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Metallic foam processing from the liquid state
The competition between solidification and drainage

S.J. Cox, G. Bradley, and D. Weaire

Department of Physics, Trinity College, Dublin 2, Ireland.e-mail:coxs@tcd.ie

Abstract. A model is developed to describe the formation of metallic foams in which liquid drainage acts to collapse
the foam before it can freeze. Numerical solution of the foamdrainage equation, combined with the equations of heat
conduction, provides new insight into the competition between these two processes. It also stimulates and confirms a
theoretical analysis which leads to criteria for creating uniform samples of frozen metal foam. The analysis suggests
new experiments to clarify the role of the various processesleading to foam formation.

PACS. 82.70.R Foams – 47.55.M Flow through porous materials – 72.15.C Thermal conduction in liquid metals

1 Introduction

In recent years, various techniques have been developed forthe
fabrication of metallic foams [1,2]. These remarkable materi-
als have a structure that is broadly similar to the more familiar
polyurethane foams, so that it may be described and analysed
by the standard methods of foam science [3,4]. The mechanical
properties of the constituent metal make the metallic foam rel-
atively stiff and excellent for energy absorption. Applications
in automobile manufacture are under development. Examples
of metallic foams are shown in figure 1.

While now well advanced, the technology of metallic foam
formation still poses challenges. The solidification by cooling
of a foamed liquid metal is a ‘race against time’, in as much
as the relatively heavy and inviscid liquid is prone to drainage,
which rapidly reduces the foam density and hence provokes in-
stability and collapse. In this paper, we analyse the competition
between drainage and heat transfer, leading to solidification,
using an elementary model for computation.

The present analysis is one-dimensional: physically, thisre-
quires that heat is extracted only at the top and bottom sur-
faces of the sample. While this departs considerably from the
usual experimental situation, we believe that there is muchto
be learned, in both a qualitative and semi-quantitative sense,
from such a model. Furthermore, this model can be extended
to three dimensions in due course. It may also be possible to
test it directly with modified experiments in which the sidesof
the sample are insulated.

1.1 The process of foam formation

In the method used by Baumgärtneret al.[5] and others, a pow-
dered metal is mixed with a blowing agent, pressed, and heated
to its melting point. A blowing agent is chosen which releases
gas close to this temperature, so that melting is accompanied by

foaming. The sample is immediately cooled to trap this foam
structure in a solid, closed-cell foam. (Other techniques may
result in open-cell structures.) While the density of the foamed
liquid may be considered to be initially uniform, it is imme-
diately subjected to gravity-driven drainage of liquid, creating
a vertical profile of density (or liquid fraction). At any point
in the sample this adjustment must proceed until the freezing
point is reached. Thus, at intermediate times, the sample con-
sists of a solidified outer shell surrounding a draining liquid
core.

1.2 Heat transfer, drainage and collapse

In developing a one-dimensional model of these competing
processes, we shall make the simplest assumptions which cap-
ture the essential features of the problem. These relate prop-
erties to the local mean bubble diameter,D, and the relative
density. This latter quantity is equivalent to the liquid fraction�l of a molten foam; however, when the foam solidifies we
shall use the termrelative density.

Firstly, it is assumed that solid conduction is the dominant
mechanism of heat transfer. This contrasts with the case of in-
sulating foams, in which the conduction of gas is dominant. We
do not distinguish between solid and liquid conduction, so that
the thermal conductivity of the foam is directly proportional to�l and has the same coefficient in both phases.

The heat which is extracted is primarily the latent heat of
freezingLf , although we do include the relatively small heat
capacity of solid and liquid,Cp. The latent heat is represented
in the simulation by a finite spike in the specific heat capacity
at the freezing temperatureTrit, purely as a matter of conve-
nience.

Drainage is described by the Foam Drainage Equation [4,
6–8], which is now well established (although some variation
may be required in certain cases and can be accounted for in
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terms of surface viscosity [9,10]). This partial differential equa-
tion governs the variation of�l due to drainage of the Plateau
borders (the liquid-filled channels between the bubbles) inthe
foam. It has not yet been specifically tested for metallic foams.
A key parameter in the equation is the liquid viscosity,�, which
we take to be a continuous function of temperature which rises
to a very high value at the freezing point. Naturally, the actual
variation of the viscosity is more complicated, especiallyfor
alloys, but this should capture its essential features.

Finally, we introduce a rule which allows for the rupture of
thin films. This coalescence criterion is the most debatablein-
gredient of the model, and we would not make strong claims for
its validity at this stage. For a more detailed discussion ofthe
dynamics of film rupture, in the context of glass foam forma-
tion, see [11]. The rationalisation of this rule is given inx2.1:
its effect, in practice, is to prevent the size of the Plateaubor-
ders falling below a prescribed critical value anywhere. Ifthe
trend of drainage is towards a lower value at any point then the
bubble diameterD at this point is increased, to simulate bubble
coalescence and avoid unrealistically small Plateau borders. A
compensating change of�l is then required by mass conserva-
tion, so that film rupture increases mean bubble size.

2 Mathematical Formulation

In this section we give the details of the relevant equationsfor
the processes of drainage and heat flux and describe how they
interrelate. The results follow inx3, which should be readily
understood in general terms without recourse to these details.
The most important ingredients are the scheme used to repre-
sent the latent heat, and the viscosity equation which accounts
for solidification in a simple way.

2.1 Drainage

The foam drainage equation is described elsewhere [12]; we
briefly review its key elements here and demonstrate a slightly
different non-dimensionalisation to be consistent with the equa-
tions describing the heat flow and the viscosity.

The main assumption in deriving the drainage equation is
that the contribution to drainage from the films is negligible, so
that flow proceeds only through the Plateau borders. Consider
first a single Plateau border, which need not be vertical, with
cross-sectional areaA that depends upon both the downward
vertical coordinatez and timet. We define a parameterN(z)
which specifies the number of Plateau borders crossing a hor-
izontal plane through the foam at heightz. This allows us to
relate the liquid fraction to the Plateau border area:�l = NA.
It also relates to the number of bubbles in any cross-sectionof
the foam and will therefore help us to specifyD(z; t). How-
ever, the exact relationship betweenN , �l, D and the number
of bubbles depends on the packing arrangement assumed for
the foam.

The continuity equation for fluid, which is assumed to be
incompressible, is�(NA)�t + �(NAu)�z = 0 (1)

where drainage theory gives the fluid velocityu = �gA3f� � C3f� 12pA �A�z ; (2)

which is an average over the cross-section of the border and all
its possible orientations. The combination of (1) and (2) gives
the nonlinear partial differential equation forA or �l, which
has become known as the Foam Drainage Equation. The vis-
cosity is�, which will depend on temperature,� is the liquid
density,g is the acceleration due to gravity, is surface tension
andC andf are known geometrical factors. The liquid flow
rate through each border is thenQl = uA. In steady drainage,
where a uniform supply of liquid is added to the top of a foam,
the foam drainage equation has the trivial solution thatA is
constant.

2.2 Heat

The heat flow due to conduction in a static foam isQh = ���T�z ; (3)

whereT (z; t) is the temperature and� is the thermal conduc-
tivity. Then, using the substantial derivative, conservation of
energy requires that��lCpDTDt = ��Qh�z (4)

which becomes, using (3),��lCp��T�t + u�T�z � = ��z ���T�z � : (5)

The specific heat isCp, which we will make temperature de-
pendent to conveniently account for the extraction of latent
heat.

2.3 Non-dimensionalisation

We define the dimensionless variables�; �; �;�; Q̂l; �̂; �̂, ĝ; Ĉp
and�̂ according to:

Time t = � t0;
Positionz = � z0;
Plateau border areaA = � z20 ;
TemperatureT = � (Tinit � T0) + T0;
Liquid flow rateQl = Q̂l Q0l ;
Liquid viscosity� = �̂ �0;
Liquid density� = �̂ �0;
Gravityg = ĝ g0;
Specific heatCp = Ĉp C0p ;
Thermal conductivity� = �̂ �0 �l
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in whicht0 = 3f�0pC�0g0 ; z0 =s C�0g0 andQ0l = C223f�0�0g0 :Tinit is the initial temperature of the foam,T0 the cooling tem-
perature,g0 = 9:8m=s2 and�0; �0; C0p and�0 will depend on
the particular metal being foamed. Note that� is scaled by�l,
so that a wetter foam transports more heat.

The dimensionless equations which must then be solved si-
multaneously are those of liquid drainage:�(N�)�� + �(NQ̂l)�� = 0; (6)

in which the liquid flow rate isQ̂l = 1̂� ��̂ĝ�2 � p�2 ���� � ; (7)

and heat flow:�̂�lĈp ���� + Q̂l� ���� ! = 1Pe ��� ��̂�l ���� � ; (8)

where the Peclet number isPe = z20�0C0pt0�0 : (9)

Since neither the liquid density or thermal conductivity will
change, we can equate both�̂ and�̂ with unity. We expectPe
to be of order unity, giving approximately equal weighting to
the advection and conduction terms.

2.4 Viscosity and Latent Heat

To describe a foam in both its solid and liquid states, we choose
a smooth step function for the dimensional viscosity� that
gives small values�0 at high temperatures and high values�max at low temperatures when the foam is frozen. We write�̂ = 1 + �max=�0 � 11 + exp(w�(� ��rit)) : (10)

The value of�max=�0 must be sufficiently high that there is no
drainage at the low temperatures at which the foam is effec-
tively solid. The parameterw� measures the narrow range of
temperature over which the viscosity changes from�0 to �max.
This ‘mushy’ zone is in practice achieved by the use of metal
alloys; it may be that in a less basic model than this the precise
details of the change in viscosity must be taken into account. In
what follows, we consistently use the values�max=�0 = 105
andw� = 104; the precise values of these two parameters are
not significant.

To incorporate the latent heat of fusion, we change the spe-
cific heat toĈp = 1 + LfwC0pp� exp h� (w(� ��rit))2i : (11)

This describes a symmetrical peak in the specific heat, around
the melting temperature, which represents the heat that must be
absorbed before the foam solidifies; this is purely a convenient
way of representingLf . The parameterw measures the range
in temperature of the peak (and is different tow�). We will
retainw = 50 throughout and normalise the latent heat byC0p ;
that is,Lf ! Lf=C0p . We takeLf = 10.

2.5 Boundary conditions

We impose boundary conditions of no flow (Q̂l = 0) at the top
(� = 0), since no fluid enters the system, and at the bottom
(� = L), where the foam is being cooled. Note that ifQ̂l = 0
is specified everywhere, then we obtain theequilibrium profile
of the foam: �eq(�) = � 1p�L + L� ���2

(12)

where�L corresponds to the liquid fraction at the bottom of the
foam. This is the profile to which all liquid foams are eventually
brought by gravity drainage; note that�eq is nowhere zero.

The boundary conditions associated with the temperature
are that the bulk of the foam is initially at uniform temperatureT = Tinit ) � = 1 while the lower end hasT = T0 )� = 0. The freezing temperature translates into a value�rit
between zero and one. We take�rit = 0:9 throughout.

We consider two scenarios for the top temperature condi-
tion (see figure 2): Case I, where the sample is cooled in the
same way as the bottom, with the condition� = 0, and Case
II, where the top boundary condition is that of no heat flow,��=�� = 0, so that cooling proceeds only from the bottom.

We assume that the number of bordersN is initially uni-
form throughout the sample. In the model described here,N
changes only by virtue of coalescence. We hypothesise that
films will rupture below a critical thickness, and since the equi-
librium film thickness should be a monotonic function of the
Plateau border area, we allow bubbles to merge when this area
becomes smaller than some critical value,� < �rit. At this
point�1 we decreaseN(�1) toN(�1)�(�1; �)=�rit
then put�(�1; �) = �rit so thatD increases accordingly. (In
the event of coalescence, we will assume that the change is
small enough that we can ignore the temporal derivative ofN
in (1).) We will assume throughout an initial distribution ofN(�) = 1 8� to simplify the analysis.

The liquid fraction of the foam is given by�l = N�. If
each bubble has a cross-sectional area of�(D=2)2 we have
that D(�; �) = 2r1� �lN� (13)

ThereforeD is also initially constant, but will subsequently
change as�l varies and as bubbles coalescence.
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2.6 Method of solution

We solve (6) and (8) using an explicit finite difference repre-
sentation with constant step sizes in both time (upwind) and
space. This conservative formulation minimises errors dueto
numerical roundoff.

We now retain all variables in dimensionless form, but omit
their caps, e.g.̂�! �.

3 Results

We shall describe in detail only the progress of solidification
for Case I, since Case II is in some sense equivalent to the
lower half of the sample in Case I. In this case two freezing
fronts move inwards to meet near the centre of the sample. Be-
hind each front there is an approximately linear variation of
relative density. In the next part we describe the results ofnu-
merical simulations. These provide the motivation for an ana-
lytic model, detailed inx3.2, which compares well with the full
solution. Sections 3.3 and 3.4 describe various extensionsto
the model, including the coalescence criterion and the effects
of varying the gravitational acceleration.

3.1 Examples

We show in figures 3 and 4 how the profile of�l evolves over
time. In both cases the liquid fraction is initially uniform, that
is, it is represented by a vertical line�l = �0l . In Case I (figure
3) both ends are frozen at time� = 0. The relative density at
the top of the foam initially decreases as liquid drains due to
gravity, and the freezing front also moves downward, towards
the centre of the foam, to give an approximately linear decrease
in relative density in the frozen sample.

At the bottom of the foam a freezing front moves upward.
At the same time, liquid drains towards this front, and accumu-
lates above it before being frozen itself. Therefore the relative
density at the bottom of the foam grows, and again this increase
in �l is roughly linear, with a similar slope to the one at the top
of the sample.

The relative density between the two freezing fronts, in the
centre of the foam, at first remains close to its initial value, but
in due course it evolves towards a profile which smoothly inter-
polates between the low values of�l at the top of the foam and
the high values at the bottom. In the final phase of its evolution,
the profile of this central region, which is still liquid, closely
approaches the equilibrium form (12). It therefore ceases to
change appreciably as the two freezing fronts proceed to meet
and solidify the entire sample. This can be seen in the profiles
for Case I in figure 3, but is even clearer in figure 4: in Case II
there is a greater proportion of the sample which is molten, yet
the profile at time� = 216 is indistinguishable from the final
profile at� = 450.

In Case II, the liquid fraction at the top of the foam de-
creases just as it would in the standard free drainage experi-
ment [12], until it is frozen at the very end of the process when
the freezing front reaches the top.

So in Case I the characteristic form of the final profile is
that of a ‘sawtooth’ pattern. This resulting variation in relative

density is generally undesirable. The theory which we next elu-
cidate, inx3.2, offers a criterion for the avoidance of such inho-
mogeneity in terms of the physical parameters and the sample
dimensions.

3.2 Analytic approximation

The linearity of the profiles of relative density at the top and
bottom of the foam suggests that it may be possible to supply
an analytical description of the early stages of the solidification
process. We now try to reproduce the early evolution of the pro-
file with a simple theory which appeals to conservation of both
heat and liquid. The first step is to find the distance of the freez-
ing fronts from the top and bottom of the sample, as a function
of time. Then the quantity of liquid which has drained in this
time is calculated, to enable the variation of relative density to
be found.

To find the position of the freezing front, we consider the
heat loss from the top of the foam in unit time. On the one hand,
(3) shows that the heat fluxQh varies as�(Trit � T0)=xf ,
wherexf is the distance of the front from the top of the foam.
But the amount of heat extracted in unit time is equal to the
product of the latent heat, the velocity of the front and the mass
of liquid: Lf ��l dxf=dt, ignoring the contribution of the spe-
cific heat. Thus, in the dimensionless variables used here,Lf��l d�fd� = �0�l�rit�f : (14)

Integrating (14) gives�2f = 2�0�ritLf � �; (15)

enabling the position of the front to be found as a function of
time. At the bottom of the sample the same argument is ap-
plicable, with�f replaced withL � �f , so that in figure 5 we
can compare the position of the fronts at both the top and the
bottom of the foam.

It is possible to track the position of the freezing fronts us-
ing our numerical code, so that we can estimate the accuracy
of (15) in comparison with the full model. The agreement, also
shown in figure 5, is excellent. The freezing front moving up
the foam in Case II has much the same shape but continues to
ascend.

Now, to continue in our stated aim of recreating the final
profile of relative density, we must consider a balance of mass
transport. The volume of fluid drained from the top of the sam-
ple is approximately equal to the area of the growing trian-
gles sketched in figure 6, based upon the neglect of the dif-
fusive, or smoothing, term in the liquid flow rate. This area isV = 12x2f (�d�l=dx).

At early times, the central part of the profile has constant
liquid fraction and therefore constant flow rate. Further, the
liquid that has drained from the top of the sample must pass
through this region. So this volume of liquid is equal to the
product of the flow rate and time :V = NQl� . Thus12�2f ��d�ld� � = NQl�: (16)
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We can then substitute for�f from (15), to give not only the
slope of the relative density at the top of the foam:d�ld� = � N Lf ��0�rit : � g (�0l )2N2 �0 = �Lf �2 g (�0l )2N �0�rit �0 (17)

but also, upon integration, the variation of the relative density
itself: �l = �0l � Lf �2 g (�0l )2N �0�rit �0 �: (18)

Can we apply the same argument at the bottom of the foam
to give the same slope of relative density? We appeal to conser-
vation of liquid (the bottom of the sample is initially frozen so
that no liquid can escape) and note that the freezing front mov-
ing up from the bottom has the same speed as the descending
front, in the absence of heat transport due to drainage. Thena
similar derivation to the above gives�l = �0l + Lf �2 g (�0l )2N �0�rit �0 (L� �) (19)

so that the ends of the final profile are antisymmetric.
An approximation to the central part of the final profile is

somewhat more straightforward to calculate. As noted earlier,
the sample stops draining before it is everywhere frozen. There-
fore gravity drainage must be the dominant process in the cen-
tral region, so we expect that the eventual profile in the mid-
dle of the foam will closely approach the equilibrium profile
(12). The particular profile connecting the two linear segments
is given uniquely by the central point of the initial profile of
phase fraction: that is, we substitute�L = �0l =N and replaceL byL=2 in (12):�l =  sN�0l + L2 � �!�2 : (20)

To complete the final profile of relative density we must
join the two straight end sections to the central ‘equilibrium’
section. To find each of the points of intersection requires the
solution of a cubic equation for�, given by equating (20) with
(18) and with (19) respectively. In the case illustrated in figure
7 we find� = 2:9 and� = 6:5. Resubstitution gives a minimum
value of�l = 0:007 and a maximum of�l = 0:014.

It should be noted that this formulation incorporates a small
but finite change in the total volume of liquid present (approx-
imately one percent for the calculation shown); in practicethis
is corrected by the lack of antisymmetry in the end profiles,
which also shifts the central section downwards.

In figure 7 we compare these approximate profiles with the
full numerical solution. Given that we have neglected the spe-
cific heat, the agreement is remarkably good. These estimates
could be improved further with a more accurate estimation of
the volume of liquid which has drained from the top of the
foam, since the overestimate in the slope is due to an underes-
timate in calculating the triangle area.

The volume flux balance (17) describing the variation of the
slope of relative density with position suggests a criterion for
deciding when a metallic foam sample will be uniform/homogeneous.
This would require a small value ofL�l d�ld� :

Then we suggest the following

homogeneity criterion:
Lf �2 g L�0lN �0�rit �0 � 1: (21)

For the parameter values used here (Lf = 10; �rit = 0:9; L =10; � = g = �0 = �0 = N = 1 and�l = 0:01) this quan-
tity is slightly greater than one; the results in figure 7 showthat
the maximum deviation from homogeneity is about 40% of the
initial liquid fraction.

3.2.1 Variation of freezing time

We should supplement this criterion with a measure of the total
freezing time,�f . That is, how long does it take for the whole
sample to freeze? Note that the sample may stop draining, and
reach equilibrium under gravity,beforeit is everywhere solid.

We refer again to (15); the length of foam which must be
frozen isL=2, so that �f = Lf�L28�0�rit : (22)

This gives�f = 139 in Case I, while our computations give�f = 133, and in general further results of numerical calcula-
tion show good agreement with this functional fortf . So, as
would be expected in any heat diffusion problem, the freezing
time is proportional to the square of the length of the foam, and
in inverse proportion to the thermal conductivity.

3.3 Coalescence and collapse

When the criterion (21) for homogeneity is not satisfied, we
expect additional effects. In particular, the bubbles of the foam
will coalesce where the liquid fraction is small and a liquidpool
will form where the liquid fraction becomes large. Any one of
several changes in the physical parameters or dimensions of
the foam may cause these events to occur; in figure 8 we sketch
the effect of a higher initial liquid fraction. An increase in the
initial liquid fraction �0l also changes the shape of the lower
freezing front, so that its central part becomes linear. This is
due to the dependence of the thermal conductivity on�l.

In Case II we would expect coalescence to occur in the
same way, but at the very top of the foam.

Although our numerical code breaks down with the forma-
tion of a pool, because there are no longer bubbles present, we
can use it to investigate coalescence using the model described
in x2.5. That is, we introduce a cut-off at low Plateau border
areas�, at which point we allow the number of bubblesN
to increase. The results are shown in figure 9, which displays
the bubble size distribution for the profiles of figure 3 with a
coalescence criterion of�rit = 0:9�0l . Without assuming a
particular bubble packing, however, this measure ofD may be
taken as a guide only. The figure does show that bubble size
can increase significantly. We find also that the profile of liquid
fraction is shifted upward and freezing times are lengthened
slightly, since the ‘velocity’ of heat conduction is reduced in
this bubbly region of the foam.
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3.4 Microgravity

Variation of the parameterg allows the model to be used to
predict the effect of metallic foam formation in space or in
parabolic flights. A decrease in gravity to aroundg = 0:001,
for example, changes the criterion for homogeneity (21) by
three orders of magnitude, since it slows down drainage. Thus,
as expected, our model predicts that it will much easier to make
metallic foams with uniform relative density in space, all other
parameters being equal.

4 Summary

The development of metallic foam is proceeding apace, while
the theoretical description of its formation lags well behind. We
have supplied a first description of the freezing stage of this
formation process, using a one-dimensional model which com-
bines the equations of foam drainage with those of conductive
heat transfer.

Comparisons between our numerical results and a simple
analytic theory are very encouraging. The numerics includethe
effects of coalescence, indicating where metallic foams may
contain voids, and also where the foam itself may collapse. The
theoretical approximations work best in the limit of low liquid
fraction, i.e. for dry foams, which is also the limit in whichthe
foam drainage equation is best applied.

Moreover, the theory allows us to specify a criterion for ho-
mogeneity of the final, solid, foam (21) in terms of the physical
parameters of the constituent metal and the dimensions of the
sample. In combination with this criterion, we give a sketchin
figure 10 of the interaction between some of the more easily
adjustable parameters. We suggest that collapse is more likely
to occur in long or wet foams where the liquid metal is heated
to well above the melting point.

We believe that comparison with one-dimensional experi-
ments, yet to be performed, would be extremely useful for the
development of this theory. The extraction of heat from only
the top and bottom of the sample is currently an idealisation,
but we have shown that it allows clear and concise analysis of
the process.

In extending the method to three-dimensions, we foresee
few difficulties. The important extensions will be to improve
our coding of film rupture / coalescence and liquid collection.

The authors wish to thank J. Banhart, P. Yecko, G. Verbist andT.
Wübben for useful discussions, and the referees for usefulcomments
and suggestions for further work. This research was supported by the
Prodex programme of ESA, and is a contribution to ESA contract
C14308 / AO-075-99. SJC was supported by Enterprise Irelandand
a Marie Curie fellowship. GB was supported by the HPC Programme
of TCD.

NotationA(z; t); �(�; �) Plateau border areaC2 = p3� �=2 Geometrical constant associated
with Plateau borderCp Generalised specific heat capacity Surface tensionD(�; �) Gas bubble diameterf � 50 Constant for Poiseuille flow in
Plateau borderg Acceleration due to gravity�(�l) Thermal conductivityLf Latent heat of fusion� ViscosityN(�) Number of Plateau borders crossing
a unit area of foam�l Relative density or liquid fraction
of foam� Liquid densityQh(�; �) Heat flow rateQl(�; �) Liquid flow ratet; � Time�f Dimensionless time at which foam
completely solidifiedT (z; t); �(�; �) Temperatureu Liquid flow velocityV Volume of drained fluidz; � Position in foam0 � � � L
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Fig. 1. The photographs show cross-sections through samples of foamed Aluminium; the only difference is that the sample on the right has
been kept in the furnace for a longer time. The foam on the leftis well-formed, with uniform bubble size. However in the right-hand sample
some of the bubbles have collapsed, others have coalesced, and significant drainage has occurred, leading to a large variation in bubble size as
well as regions of solid metal. Both pictures are courtesy ofJ. Banhart and reproduced from I. Duarte and J. Banhart, ActaMater.48, 2349
(2000).



8 Cox, Bradley, Weaire: Metallic foam processing

front
Freezing

front
Freezing

front
Freezing

pppppppppppppppppppppppppppppppppppppp pppppppppppppppppppppppppppppppppppppp
.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

Case I

T = T0

T = T0

T = T0

Case II�T=�z = 0
Drainage

Drainage

Fig. 2. A sketch of the two cases considered, showing the competition between drainage and freezing.
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Fig. 3. Successive profiles of relative density are shown for Case I,starting from a liquid foam with constant liquid fraction�0l = 0:01 andPe = 1. Dashed lines denote the profiles at time intervals of� = 20 and the solid line is the eventual, frozen, profile at� = 140.
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Fig. 4. Successive profiles of relative density are shown for Case II, starting from a liquid foam with constant liquid fraction�0l = 0:01 andPe = 1. Dashed lines denote the profiles at time intervals of� = 36 and the solid line is the eventual frozen profile at� = 450.
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�
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Case ICase IIeq. (15)

Fig. 5. The position� of the freezing fronts against time� in both cases, for the profiles shown in figures 3 and 4. Also shown is the analytical
result (15), for both the top and bottom fronts. This result is an excellent approximation at the top of the foam. We attribute the small discrepancy
at the bottom to the neglect of the specific heat and the contribution of drainage to reduced cooling in the lower part of thefoam.
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Fig. 6. A description of the approximations made in reproducing theprofiles of relative density analytically for Case I. a) At early times, the
relative density at the top decreases linearly, and at the bottom it increases linearly, with the same slope. The centre of the profile remains at its
initial, constant, value (the dotted line). The area of the shaded triangle represents the volume of fluid which has drained down to the bottom of
the foam. b) At much later times, when the foam is frozen, the linear regimes have extended farther towards the centre of the foam. These two
sections are joined by a smooth ‘equilibrium’ curve.
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Fig. 7. Comparison between theory and numerics in Case I. The final profile of phase fraction is redrawn from figure 3, to show how good the
analytic result is. The straight sections are given by (18) and (19), and are joined uniquely by a section of the equilibrium solution (12). The
differences are due mostly to the error in approximating theamount of liquid drained (triangle area), and also to the neglect of the specific heat.
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Solid Foam
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Solid Foam

Region of Coalescence

Fig. 8. If the initial value of�0l is increased tenfold, we enter the strongly inhomogeneous regime, as illustrated schematically. Our simulations
show that coalescence occurs near the top of the foam, where the relative density falls, and a liquid pool forms near the bottom of the foam. This
pool will freeze in due course to form a lump of solid metal. (The bubble structure is purely for illustrative purposes, and does not represent the
result of the calculations described here.)
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Fig. 9. Demonstrating the effect on the bubble diameter,D (in arbitrary units), of introducing a coalescence criterion in Case I. There is a small
variation inD because of the change in liquid fraction due to drainage, butthe large peak is due to bubbles merging when the walls between
them become too thin. The initial liquid fraction is�0l = 0:01 andPe = 1.
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Fig. 10. The variation of the final profile of relative density, in CaseI, with the product of the length of the foamL and its initial liquid fraction,
and the melting point of the molten metal�rit. The small inset sketches suggest possible final profiles of position against relative density. As�rit decreases, the point of maximum relative density in the finalprofile moves toward the bottom of the foam. AsL or �0l increases, the
maximum relative density grows. Both of these scenarios arelikely to lead to foam collapse, due to coarsening and liquidaccumulation.


