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Asymptotics of

Perturbations to the

Wave Equation

Matthias Hieber and Ian Wood

Dedicated to Jerry Goldstein on the occasion of his 60th birthday

1 Introduction

Determining the asymptotic behaviour of solutions to linear PDEs is often a
delicate matter. Even if the solution is given by a C0-semigroup T acting on a
suitable Banach space, it can be difficult to calculate the growth bound of T . It
is a well-established procedure to calculate or to estimate the spectrum of the
generator A and to try to relate the location of the spectrum in the complex
plane to the asymptotic behaviour of the solution. It is however well-known that
the spectral bound and the growth bound of T do not coincide in general (see
the counterexamples given in [Are95], [EN00], [vN96], [Ren94], and [Zab75]).
Therefore, one is interested in the question of when the growth bound ω(T ) and
the spectral bound s(A) do coincide. When this is the case, we say that the
principle of linear stability holds.

The principle of linear stability holds whenever we have a suitable spec-
tral mapping theorem for the semigroup. This is the case for a wide variety
of semigroups. In [EN00] it is shown that the spectral bound and the growth
bound coincide for eventually norm-continuous semigroups. This includes an-
alytic semigroups which allows us to deal with parabolic PDEs. For hyper-
bolic equations in one dimension affirmative results are given in [NSRL86] and
[Ren93]. For higher dimensions however, there are counterexamples where the
equality of bounds does not hold. In [Ren94] such a counterexample is given
which is just a first order perturbation of the wave equation in two dimensions.

Inspired by this example, we try to find conditions on the perturbation guar-
anteeing equality of the bounds. The well-posedness of this kind of problem is
treated in the monograph by Goldstein [Gol85]. We show that for a class of self-
adjoint perturbations the equality of bounds which exists for the wave equation
is preserved. Finally we show that Renardy’s construction of a counterexample
can be extended to higher order equations. Here, we will make use of the theory
of cosine functions which was partly developed by Goldstein (cf. [Gol74] and
[Gol85, section 2.8]).

Further results on the stability of the semigroup have recently been gained
by using Fourier multiplier properties of the resolvent. For details see [Hie01],
[LR00], [LS00] and [Wei97].
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2 Renardy’s Example

We consider a first order perturbation of the wave equation,

∂2
t u = ∂2

xu + ∂2
yu + eiy∂xu, (x, y) ∈ R

2

where u is 2π-periodic in x and y.
We rewrite the problem in H := H1

per(Ω) × L2
per(Ω) in the following way.

∂t

(

u
v

)

= A
(

u
v

)

where Ω = (−π, π) × (−π, π),

A =

(

0 I
∆ + eiy∂x 0

)

and D(A) = H2
per(Ω) × H1

per(Ω).

The Hilbert space H is equipped with the norm

‖(u, v)‖H :=
√

‖u‖2
H1(Ω) + ‖v‖2

L2(Ω).

In [Ren94], Renardy proves the following result.

Theorem 2.1 On H1
per(Ω) × L2

per(Ω) the operator

A =

(

0 I
∆ + eiy∂x 0

)

with D(A) = H2
per(Ω) × H1

per(Ω)

generates a strongly continuous semigroup (T (t))t≥0 and we have s(A) = 0, but

ω(T ) ≥ 1
2 .

3 Self-Adjoint Perturbations

In this section, we consider perturbations of the wave equation on a bounded
domain in R

n with zero boundary conditions and on Ω = (−π, π)2 with periodic
boundary conditions. The perturbation is chosen such that the perturbed oper-
ator remains self-adjoint. Using the theory of self-adjoint operators on Hilbert
spaces, we will see that the equality s(A) = ω(T ) still holds.

We consider operators on H of the form

A =

(

0 I
∆ + if(y)∂x 0

)

,

where f is a bounded real-valued function and

• for the case of Dirichlet boundary conditions we have

H = H1
0 (Ω) × L2(Ω) , D(A) =

(

H2(Ω) ∩ H1
0 (Ω)

)

× H1
0 (Ω)

and
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• for the periodic case

H = H1
per(Ω) × L2

per(Ω) and D(A) = H2
per(Ω) × H1

per(Ω).

In both cases we are dealing with bounded perturbations of the wave op-
erator, so using [Gol85, Theorem7.8], we see that the operator A generates a
semigroup on H. For further information on the semigroup generated by A we
refer to [Gol69].

We now determine the spectral bound.
For λ2 /∈ σ(∆ + if(y)∂x), the resolvent of A is given by

R(λ,A) =

(

λ I
∆ + if(y)∂x λ

)

R
(

λ2,∆ + if(y)∂x

)

(3.1)

If we now make the further assumption that

• ‖f‖∞ ≤ d(Ω)−1 where d(Ω) is the diameter of Ω in the case of Dirichlet
boundary conditions,

• or ‖f‖∞ ≤ 1 in the case of periodic boundary conditions,

then by a straightforward calculation, we see that ∆ + if(y)∂x is a negative
self-adjoint operator. Therefore its spectrum lies in ] −∞, 0]. Then from (3.1),
σ(A) ⊆ iR and s(A) = 0.

Our next task is to determine the growth bound of the semigroup.
Since H is a Hilbert space, by the Gearhart-Prüss-Theorem (see [ABHN01,
Theorem 5.2.1] or, for a proof using Fourier multipliers see [Hie01]), we have
that s0(A) = ω(T ) where s0(A) denotes the pseudo-spectral bound.

From (3.1), we obtain

‖R(λ,A)‖2
L(H) ≤

∥

∥

∥
λ

(

λ2 − (∆ + if(y)∂x)
)−1

∥

∥

∥

2

L(H1

0
(Ω))

+
∥

∥(λ2 − (∆ + if(y)∂x))−1
∥

∥

2

L(L2(Ω),H1

0
(Ω))

+
∥

∥(∆ + if(y)∂x)(λ2 − (∆ + if(y)∂x))−1
∥

∥

2

L(H1

0
(Ω),L2(Ω))

+
∥

∥λ(λ2 − (∆ + if(y)∂x))−1
∥

∥

2

L(L2(Ω))
.

In order to prove s0(A) = 0, we have to show that all four terms are uniformly
bounded for Reλ > ǫ for all ǫ > 0.

We start with two lemmas.

Lemma 3.1 Let Ω ⊆ R
n be a bounded domain with smooth boundary.

On H1
0 (Ω) the norms

‖·‖H1 and
∥

∥

∥
(−∆ − if(y)∂x + 1)

1

2 ·
∥

∥

∥

L2

are equivalent whenever M := ‖f‖∞ < (d(Ω))−1.
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In the periodic case we have a similar statement.

Lemma 3.2 Let Ω = (−π, π)2 ⊆ R
2.

On H1
per(Ω) the norms

‖·‖H1 and
∥

∥

∥
(−∆ − if(y)∂x + 1)

1

2 ·
∥

∥

∥

L2

are equivalent whenever M := ‖f‖∞ ≤ 1.

In both cases the proof consists of simple calculations. For Lemma 3.1 we
make use of Poincaré’s inequality which is why the diameter of Ω comes in.

From now on, the proof for the periodic case works in exactly the same way
as for the Dirichlet case. We will therefore only give the proof for the case where
Ω is a bounded domain and we have zero boundary conditions.

Proposition 3.3 For all ǫ > 0,

∥

∥λ(λ2 − (∆ + if(y)∂x))−1
∥

∥

L(L2(Ω))

is uniformly bounded on S := {λ : Reλ > ǫ}.

Proof:

The idea is the following.
For any θ ∈ (0, π

2 ) we can get an estimate on the resolvent in the sector
∑

θ+ π

2

using the fact that ∆ + if(y)∂x generates a bounded analytic semigroup. How-
ever, as θ → π

2 , the constants tend to infinity. Therefore, we need another
estimate on the resolvent for those λ2 that are outside the sector

∑

θ+ π

2

. Here

we can use that ∆ + if(y)∂x is self-adjoint, so the norm of the resolvent at λ2

can be estimated by (Imλ2)−1.

�

We now use the spectral decomposition of the operator −(∆ + if(y)∂x).
Let {fj , j ∈ N} be the set of orthonormal eigenfunctions of −∆ − if(y)∂x with
the corresponding eigenvalues λj ≥ 0.
Then we have for u ∈ H2(Ω) ∩ H1

0 (Ω)

(−∆ − if(y)∂x)u =
∞
∑

n=1

λn 〈u, fn〉L2 fn.

Proposition 3.4 For all ǫ > 0, the terms

∥

∥λ(λ2 − (∆ + if(y)∂x))−1
∥

∥

L(H1

0
(Ω))

,
∥

∥(λ2 − (∆ + if(y)∂x))−1
∥

∥

L(L2(Ω),H1

0
(Ω))

and
∥

∥(∆ + if(y)∂x)(λ2 − (∆ + if(y)∂x))−1
∥

∥

L(H1

0
(Ω),L2(Ω))

are uniformly bounded on S := {λ : Reλ > ǫ}.
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Proof: The key to the proof is given by Lemma 3.1 and the following estimates.
For λ = a + ib with a > ǫ > 0 we have

sup
λ∈S,λn≥0

∣

∣

∣

∣

λ

λ2 + λn

∣

∣

∣

∣

≤ 1

ǫ
, sup

λ∈S,λn≥0

∣

∣

∣

∣

1

λ2 + λn

∣

∣

∣

∣

≤ 1

ǫ2

and

sup
λ∈S,λn≥0

∣

∣

∣

∣

√
λn

λ2 + λn

∣

∣

∣

∣

≤ 1

2ǫ
. (3.2)

We only consider the last term, the others can then be estimated in a similar
way.
Let u ∈ H1

0 (Ω). Then

∥

∥(∆ + if(y)∂x)(λ2 − (∆ + if(y)∂x))−1u
∥

∥

L2

=

∥

∥

∥

∥

∥

∑

n

λn

λ2 + λn
〈u, fn〉L2 fn

∥

∥

∥

∥

∥

L2

≤ sup
λ∈S,n∈N

∣

∣

∣

∣

√
λn

λ2 + λn

∣

∣

∣

∣

∥

∥

∥

∥

∥

∑

n

√

λn 〈u, fn〉L2 fn

∥

∥

∥

∥

∥

L2

≤ C

∥

∥

∥

∥

∥

∑

n

√

1 + λn 〈u, fn〉L2 fn

∥

∥

∥

∥

∥

L2

(using estimate (3.2))

= C
∥

∥

∥
(−∆ − if(y)∂x + 1)1/2u

∥

∥

∥

L2

≤ C ‖u‖H1 (by Lemma 3.1).

�

Collecting all our results, we obtain

Theorem 3.5 Let Ω ⊆ R
n be a bounded domain with smooth boundary. Let

H = H1
0 (Ω) × L2(Ω). Then the operator

A =

(

0 I
∆ + if(y)∂x 0

)

with D(A) =
(

H2(Ω) ∩ H1
0 (Ω)

)

× H1
0 (Ω)

and

f : R → R with ‖f‖∞ < (d(Ω))−1

generates a strongly continuous semigroup (T (t))t≥0 on H and

s(A) = ω(T ) = 0.

For the periodic case, we obtain
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Theorem 3.6 Let Ω = (−π, π)2 ⊆ R
2.

On H = H1
per(Ω) × L2

per(Ω) the operator

A =

(

0 I
∆ + if(y)∂x 0

)

with D(A) = H2
per(Ω) × H1

per(Ω)

and

f : (−π, π) → R with ‖f‖∞ ≤ 1

generates a strongly continuous semigroup (T (t))t≥0 and

s(A) = ω(T ) = 0.

Choosing f(y) = sin y, we see that in Renardy’s example, it is the term
cos y∂x which destroys the equality of growth and spectral bound.

Our results suggest that symmetric lower order perturbations of the Lapla-
cian might guarantee that the bounds remain equal. This could be the case
even if the bounds do not stay equal to zero.

4 A Higher Order Equation

We now show that, by following Renardy’s example, we can construct an op-
erator for a fourth order differential equation where the growth bound of the
generated semigroup and the spectral bound of the generator differ.

We consider the equation

∂2
t u = −∂4

xu − ∂4
yu − ieiy∂2

xu , (x, y) ∈ R
2

where u is 2π-periodic in both x and y.
Again, we rewrite the problem in the following way.

∂t

(

u
v

)

= Ã
(

u
v

)

where Ω = (−π, π) × (−π, π),

Ã =

(

0 I
−∂4

x − ∂4
y − ieiy∂2

x 0

)

, and D(Ã) = H4
per(Ω) × H2

per(Ω).

The underlying Hilbert space is H := H2
per(Ω) × L2

per(Ω) with norm

‖(u, v)‖H :=
√

‖u‖2
H2(Ω) + ‖v‖2

L2(Ω).
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4.1 Generation of a Semigroup

We first want to show that Ã generates a strongly continuous semigroup . Let

A =

(

0 I
−∂4

x − ∂4
y 0

)

and C =

(

0 0
−ieiy∂2

x 0

)

Then C is bounded on H, so it is enough to show that A with D(A) = H4
per(Ω)×

H2
per(Ω) generates a strongly continuous semigroup on H.

We introduce the following operators.

• Define A by Au = −∂4
xu − ∂4

yu, D(A) = H4
per(Ω).

• Let f(x, y) =
∑

m,n fm,neimxeiny ∈ L2
per(Ω).

We define Cos, Sin : R
+ → L(L2

per(Ω)) by

Cos(t)f(x, y) :=
∑

m,n

fm,n cos(t
√

m4 + n4)eimxeiny,

Sin(t)f(x, y) := tf0,0 +
∑

m2+n2 6=0

1√
m4 + n4

fm,n sin(t
√

m4 + n4)eimxeiny.

Proposition 4.1 (T (t))t≥0 =

(

Cos(t) Sin(t)
ASin(t) Cos(t)

)

t≥0

is a strongly continuous

semigroup on H with generator A.

Proof: The proof is done in the following steps.

I. (T (t))t≥0 is strongly continuous.

II. (T (t))t≥0 is exponentially bounded.

III. The generator of the semigroup is A.

I.(T (t))t≥0 is strongly continuous.
Let f ∈ H2

per(Ω). For the first entry in the matrix we obtain

‖Cos(t)f − Cos(s)f‖2
H2

=

∥

∥

∥

∥

∥

∑

m,n

(

cos(t
√

m4 + n4) − cos(s
√

m4 + n4)
)

fm,neimxeiny

∥

∥

∥

∥

∥

2

H2

≤ C
∑

m,n

∣

∣

∣
cos(t

√

m4 + n4) − cos(s
√

m4 + n4)
∣

∣

∣

2

(1 + m4 + n4)|fm,n|2.

Given ǫ > 0, choose N0 sufficiently large such that

4C
∑

|m|+|n|>N0

(1 + m4 + n4)|fm,n|2 <
ǫ2

2
.
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For m,n with |m| + |n| ≤ N0, by continuity of the cosine function, there exists
δm,n such that |t − s| < δm,n implies

∣

∣

∣
cos(t

√

m4 + n4) − cos(s
√

m4 + n4)
∣

∣

∣

2

<
ǫ2

8C(1 + m4 + n4)|fm,n|2N2
0

.

Let δ := min δm,n. Then for |t − s| < δ,

‖Cos(t)f − Cos(s)f‖2
H2 ≤

∑

|m|+|n|≤N0

ǫ2

8N2
0

+
ǫ2

2
≤ ǫ2.

The other entries of the matrix can be treated in the same way. This proves
that (T (t))t≥0 is strongly continuous.

II. (T (t))t≥0 is exponentially bounded. It is easy to check that all terms are
exponentially bounded.

III. The generator of the semigroup is A.
By [ABHN01, Theorem 3.1.7]1 it remains to show that

R(λ,A) =

∫ ∞

0

e−λt

(

Cos(t) Sin(t)
ASin(t) Cos(t)

)

dt (4.1)

for Reλ > ω, where ω is the growth bound of the semigroup.
By explicitly calculating the right hand side of equation (4.1), we see that the
equation holds for Reλ > 0. Thus, A is the generator of the semigroup (T (t))t≥0,
which ends the proof of the proposition.

�

We have therefore shown that the perturbed operator Ã also generates a
strongly continuous semigroup.

4.2 Calculating the Growth and the Spectral Bound

Proposition 4.2 For the spectral bound of Ã, we have s(Ã) = 0.

Proof: Because Ω is bounded, Ã has compact resolvent and its spectrum
consists only of eigenvalues.
Let (u, v) ∈ H4

per(Ω) × H2
per(Ω) and

Ã
(

u
v

)

= λ

(

u
v

)

,

then v = λu and it is enough to solve

λ2u + ∂4
xu + ∂4

yu + ieiy∂2
xu = 0.

1cf. also [ABHN01, Definition 3.1.8.]
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With u =
∑

m,n um,neimxeiny 6= 0, this implies

(λ2 + m4 + n4)um,n − im2um,n−1 = 0 (4.2)

for all m,n ∈ Z. If for m = 0, um,n 6= 0, then by equation (4.2), λ = ±in2. Else,
there exists m 6= 0 such that um,n 6= 0 and

um,n−1 =
λ2 + m4 + n4

im2
um,n.

But since lim|n|→∞um,n = 0, there must exist m,n such that λ2 +m4 +n4 = 0,
so λ ∈ iR.
Therefore σ(Ã) ⊆ iR and s(Ã) = 0.

�

Proposition 4.3 The growth bound of (T (t))t≥0 satisfies ω(T ) ≥ 1
2 .

Proof: We use the Gearhart-Prüss Theorem and show that s0(Ã) ≥ 1
2 .

To this end, we construct a sequence λn such that Reλn → 1
2 and

∥

∥

∥
R(λn, Ã)

∥

∥

∥

H
→ ∞ as n → ∞.

We set
λn =

√

−n4 + in2 =
4

√

n8 + n4 e
i

2
(π−arctan 1

n2
).

Then Reλn → 1
2 .

Let ǫn be a sequence such that

• ǫn ∈ (0, π),

• ǫn → 0 for n → ∞,

• nǫ2n → ∞ for n → ∞.

Let Φ ∈ C∞
c (−1, 1),Φ 6= 0 and define un(x, y) := einxΦ( y

ǫn

) and vn(x, y) :=
λnun.

We show
‖(λn−Ã)(un,vn)‖

H

‖(un,vn)‖
H

→ 0 for n → ∞. This implies the desired result,

since then we have that
∥

∥

∥
R(λn, Ã)

∥

∥

∥

H
= sup

y∈D(Ã)

‖y‖H
∥

∥

∥
(λn − Ã)y

∥

∥

∥

H

→ ∞ as n → ∞.

We get the following estimates.

‖un‖2
H2 ≥ C1n

4ǫn, (4.3)

λ2
nun + (∂4

x + ∂4
y + ieiy∂2

x)un = in2(1 − eiy)un + einx∂4
yΦ(

y

ǫn
), (4.4)

∥

∥in2(1 − eiy)un

∥

∥

2

L2
≤ C2n

4ǫ3n, (4.5)
∥

∥

∥

∥

einx∂4
yΦ(

y

ǫn
)

∥

∥

∥

∥

2

L2

= C3ǫ
−7
n . (4.6)
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Combining (4.3), (4.4), (4.5) and (4.6), we obtain

∥

∥

∥
(λn − Ã)(un, vn)

∥

∥

∥

2

H

‖(un, vn)‖2
H

=

∥

∥λ2
nun + (∂4

x + ∂4
y + ieiy∂2

x)un

∥

∥

2

L2

‖un‖2
H2 + ‖vn‖2

L2

≤ C2n
4ǫ3n + C3ǫ

−7
n

C1n4ǫn
−→ 0, as n → ∞.

�

We summarise our results in the following theorem.

Theorem 4.4 Let Ω = (−π, π)2 ⊆ R
2 and H = H2

per(Ω) × L2
per(Ω) .

Then the operator

Ã =

(

0 I
−∂4

x − ∂4
y − ieiy∂2

x 0

)

with

D(Ã) = H4
per(Ω) × H2

per(Ω)

generates a strongly continuous semigroup (T (t))t≥0 and

ω(T ) ≥ 1

2
> s(Ã) = 0.

This gives us another example arising from a partial differential equation
where the growth and spectral bound differ.
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