results at two standard deviations from the expectation (α−1 +2α−1), very

good results at one standard deviation from the expectation (α−1 + α−1) but

not such good results as the adaptive kernel at the expectation.
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Table 1: Means of 500 simulations of likelihood ratios for evidence from a two-
level model in which the within-group distribution is distributed normally with
variance σ2 and with expectation which has a between-group distribution that
is exponential with expectation α−1. The control data are five simulations from
normal distributions which have expectations α−1, α−1 +α−1, and α−1 +2α−1,
and constant variance σ2. The sample means of these simulations are denoted
ȳ1. The recovered data are five simulations from normal distributions which have
expectations ȳ1, ȳ1 + σ and ȳ1 + 2σ. The sample means of these simulations
are denoted ȳ2. The parameter for the adaptive kernel is denoted β and takes
values 0 (corresponding to a standard kernel), 0.1, 0.2 and 0.5. The ratios of the
estimated values to the corresponding theoretical values are given in parentheses
alongside the appropriate estimated value.

Expectation of Adaptive Expectation of recovered data
control data parameter

ȳ1 ȳ2

ȳ1 ȳ1 + σ ȳ1 + 2σ

Between group modelled by adaptive kernel
β

α−1 0 10.19 (0.79) 3.37 (0.76) 0.15 (0.75)
0.1 10.17 (0.79) 3.37 (0.76) 0.15 (0.75)
0.2 10.19 (0.79) 3.38 (0.76) 0.15 (0.75)
0.5 10.51 (0.81) 3.50 (0.79) 0.16 (0.80)

α−1 + α−1 0 20.14 (0.43) 8.92 (0.43) 0.04 (0.40)
0.1 20.45 (0.44) 9.06 (0.44) 0.04 (0.40)
0.2 20.81 (0.45) 9.23 (0.45) 0.04 (0.40)
0.5 22.70 (0.49) 10.09 (0.49) 0.05 (0.50)

α−1 + 2α−1 0 50.48 (0.35) 13.32 (0.35) 0.06 (0.38)
0.1 51.10 (0.36) 13.47 (0.36) 0.06 (0.38)
0.2 51.83 (0.36) 13.65 (0.36) 0.06 (0.38)
0.5 56.49 (0.40) 14.83 (0.39) 0.06 (0.38)

Between and within both normal

α−1 72.82 (5.64) 23.96 (5.40) 1.05 (5.25)
α−1 + α−1 156.29 (3.40) 70.39 (3.41) 0.34 (3.40)
α−1 + 2α−1 791.85 (5.56) 226.48 (5.97) 0.99 (6.19)

Between group modelled by biweight kernel

α−1 5.21 (0.40) 1.84 (0.41) 0.09 (0.45)
α−1 + α−1 37.25 (0.81) 16.92 (0.82) 0.09 (0.90)
α−1 + 2α−1 244.27 (1.72) 59.47 (1.57) 0.24 (1.50)

Theoretical value

α−1 12.92 4.44 0.20
α−1 + α−1 46.01 20.66 0.10
α−1 + 2α−1 142.40 37.91 0.16
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Figure 1: Dotplot of group means

5 Application

Figure 1 shows the distribution of the concentrations of aluminium in 200 groups

of glass fragments with 12 fragments in each group; hence in our notation,

m = 200, k = 12. The data plotted are the 200 group means. Whilst the data

are not truly exponential since the mode is slightly removed from zero, the data

are highly positively skewed.

The performance of three procedures for estimating the likelihood ratio is

compared. The three procedures estimate the between-group distributions with

a normal distribution, a normal adaptive kernel and a biweight kernel with

a boundary condition. There is, of course, no theoretical model with which

to compare the results and assess their performance. Instead, control and re-

covered data are taken from the overall sample data as follows: for same-source
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comparisons, the control and recovered data are taken from the same group

by splitting the group into two equally-sized, non-overlapping halves (contain-

ing two measurements each); for different-source comparisons, the control and

recovered data are entire groups selected from different sources.

There are 200 within-group comparisons of control and recovered data and

200 × 199/2 = 19, 900 between-group comparisons. For the 200 within-group

comparisons, the likelihood ratio should be greater than 1 and for the 19,900

between-group comparisons, the likelihood ratio should be less than 1. The

results are shown in Table 5.

The biweight kernel has the largest false negative rate (91/200,45.5%) and

the lowest false positive rate (3103/19,900, 15.5%) of the various models. In a

criminal trial, it is more important to have a small false positive rate (wrongful

conviction of an innocent person) than a small false negative rate (wrongful

release of a guilty person).

6 Conclusions

At present, likelihood ratios for two-level models are determined with the use

of a normal kernel estimation procedure when the between-group distribution

is thought to be non-normal. An extension is described here for a two-level

model in which the between-group distribution is very positively skewed and an

exponential distribution may be thought to represent a good model. A biweight

kernel model is shown to provide results which are better than a normal kernel

model and comparable to an adaptive kernel model.
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Table 2: Summary of likelihood ratios for aluminium data. Two hundred calcu-
lations of within-group comparisons and 19,900 calculations of between-group
comparisons are made. Results are recorded for a normal kernel estimation
(nn), an exponential kernel estimation (exp), an adaptive kernel estimation for
β = 0, 0.1, 0.2 and 0.5 and a biweight kernel estimation (b).

Likelihood ratio nn exp β b
range 0.0 0.1 0.2 0.5

Within-group comparisons

0 − 1 4 4 4 4 4 4 91
1 − 101 1 160 184 184 184 185 76

101 − 102 183 35 12 12 12 11 32
102 − 103 8 1 0 0 0 0 1
103 − 104 3 0 0 0 0 0 0

> 104 1 0 0 0 0 0 0

Between-group comparisons

< 10−4 6082 6479 6515 6514 6513 6499 6672
10−4 − 10−3 830 1200 1129 1129 1143 1123 1414
10−3 − 10−2 1282 1722 1716 1716 1706 1642 2171
10−2 − 10−1 1856 2384 2518 2511 2501 2476 5651

10−1 − 1 619 763 809 809 796 789 889
1 − 101 2972 7031 7153 7162 7183 7306 2834
> 101 6259 321 60 59 58 65 269
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8 Appendix 1

8.1 The derivation of the variance of the biweight kernel

The between-group exponential distribution is replaced with the kernel:

f̂(µ | x̄1, . . . , x̄m)
1

mhτ

m
∑

i=1

K
(µ − x̄i

hτ

)

=
1

mhτ

m
∑

i=1

{

1 −
(µ − x̄i

hτ

)2}2

.

The variance of this distribution is E(µ2) − {E(µ)}2, where

E(µk) =

∫

µkf̂(µ | x̄1, . . . , x̄m)dµ; k = 1, 2;

=
1

mhτ

m
∑

i=1

∫ x̄i+hτ

x̄i−hτ

µk
{

1 −
(µ − x̄i

hτ

)2}2

dµ.
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