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Metallic foam processing from the liquid state

The competition between solidification and drainage

S.J. Cox, G. Bradley, and D. Weaire
Department of Physics, Trinity College, Dublin 2, Irelardmail:coxs@cd. i e

Abstract. A model is developed to describe the formation of metallanfis in which liquid drainage acts to collapse
the foam before it can freeze. Numerical solution of the faxainage equation, combined with the equations of heat
conduction, provides new insight into the competition kesw these two processes. It also stimulates and confirms a
theoretical analysis which leads to criteria for creatimifarm samples of frozen metal foam. The analysis suggests
new experiments to clarify the role of the various processading to foam formation.

PACS. 82.70.R Foams—47.55.M Flow through porous materials -5/€.1Thermal conduction in liquid metals

1 Introduction foaming. The sample is immediately cooled to trap this foam
structure in a solid, closed-cell foam. (Other techniquey m

In recent years, various techniques have been developtttforresult in open-cell structures.) While the density of therfed

fabrication of metallic foams [1,2]. These remarkable miateliquid may be considered to be initially uniform, it is imme-

als have a structure that is broadly similar to the more fiamil diately subjected to gravity-driven drainage of liquideating

polyurethane foams, so that it may be described and analygeertical profile of density (or liquid fraction). At any pai

by the standard methods of foam science [3, 4]. The mecHaniicathe sample this adjustment must proceed until the fregezin

properties of the constituent metal make the metallic foakn rpoint is reached. Thus, at intermediate times, the sample co

atively stiff and excellent for energy absorption. Apptioas sists of a solidified outer shell surrounding a draining iliqu

in automobile manufacture are under development. Examp@ege.

of metallic foams are shown in figure 1.

While now well advanced, the technology of metallic foam

formation still poses challenges. The solidification byloup 1.2 Heat transfer, drainage and collapse

of a foamed liquid metal is a ‘race against time’, in as much

as the relatively heavy and inviscid liquid is prone to dagje, In developing a one-dimensional model of these competing

which rapidly reduces the foam density and hence provokes jitocesses, we shall make the simplest assumptions whieh cap

stability and collapse. In this paper, we analyse the coitip@t ture the essential features of the problem. These relae pro

between drainage and heat transfer, leading to solidificati erties to the local mean bubble diametBr, and the relative

using an elementary model for computation. density. This latter quantity is equivalent to the liquiddtion

The present analysis is one-dimensional: physicallysthis ; of a molten foam; however, when the foam solidifies we

quires that heat is extracted only at the top and bottom sghall use the termelative density

faces of the sample. While this departs considerably froen th  Firstly, it is assumed that solid conduction is the dominant

usual experimental situation, we believe that there is machmechanism of heat transfer. This contrasts with the case-of i

be learned, in both a qualitative and semi-quantitativessensulating foams, in which the conduction of gas is dominaret. W

from such a model. Furthermore, this model can be extend@sinot distinguish between solid and liquid conduction fe t

to three dimensions in due course. It may also be possibletfie thermal conductivity of the foam is directly proportidio

test it directly with modified experiments in which the siadds &, and has the same coefficient in both phases.

the sample are insulated. The heat which is extracted is primarily the latent heat of
freezingLy, although we do include the relatively small heat
capacity of solid and liquid(’,. The latent heat is represented

1.1 The process of foam formation in the simulation by a finite spike in the specific heat cagacit
at the freezing temperatufe,.;;, purely as a matter of conve-

In the method used by Baumgartmetal.[5] and others, a pow- nience.

dered metal is mixed with a blowing agent, pressed, and tieate Drainage is described by the Foam Drainage Equation [4,

to its melting point. A blowing agent is chosen which releas&-8], which is now well established (although some variatio

gas close to this temperature, so that melting is accomgagie may be required in certain cases and can be accounted for in
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terms of surface viscosity [9, 10]). This partial differiehequa- where drainage theory gives the fluid velocity
tion governs the variation af; due to drainage of the Plateau
borders (the liquid-filled channels between the bubblesiién _pgA Cy 1 04 5
foam. It has not yet been specifically tested for metallicriea = 3fn  3fn2y/A 0z’ )
A key parameter in the equation is the liquid viscosjtywhich
we take to be a continuous function of temperature whictsrisehich is an average over the cross-section of the borderland a
to a very high value at the freezing point. Naturally, theuatt its possible orientations. The combination of (1) and (2pgi
variation of the viscosity is more complicated, especiédly the nonlinear partial differential equation fdr or ¢;, which
alloys, but this should capture its essential features. has become known as the Foam Drainage Equation. The vis-

Finally, we introduce a rule which allows for the rupture o€osity isn, which will depend on temperaturg,is the liquid
thin films. This coalescence criterion is the most debatible density,g is the acceleration due to gravityjs surface tension
gredient of the model, and we would not make strong claims fand C and f are known geometrical factors. The liquid flow
its validity at this stage. For a more detailed discussiothef rate through each border is théha = uA. In steady drainage,
dynamics of film rupture, in the context of glass foam formawrhere a uniform supply of liquid is added to the top of a foam,
tion, see [11]. The rationalisation of this rule is givergih1: the foam drainage equation has the trivial solution thas
its effect, in practice, is to prevent the size of the Platears constant.
ders falling below a prescribed critical value anywherght
trend of drainage is towards a lower value at any point then th
bubble diameteD at this point is increased, to simulate bubble 2 Heat
coalescence and avoid unrealistically small Plateau bsrde
compensating change @j is then required by mass conservarye heat flow due to conduction in a static foam is
tion, so that film rupture increases mean bubble size.

oT
Qh =K Oz ) (3)

2 Mathematical Formulation

whereT'(z,t) is the temperature andis the thermal conduc-
In this section we give the details of the relevant equatfons tivity. Then, using the substantial derivative, conseoraif
the processes of drainage and heat flux and describe how tRB§rgy requires that
interrelate. The results follow i§3, which should be readily
understood in general terms without recourse to theselsletai psZSleE = _9Qn (4)
The most important ingredients are the scheme used to repre- Dt 0z
sent the latent heat, and the viscosity equation which adsou hich b ina (3
for solidification in a simple way. which becomes, using (3),

oT oT 0 oT
p@lcp <E +U£> = & <I€£> . (5)

Me specific heat i§',, which we will make temperature de-
Eendent to conveniently account for the extraction of laten
eat.

2.1 Drainage

The foam drainage equation is described elsewhere [12];
briefly review its key elements here and demonstrate a §figh
different non-dimensionalisation to be consistent withelqua-
tions describing the heat flow and the viscosity.

The main assumption in deriving the drainage equation is ) _ o
that the contribution to drainage from the films is negligitdo 2.3 Non-dimensionalisation
that flow proceeds only through the Plateau borders. Conside . )
first a single Plateau border, which need not be verticah witVe define the dimensionless variabte§, a, @, Q;, 19, 4, §, C,
cross-sectional area that depends upon both the downwardnd# according to:
vertical coordinate and timet. We define a parameté¥(z)

which specifies the number of Plateau borders crossing a hor- Timet = 7 1,
izontal plane through the foam at heightThis allows us to Positionz = ¢ z,
relate the liquid fraction to the Plateau b_order aa= N A. Plateau border ared = o 22,
It also relates to the number of bubbles in any cross-seofion
the foam and will therefore help us to specify(z, ¢). How- Temperaturd’ = O (Tinit — To) + To,
ever, the exact relationship betwesh &;, D and the number Liquid flow rate@Q; = Q; QY,
?geb%t;t;:]es depends on the packing arrangement assumed for Liquid viscosityn = 10,

The continuity equation for fluid, which is assumed to be Liquid densityp = p po,
incompressible, is Gravityg = g go,

. g A 0
HNA) BN Auw) Specific heat’,, = Qp Cp
5 + 5 = 0 1) Thermal conductivitys = & ko &;
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in which This describes a symmetrical peak in the specific heat, droun
the melting temperature, which represents the heat thathmeus
3fno Cvy 0 C?~? absorbed before the foam solidifies; this is purely a corergni
to = Nz %0 = Pogo andQ; = 3fnopogo’ way of representind. ;. The parametew measures the range

in temperature of the peak (and is differentug). We will
T;mit is the initial temperature of the foarfi, the cooling tem- retainw = 50 throughout and normalise the latent heaty
peraturegy = 9.8m/s? andpo, 10, C) ands, will depend on thatis,L; — L;/Cp. We takeL; = 10.
the particular metal being foamed. Note tkat scaled byp,,
so that a wetter foam transports more heat.
The dimensionless equations which must then be solved

i- .
multaneously are those of liquid drainage: 255 Boundary conditions

O(Na) + O(NGQ) -0 () We impose boundary conditions of no flo@,(= 0) at the top

or 0§ ’ (¢ = 0), since no fluid enters the system, and at the bottom
(¢ = L), where the foam is being cooled. Note thafif = 0
is specified everywhere, then we obtain #dggiilibrium profile

L 1(.. , \ada of the foam:
Q= (pga - 78_€>5 (7

1 -2
and heat flow: Qeq(§) = <\/@ +L - «S)

in which the liquid flow rate is

~

(12)

01, (8_@ %Z_?) _ 19 (/%@18—@> . (8) Whereay correspondsto the liquid fraction at the bottom of the

or Pe 0¢ o¢ foam. This is the profile to which all liquid foams are eveltitua
brought by gravity drainage; note that, is nowhere zero.
where the Peclet number is The boundary conditions associated with the temperature
22, (0 are that the bulk of the foam is initially at uniform tempenat
Pe = m_ ©9) T = Tinit = © = 1 while the lower end ha¥ = T, =
toko © = 0. The freezing temperature translates into a vag;,
Since neither the liquid density or thermal conductivitylwi between Z€ro and one. We t,‘m@”'t = 0.9 throughout. )
change, we can equate battand ) with unity. We expectPe We cor_15|der two scenarios for the top temperature c_ondl—
to be of order unity, giving approximately equal weightirg ttion (see figure 2): Case |, yvhere the s_ample is cooled in the
the advection and conduction terms. same way as the bottom, with the conditi®n= 0, and Case

II, where the top boundary condition is that of no heat flow,
00 /0¢ = 0, so that cooling proceeds only from the bottom.
2.4 Viscosity and Latent Heat We assume that the number of bordéfds initially uni-
form throughout the sample. In the model described hére,
To describe a foam in both its solid and liquid states, we seoachanges only by virtue of coalescence. We hypothesise that
a smooth step function for the dimensional viscosjtyhat films will rupture below a critical thickness, and since tlogiie
gives small values), at high temperatures and high valuelbrium film thickness should be a monotonic function of the
Nmaz at low temperatures when the foam is frozen. We writePlateau border area, we allow bubbles to merge when this area
becomes smaller than some critical value< a,;. At this
Nmaz /Mo — 1 (10) point&; we decreasd (&;) to

1 .
T exp(wy (6 — Oorat)

U]

.. . . N(fl)a(fl ; T)/acrz't
The value ofy,,.... /1m0 must be sufficiently high that there is no

drainage at the low temperatures at which the foam is effegap, puta(&,7) = aers SO thatD increases accordingly. (In
tively solid. The parameter, measures the narrow range Ofpe event of coalescence, we will assume that the change is
temperature over which the viscosity changes fi@ro nimaz-  small enough that we can ignore the temporal derivativay of
This mushy zone is in practice a_chleved by the use of me‘j‘?\' (1).) We will assume throughout an initial distributiofi o
alloys; it may be that in a less basic model than this the PEECIy (¢) = 1 V¢ to simplify the analysis.

details of the change in viscosity must be taken into accdant The liquid fraction of the foam is given b, = Na. If

what follows, we consistently use the valugs,, /o = 10° each bubble has a cross-sectional area (d/2)* we have
andw, = 10%; the precise values of these two parameters aeyt

not significant.

To incorporate the latent heat of fusion, we change the spe- D, ) =2 [1-& (13)
cific heat to ’ N

ThereforeD is also initially constant, but will subsequently
change a9, varies and as bubbles coalescence.

C,=1+ Ly exp |— (w(O —9”#))2} . (11)
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2.6 Method of solution density is generally undesirable. The theory which we niext e
cidate, in§3.2, offers a criterion for the avoidance of such inho-

We solve (6) and (8) using an explicit finite difference reprenogeneity in terms of the physical parameters and the sample

sentation with constant step sizes in both time (upwind) adémensions.

space. This conservative formulation minimises errorstdue

numerical roundoff.

We now retain all variables in dimensionless form, but om&.2 Analytic approximation

their caps, e.gp — p.
The linearity of the profiles of relative density at the toglan
bottom of the foam suggests that it may be possible to supply

3 Results an analytical description of the early stages of the sotigifon
process. We now try to reproduce the early evolution of tee pr

We shall describe in detail only the progress of solidifimati file with a simple theory which appeals to conservation ohbot
for Case |, since Case Il is in some sense equivalent to fh@atand liquid. The first step is to find the distance of theZre
lower half of the sample in Case . In this case two freezirigd fronts from the top and bottom of the sample, as a function
fronts move inwards to meet near the centre of the sample. B&time. Then the quantity of liquid which has drained in this
hind each front there is an approximately linear variatibn é§me is calculated, to enable the variation of relative dgre
relative density. In the next part we describe the resultsuef be found.
merical simulations. These provide the motivation for am-an  T0 find the position of the freezing front, we consider the
lytic model, detailed ir§3.2, which compares well with the full heat loss from the top of the foam in unittime. On the one hand,
solution. Sections 3.3 and 3.4 describe various extensiond3) shows that the heat flug, varies as«(T..ix — To)/zy,
the model, including the coalescence criterion and thecesffewherez; is the distance of the front from the top of the foam.
of varying the gravitational acceleration. But the amount of heat extracted in unit time is equal to the
product of the latent heat, the velocity of the front and tress
of liquid: Ly p &; dx¢/dt, ignoring the contribution of the spe-

3.1 Examples cific heat. Thus, in the dimensionless variables used here,
We show in figures 3 and 4 how the profile®f evolves over Lfﬂél% = ko® Ocrit _ (14)
time. In both cases the liquid fraction is initially uniforiiat dr &r

is, it is represented by a vertical lile = &Y. In Case | (figure

3) both ends are frozen at time= 0. The relative density at Integrating (14) gives

the top of the foam initially decreases as liquid drains due t s 260 Ouit

gravity, and the freezing front also moves downward, toward &§=—7,, " (15)
the centre of the foam, to give an approximately linear desze 1P

in relative density in the frozen sample. enabling the position of the front to be found as a function of

At the bottom of the foam a freezing front moves upwargime. At the bottom of the sample the same argument is ap-
At the same time, liquid drains towards this front, and aceuMpjicable, with¢; replaced withl, — ¢, so that in figure 5 we
lates above it before being frozen itself. Therefore thatie can compare the position of the fronts at both the top and the
density at the bottom of the foam grows, and again this irs&@eayottom of the foam.
in &, is roughly linear, with a similar slope to the one at the top |t js possible to track the position of the freezing fronts us
of the sample. _ _ ~ing our numerical code, so that we can estimate the accuracy

The relative density between the two freezing fronts, in thg (15) in comparison with the full model. The agreemenipals
centre of the foam, at first remains close to its initial valu&  shown in figure 5, is excellent. The freezing front moving up
in due course it evolves towards a pI’Ofile which Smoothlyri'ntqhe foam in Case Il has much the same Shape but continues to
polates between the low values®fat the top of the foam and g5cend.
the high values at the bottom. In the final phase of its evifuti - Now;, to continue in our stated aim of recreating the final
the profile of this central region, which is still liquid, clely profile of relative density, we must consider a balance ofsnas
approaches the equilibrium form (12). It therefore ceasesttansport. The volume of fluid drained from the top of the sam-
change appreciably as the two freezing fronts proceed td mgR is approximately equal to the area of the growing trian-
and solidify the entire sample. This can be seen in the psofi%es sketched in figure 6, based upon the neglect of the dif-
for Case I in figure 3, but is even clearer in figure 4: in Caseflsjve, or smoothing, term in the liquid flow rate. This arsa i
there is a greater proportion of the sample which is molteh, 7 — %xi (—d®,/dx).
the profile at timer = 216 is indistinguishable from the final At early times, the central part of the profile has constant
profile atr = 450. . liquid fraction and therefore constant flow rate. Furthbe t

In Case II, the liquid fraction at the top of the foam detfiquid that has drained from the top of the sample must pass
creases just as it would in the standard free drainage expgitough this region. So this volume of liquid is equal to the

ment [12], until it is frozen at the very end of the process Whgyroduct of the flow rate and timé// = NQ,r. Thus
the freezing front reaches the top.

So in Case | the characteristic form of the final profile is 1, d®,
that of a ‘sawtooth’ pattern. This resulting variation itetée/e 551‘ T de

) = NQr. (16)
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We can then substitute fgr; from (15), to give not only the Then we suggest the following
slope of the relative density at the top of the foam:

0\2 2 0\2 ; i Lip*g L&}
do;  NLsp pg(®))°  Lsp°g(P)) 17) homogeneity criterion: N O < L (21)
d¢ B k0 Ocrit N2 o B N ko Ocrit Mo 0 Ferit 1o
but also, upon integration, the variation of the relativesity Forthe parameter values used hdrg & 10,0,y = 0.9, L =
itself: 10,p = g = ko = o = N = 1 and®; = 0.01) this quan-
o Lip’>g(P))? tity is slightly greater than one; the results in figure 7 sttloat
P =P — m : (18)  the maximum deviation from homogeneity is about 40% of the

Can we apply the same argument at the bottom of the foé%“al liquid fraction.
to give the same slope of relative density? We appeal to conse

vation of liquid (the bottom of the sample is initially frazeo
that no liquid can escape) and note that the freezing fromt m
ing up from the bottom has the same speed as the descenc%'wg

front, in the absence of heat transport due to drainage. @he N shoulq supplemen_t this criterion with ameasure of thad tot
simiI:';\r derivation to the above gives reezing time;r¢. That is, how long does it take for the whole

sample to freeze? Note that the sample may stop draining, and
Ly p? g (8?)? reach equilibrium under gravitpeforeit is everywhere solid.

N o Ocrit 1o (L=¢) (19) We refer again to (15); the length of foam which must be
frozenisL/2, so that

63.2.1 Variation of freezing time

P = ) +

so that the ends of the final profile are antisymmetric.
An approximation to the central part of the final profile is LeoL?

; : _ Lyp
somewhat more straightforward to calculate. As noted exarli iyt
the sample stops draining before it is everywhere frozearh Koerit

fore gravity drainage must be the dominant process in the cgipig givesr; = 139 in Case I, while our computations give
tral region, so we expect that the eventual profile in the mig: _ "33 ‘and in general further results of numerical calcula-
dle of the foam will closely approach the equilibrium profilgj;y show good agreement with this functional for So, as
(12). The particular profile connecting the two linear segtee \youid be expected in any heat diffusion problem, the fregzin
is given uniquely by the central point of the initial profil€ ojme is proportional to the square of the length of the foamd, a

phase fraction: that is, we substitutg = &} /N and replace i, jnverse proportion to the thermal conductivity.
LbyL/2in (12):

-2
N L
&, = < /@ 3" €> _ (20) 3.3 Coalescence and collapse
l

When the criterion (21) for homogeneity is not satisfied, we
Séxpect additional effects. In particular, the bubbles effdam

; . . ; ¢ : will coalesce where the liquid fraction is small and a ligpa@bl|
section. To find each of the points of intersection requiRes t, iy, torm where the liquid fraction becomes large. Any one of
solution of_a cubic equation fq, given by equating (20.) W!th several changes in the physical parameters or dimensions of
(18) and with (19) respectively. In the case illustrated gufe e foam may cause these events to occur; in figure 8 we sketch
7wefind¢ = 2.9 and¢ = 6.5. Resubstitution gives aminiMuMype effect of a higher initial liquid fraction. An increasethe
value of#; = 0.007 and a maximum of; = 0.014. initial liquid fraction #) also changes the shape of the lower

It should be noted that this formulation incorporates & 5mgleeing front, so that its central part becomes linears Téi
but finite change in the total volume of liquid present (appro y ;e to the dependence of the thermal conductivitgon

?mately one percent for the calc_ulation sho_wn); in pracllit'te_ In Case Il we would expect coalescence to occur in the
is corrected by the lack of antisymmetry in the end profilegg o way, but at the very top of the foam.

which also shifts the central section downwards. Although our numerical code breaks down with the forma-

In flgur_e 7 we compare these approximate profiles with the, o 5 pool, because there are no longer bubbles present, w
full numerical solution. Given that we have neglected the-sp

e : _>Fcan use it to investigate coalescence using the model Bescri
cific heat,. the agreement is remarkably good. Thesg estm §2.5. That is, we introduce a cut-off at low Plateau border
could be improved further with a more accurate estimation 9f-<., at which point we allow the number of bubblaé
the volume of liquid which has drained from the top of thg, '

f ; h ) i the sl is d nd increase. The results are shown in figure 9, which displays
oam, since the overestimate in the slope Is due to an undekga p pple size distribution for the profiles of figure 3 with a
timate in calculating the triangle area.

o o 0 :

The volume flux balance (17) describing the variation of tf}(}gﬂieci?:rngj b%rlléegggkifgcm ogve(\)/grd,s {{Hi\slv;;f;(;itu?;so%n;;ng ea

- - X : taken as a guide only. The figure does show that bubble size

deciding when a metallic foam sample will be uniform/homMgRLS, i crease significantly. We find also that the profile afitig

This would require a small value of fraction is shifted upward and freezing times are lengtdene
L d¢, slightly, since the ‘velocity’ of heat conduction is reddca
ald—f this bubbly region of the foam.

(22)

To complete the final profile of relative density we mu
join the two straight end sections to the central ‘equitibml
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3.4 Microgravity

Variation of the parametey allows the model to be used to
predict the effect of metallic foam formation in space or inC,

parabolic flights. A decrease in gravity to around= 0.001,

for example, changes the criterion for homogeneity (21) byD (¢, 7)
three orders of magnitude, since it slows down drainages;Thu f ~ 50
as expected, our model predicts that it will much easier thema

metallic foams with uniform relative density in space, dier
parameters being equal.

4 Summary

The development of metallic foam is proceeding apace, whil&), (¢, 7)

the theoretical description of its formation lags well behiWe

have supplied a first description of the freezing stage & thir,
formation process, using a one-dimensional model whichrcom
bines the equations of foam drainage with those of condeictivl'(z, t), ©(¢, )

heat transfer.

Comparisons between our numerical results and a simplg
analytic theory are very encouraging. The numerics incthde

Notation

Plateau border area

Geometrical constant associated
with Plateau border

Generalised specific heat capacity
5 Surface tension

Gas bubble diameter

Constant for Poiseuille flow in
Plateau border

Az, t),a(&, 1)
C?=+/3-m/2

g Acceleration due to gravity

k(P;) Thermal conductivity

Ly Latent heat of fusion

n Viscosity

N(§) Number of Plateau borders crossing
a unit area of foam

&, Relative density or liquid fraction
of foam

p Liquid density

Qn(&,T) Heat flow rate

Liquid flow rate

Time

Dimensionless time at which foam
completely solidified

t, T

, Temperature
u Liquid flow velocity
Volume of drained fluid
z,& Position in foam) < ¢ < L

effects of coalescence, indicating where metallic foamg ma

contain voids, and also where the foam itself may collapke. T

theoretical approximations work best in the limit of lowdig References
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Fig. 1. The photographs show cross-sections through samples miefb@luminium; the only difference is that the sample on tlydtrhas
been kept in the furnace for a longer time. The foam on thddeftell-formed, with uniform bubble size. However in thehighand sample
some of the bubbles have collapsed, others have coaleswkdigmificant drainage has occurred, leading to a largatiani in bubble size as
well as regions of solid metal. Both pictures are courtesy.@anhart and reproduced from |. Duarte and J. Banhart, Wetter. 48, 2349

(2000).
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Fig. 2. A sketch of the two cases considered, showing the competigédween drainage and freezing.
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Fig. 3. Successive profiles of relative density are shown for Castaiting from a liquid foam with constant liquid fracti@f = 0.01 and
Pe = 1. Dashed lines denote the profiles at time intervals ef 20 and the solid line is the eventual, frozen, profile-at 140.
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Fig. 4. Successive profiles of relative density are shown for Cassdtting from a liquid foam with constant liquid fractidy = 0.01 and
Pe = 1. Dashed lines denote the profiles at time intervals ef 36 and the solid line is the eventual frozen profilerat 450.
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Fig. 5. The positiort of the freezing fronts against timein both cases, for the profiles shown in figures 3 and 4. Alsavglis the analytical

result (15), for both the top and bottom fronts. This resu#tn excellent approximation at the top of the foam. We aitieithe small discrepancy
at the bottom to the neglect of the specific heat and the durimn of drainage to reduced cooling in the lower part offtieam.
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Fig. 6. A description of the approximations made in reproducingpiafiles of relative density analytically for Case I. a) Atlgaimes, the
relative density at the top decreases linearly, and at ttternat increases linearly, with the same slope. The cerftteeoprofile remains at its
initial, constant, value (the dotted line). The area of thaded triangle represents the volume of fluid which has ddaitown to the bottom of
the foam. b) At much later times, when the foam is frozen, itheslr regimes have extended farther towards the centredb#m. These two
sections are joined by a smooth ‘equilibrium’ curve.
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Fig. 7. Comparison between theory and numerics in Case |. The finéilgof phase fraction is redrawn from figure 3, to show howdytiee
analytic result is. The straight sections are given by (1) @9), and are joined uniquely by a section of the equilirisolution (12). The
differences are due mostly to the error in approximatingatneunt of liquid drained (triangle area), and also to thdew®f the specific heat.
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Solid Foam

Region of Coalescence

Solid Foam

Solidified Pool

Solid Foam

Fig. 8. If the initial value of®) is increased tenfold, we enter the strongly inhomogeneemisne, as illustrated schematically. Our simulations
show that coalescence occurs near the top of the foam, wierelative density falls, and a liquid pool forms near thitdro of the foam. This
pool will freeze in due course to form a lump of solid metahéTbubble structure is purely for illustrative purposesl does not represent the
result of the calculations described here.)
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Fig. 9. Demonstrating the effect on the bubble diamel&(jn arbitrary units), of introducing a coalescence criaarin Case I. There is a small

variation in D because of the change in liquid fraction due to drainagethHautarge peak is due to bubbles merging when the walls betwee
them become too thin. The initial liquid fractiondd = 0.01 and Pe = 1.
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Fig. 10. The variation of the final profile of relative density, in Caseith the product of the length of the foafand its initial liquid fraction,
and the melting point of the molten metal..;:. The small inset sketches suggest possible final profilesgifipn against relative density. As
O.-i: decreases, the point of maximum relative density in the finafile moves toward the bottom of the foam. Asor &7 increases, the
maximum relative density grows. Both of these scenariodilketly to lead to foam collapse, due to coarsening and liguidumulation.



