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Abstract 

Real-time photoelectron spectroscopy and in-situ electrical measurements have been 

applied to the formation of Al contacts on p-type diamond. At 294 K, an initially 

uniform Al film induces band-bending in the diamond consistent with the measured 

(current-voltage) barrier height of 1.05 V. The temperature-induced transition to an 

ohmic contact has been monitored in real-time revealing a direct correlation between the 

onset of surface bonding at 755 K and an abrupt change in surface band-bending. The 

reaction temperature is lower than previously believed and there is a second transition 

point at 1020 K where the rate of change of both reaction and band-bending increases 

sharply.  

 

                                                 
*
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The quality of synthetic diamond single-crystals has dramatically improved in recent 

years and is now enabling applications of this wide-gap semiconductor in electronic and 

optoelectronic devices 
1
. Although there are many remaining issues regarding bulk quality 

(e.g. defects, dopants), the ultimate device performance is also limited by electron transport 

across heterointerfaces. For example, the degree of rectification of a metal-semiconductor 

diode is rarely predictable, and diamond is no exception.
2,3

 However, diamond shows 

important differences to other, structurally similar semiconductors: there is a more 

pronounced metal-dependence with an S-parameter of up to 0.6 
3
 and the rectification shows a 

strong dependence on surface morphology,
4
 surface termination

5,6
, interface oxides,

7
  

interface chemistry,
3,5

  temperature
3,8

 and substrate doping
9
.  

In order to untangle these influences, we have focused on Al contacts to single-crystal 

p-type diamond using a combination of spectroscopic and electrical transport techniques 

applied in parallel, in-situ and, for spectroscopy, in real-time. As this is the contact of choice 

for many device applications there is a decent body of literature, but there is considerable 

disagreement on even the most basic parameter, the Schottky barrier height: values of 

between 0.8 and 2.2 V have been reported using a range of methods for variously-prepared 

contacts.
3,5,7,10-13

 There is also inconsistency in the influence of temperature on these contacts 

– an important consideration for high-temperature application of diamond electronics. For 

example, some studies report on stable rectification at temperatures up to 700 K
8,14

 while 

others have observed ohmic behavior at such temperatures.
4
 While there is agreement that Al 

contacts (in elemental or alloy form) can be used to fabricate ohmic contacts if annealed there 

is less agreement on the temperature required to achieve this. 
3,4,15

 

To minimize the influence of surface preparation, ambient conditions and temperature, 

all fabrication and measurements were carried out in a ultrahigh vacuum system (p = 2 × 10
-10

 

mbar) equipped with fast x-ray photoelectron spectroscopy (XPS), low energy electron 
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diffraction (LEED), current-voltage (I-V) measurement, metallization and programmable 

temperature-profiling. A polished/acid-cleaned B-doped (001) CVD single crystal (7.5 × 7.5 × 

1.5 mm
3
, NB = 2 × 10

16
 cm

-3
) provided by Element Six Ltd. was used as the substrate for these 

studies. This surface was smooth to < 0.2 nm as determined by AFM measurements. Prior to 

metallization, the diamond was heated to 1100 K to remove surface contaminants. A 1×1 

LEED pattern was observed for this clean surface and XPS measurements showed a single 

C1s peak with sub-monolayer residual oxygen. Al overlayers and metal contacts were 

produced by exposure to a calibrated Knudsen cell with a deposition rate of around 0.2 nm 

min
-1

.  

A comparison of the I-V characteristics for three selected contacts is shown in Fig. 1. 

The rectifying contacts (A, B) were fabricated using a shadow mask containing 1 mm 

diameter apertures; curve A was obtained by in-situ measurement and curve B was obtained 

by ex-situ measurement. The I-V characteristic of contact A was analyzed using thermionic 

emission theory to yield a barrier height of 1.05 eV with an ideality factor of 1.4, as shown in 

the right hand panel of Figure 1. This value is within the range of published values for this 

contact.
2,7

 No diode measured ex-situ had an ideality factor better than 2 and so no reliable 

barrier height could be extracted from these data. A comparison of curves A and B illustrates 

the influence of oxygen on diode characteristics even for contacts prepared in an identical 

way in ultrahigh vacuum. The presence of oxygen is known to influence diode performance
7
 

and this preparation-dependence may account for some of the variation in barrier height 

reported for metal- diamond contacts. Contact (C) is non-rectifying (sheet resistance ~20 

kΩ) and was prepared by heating small metallized regions to around 1100 K.  

To study the transition between A and C by in-vacuo annealing, temperature-

programmed, real-time photoelectron spectroscopy has been applied. Although XPS is a 

widely used method to study surface processes
16

 the normal data acquisition time limits its 
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capability for probing the kinetics of interface formation. Advances in electron detector 

technology
17-19

 are however enabling XPS spectra to be recorded at rates of around 1Hz or 

higher, but all studies to date have used synchrotron radiation as the photoexcitation source, 

and most have focused on adsorbate-induced chemical changes occurring at the monolayer 

level. The sensitivity of the Aberystwyth detector
17

 allows the use of a lower intensity 

laboratory (Mg Kα) x-ray source.  

A time sequence of C 1s photoelectron emission spectra is shown in Fig. 2, each 

recorded in 1s snapshot mode (without scanning the photoelectron energy) during exposure of 

a clean diamond surface to a flux of Al. The initial attenuation of the C 1s peak is consistent 

with uniform metal film growth (yielding an electron escape depth of ~1.2 nm). The 

persistence of this peak at longer exposure suggests subsequent cluster formation (Stranski-

Krastanov growth mode). The profile of the clean surface C 1s spectrum remains unaffected 

by the metal overlayer, confirming the absence of strong interfacial bonding. The peak 

position however, changes significantly on metallization, moving by 0.26 eV to higher 

binding energy. This corresponds to an increase in band-bending in the p-type diamond (in 

addition to the initial band-bending for this surface,
6
) and is consistent with the formation of a 

rectifying contact as measured by I-V.  

The temperature-dependence of the Al-diamond interface was probed in real-time by 

recording the C 1s core level in snapshot mode (10s per spectrum) during a programmed 

temperature ramping from 294 K to 1130 K at a rate of around 1.3 Ks
-1

 (Fig. 3). There are 

complex changes in intensity, peak shape and peak position during this annealing cycle. An 

initial increase in the diamond C 1s peak intensity due to enhanced metal clustering is 

followed, at higher temperatures, by a decrease in intensity as bulk Al-C chemical interaction 

dominates. The formation of new chemical bonds is confirmed by additional emission in the 

C 1s spectra at lower binding energy (higher kinetic energy). The energy position of the 
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diamond C 1s component reflects changes in the diamond Fermi level position relative to the 

band edges and this was also found to be temperature dependent.  Quantitative information 

that enables the bonding and band-bending to be directly correlated is obtained by curve-

fitting each of the spectra in Fig. 3. The fitting parameters were obtained from energy-scanned 

C 1s spectra recorded at selected stages of contact formation as shown in the inset of Fig. 4. 

Spectrum (a) represents a clean diamond surface, spectrum (b) represents an Al-covered 

surface and spectrum (c) represents a contact heated to above 1100 K and recorded at 294 K. 

The data points are shown along with fitted curves (solid lines) generated using lorentzian-

gaussian mix functions. The clean surface and the Al-covered surface are fitted with two 

components: the dominant C1s bulk diamond (I) and a smaller (< 3%) surface component 

displaced by ~1 eV from the bulk peak. Following annealing, new carbide-related features 

become apparent (peak II), centered at around 2.8 eV lower binding energy compared to peak 

I. In each case the diamond component has a fitted width of 0.92 – 0.99 eV, typical for clean 

diamond surfaces
16

. The diamond C 1s peak (I) is shifted to higher binding energy upon 

metallization (spectrum (b)) but shifts by 0.52 eV to lower binding energy upon annealing 

(spectrum (c)) indicating decreased band-bending as the ohmic contact is formed. Fast XPS 

allows the transition between (b) and (c) to be monitored in real-time. 

The kinetics of the temperature-induced changes are represented in Figure 4 by the 

peak position of the diamond C 1s peak (open triangles) and the peak intensities of both 

carbon species (open circles for peak I (diamond) and filled squares for peak II (carbide)). 

The data are extracted from 1 s snapshots and the solid line through the data points 

correspond to a 10 s averaging of the data points. Up to 755 K, there is little change in peak 

intensity, but there is a small, reversible, shift in peak position that reflects a temperature-

dependent Fermi level. This phenomenon is believed to reflect the low density of states at the 

diamond surface even in the presence of a metal overlayer. An abrupt change is apparent in 
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the peak position (open triangles) of the diamond C1s component at 755 K. This is the onset 

of the transition from Schottky to ohmic behavior in the Al-diamond contact and it occurs at a 

lower temperature than previously believed for high-quality substrates and is lower even than 

the carbide onset temperature reported for Ti on diamond
20

. This first transition point is 

directly correlated with the onset of carbide formation as determined from the intensity of the 

low binding energy C 1s emission (peak II: filled squares). Metal clustering is also initiated 

around this temperature as evidenced from the increase in the diamond C 1s intensity (Peak I: 

open circles) as the Al atoms become mobile and the substrate becomes more exposed.  

A second transition point occurs at 1020 K where the intensity of the substrate 

diamond component falls rapidly as the formation of bulk carbide dominates. This is 

accompanied by a sharp increase in the intensity of the carbide peak. At the same point, there 

is an increase in the rate of Fermi level shift (open triangles) towards the final position 

corresponding to a reduced interfacial barrier. This can be explained by the generation of new 

interface states within the band gap as the chemical interaction proceeds. The gap states that 

define the Fermi level position (and hence barrier height) are thus highly dependent on, and 

correlated with, the interfacial chemistry. In the lowest temperature range (294 K – 755 K), 

the density of gap states is low enough to show a reversible temperature-dependent shift. 

Between 755 K and 1020 K, the formation of Al-C bonds at the surface induce a higher 

density of states that moves the Fermi level closer to the valence band maximum, reducing the 

interfacial barrier. Above 1020 K, bulk carbide (Al3C4) formation accelerates the Fermi level 

shift and drives the contact irreversibly towards ohmic behavior. 

This work was supported by the EPSRC and Element Six Ltd. and performed within 

the HEFCW Research and Enterprise Partnership at the Centre for Advanced Functional 

Materials and Devices (CAFMaD).  
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Figures 

Figure 1:  I-V characteristics for Al-diamond(001) contacts: (A) 

measured in ultra-high vacuum, (B) measured in air and (C) heated 

to 1100 K and measured in air. 

Figure 2:  C1s photoelectron emission spectra recorded in snapshot 

mode for Al contact growth on a p-type diamond (001) surface.  

Figure 3:  C1s photoelectron emission spectra recorded in real-time 

during in-situ annealing of an Al contact on a p-type diamond (001) 

surface.  

Figure 4:  C1s peak intensities for the diamond (I – open circles) 

and carbide (II – filled squares) and the diamond peak shift (I – open 

triangles) as a function of temperature. The inset shows C 1s spectra 

for the clean surface (a), the metallized surface (b) and the annealed 

metallized surface (c). 

 

 

 

 


