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Regular three-dimensional bubble clusters: shape,

packing and growth-rate

S.J. Cox*andF. Graner? T

1 Department of Pure and Applied Physics, Trinity Collegebdu2, Ireland.

2 Laboratoire de Spectrométrie Physique, Boite Postal&-&B402 St. Martin d’Heres Cedex, France.

Abstract

We consider three-dimensional clusters of identical besbphcked around a central bubble
and calculate their energy and optimal shape. We obtainuitiece area and bubble pressures
to improve on existing growth laws for three-dimensionablile clusters. We discuss the
possible number of bubbles that can be packed around a kcent&athe “kissing problem”,

here adapted to deformable objects.

Pacs numbers: 82.70.Rr, 83.80.1z

1 Introduction

1.1 Motivation

Bubbles, such as soap bubbles, are objects with simple ggoared physical properties. But

when two or more bubbles cluster together, how well do wdyealderstand their properties?
The limiting case of a cluster of many bubbles, known as a faamsually approached with

continuum approximations. An understanding of foam progersuch as aging, due to gas dif-

fusion, and structure is a problem of fundamental intergéstutated by the need to predict the
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behaviour of foam in industrial applications. From carldedadrinks to the processes used to ex-
tract gold ore from the earth, foams are an important paruofiees with various industrial uses
[1, 2].

The alternative to the continuum description, describae,hs an approach based upon the
study of finite clusters of bubbles. Its advantage is the @agewhich we can obtain precise
structural information. This has been demonstrated canwyty in two-dimensions (2D), where

exact results exist for two problems of paramount interest:

e The Kelvin problem: what is the least energy (equivalentrie-length) structure of equal-
size bubbles that fills space? In 2D, Hales [3] proved that igthe familiar honeycomb
structure. In 3D, where the problem is one of minimizing acef energy or area, no such
exact result exists. Kelvin [4] gave a candidate structsti#,believed to be the best for a
structure containingdentical cells, although in the general case it has since been begten b
the Weaire-Phelan structure [5] consisting of bubbles af different types. The important
guantity in this problem is the surface area of each face afitzble of unit volume, or

equivalently the normalized total surface ag#?/3.

e Growth laws: how does a foam age, amarsen, due to gas diffusion across its surfaces?
The 2D result, due to [6], says that the growth-rate of a beifdl aread) is directly linked
to its number of sides): dA/dt O (n—6). That is, it depends upon bubble topology only,
irrespective of the precise geometry. In 3D, the growth lawriitten [7]:

dv3  1_ApS
d  27'vis @

where the sum is taken over each face, which has a presstgeedifeAp; and aredS.
Again, the normalized area appears to be important, but thee8D growth law depend
only on the bubble topology? In fact it does not, but it may eaknse to express the
average growth-rate ¢f-faced bubbles as a function Bfonly if the dispersion about such

alaw is small.



1.2 State of the art

The study of 3D foam coarsening was pioneered by Glaziefiih used a 3D Potts model to
numerically simulate foam coarsening. He proposed a ligeawth lawZAp S O (F — cst) for
bubbles with a number of facds from 6 to 57 (and even from 4 to 60, with some numerical
uncertainty). Similar linear laws were observed in subsatjexperiments involving optical to-
mography and reconstruction using the Surface Evolverg8d¢tween 9 and 16), and magnetic
resonance imaging experiments [9, 10] Fofrom 4 to 26.

This growth law was refined by three detailed results preseby Hilgenfeldt et al. [11]: first,

an approximate analytical formula based upon regutéaiced polyhedra with curved faces:

d 3 m\1%? XF\ (Tt
av2/3 =G(F) = 5173 [(F -2) tan(n—F)} tan'/3 (;) (5 —XF) (2)

wherexg = 2tarr! \/4sir12(n/r]p) —1 andng = 6—12/F is the number of edges per face. Sec-
ond, a (non-explicit) correction for non-regular facestdhnumerical (Surface Evolver) simula-
tions for foams containing bubbles withfrom 5 to 42. Recently, Cox and Fortes [12] also used
the Surface Evolver to calculate numerically the strudtpraperties of single “regular” bubbles
with surfaces of constant mean curvature; this gave infaondor certain values of between 2

and 32.

1.3 Outline of this paper

Here, we study clusters consisting of one bubble surrouhgde others, each with prescribed
volumes. This constitutes a finite cluster with free bougidanditions: this represents a realistic
foam surrounded by air, in contrast to the idealized bubbéssribed by Hilgenfeldt et al. [11].
We chose such an approach, which neglects long-distanoelaitons between bubbles, because
it should provide more physical insight than existing expents and simulations, and enable
more precise calculations than the analytical approacthifihis “mean-field” choice, all results
presented below are exact, without approximations. Maean principle we should have access
to all physically realizable values &f.

In the course of our study of the equal-volume case, we erneceshwhat we call “the kissing



problem for (deformable) bubbles”. Our simulations allosvta ask: how many deformable (dry)
bubbles can be packed around one other? The original kipsofdem, discussed by Gregory and
Newton, was: how many identical hard spheres can surrouaatier, each touching the central
one [13]? In two-dimensions the answer is obvious and watvkn — only six hard discs can
be packed around one other, in the familiar honeycomb agraegt. For the three-dimensional
problem, consideration of the angle subtended by each s@tahe central one suggested that
the maximum number could be as high as 14, but Newton wasatarréelieving that only 12
neighbours are possible [14]. We will show that for bubblesse critical numbers are 12 (2D) and
32 (3D).

The plan of the paper is as follows. We first describe our neethfccluster preparation and
relaxation. There are limits, for each set of given bubbleiv®s, to the values dF for which
stable clusters exists. In the equal-volume case we offelusian to the kissing problem. We then
analyse in more detail the shape and growth-rate of margrdift bubbles, and present predictions

about coarsening and quantify the spread of the growthatadet the growth law (2).

2 Definitions and methods

We take a central bubble of volunve and surround it withr bubbles, each with the same volume
V; this is the natural extension into 3D of the 2D “flower” of [190 create and equilibrate such
a cluster, we use a Voronoi construction with VCS [16] anchthee Surface Evolver [17], as

follows.

We must first make a choice about the topology of the clustarceSwe wish to create the
cluster using a Voronoi routine, we must first choose an gearent ofF + 1 points about which
to create bubbles.

We first place a point at the origin of a sphere of radius 1. TtherMoronoi points are placed
at the positions given by the solution of the “covering radmoblem” [13]: the arrangement of
F points on the unit sphere that minimizes the maximum digtasfcany point from its closest
neighbour. Candidates to the solution of this problem haenlgiven by [18] foF from 4 to 130,
which is exactly what is required for our purpose. Note thét ts not the only way to pack the

F Voronoi points, but appears (partly with hindsight) to h&aeen a good choice — it gives all the
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Figure 1. Examples of the clusters considered here Wtk V = 1 in each case: (a) cluster of
F = 13 “petals” (that is, a total df + 1 = 14 bubbles) still attached; (b) the central bubble, drawn
to a different scale, witlk = 13 faces (one square, ten pentagons and two hexagons);bpkeb
with F = 26 faces (all pentagonal or hexagonal) — note its depantane &pproximate sphericity,

described in §3.2.

arrangements we know to expect, e.g.For 6,12 32.

We truncate the Voronoi diagram by adding Boints at a radial distance of 2 from the origin.
We ensure that these outer points are at least a distafigé8E apart, decreasingfrom 1 until a
solution is found, usually at arourgd= 0.8. This data is put through the VCS software; the output
file is then transferred to the Surface Evolver, version @.Me use two levels of refinement and
guadratic mode, to obtain a high level of accuracy.

We compute the following quantities for ti® face { = 1,---,F) of the central bubble: its
number of sides), areaS and pressure differena®p;. Then for the whole bubble we record
its volumeV, its normalized total line length/V'/3, its normalized surface ar&V%/3 (where

S=173;S), and its growth-rate through eq. (1), which we plot as a tiamoof F.

3 Topology and limits for equal-volume clusters

We first consider the case where the volume of the centrallbubbqual to that of its neighbours,
V: = V. Examples of such monodisperse clusters are shown in figioeFA = 13 and 26. This
illustrates that despite the rather symmetric initial dtiod (putting points on a sphere) we can

still obtain significantly skewed bubbles after relaxation



a) b) o)

Figure 2: (a) A symmetrical 2D flower cluster with= 12 petals and\:/A = 2. (b) One of the
possible stable buckled states of the same cluster Ayith A. (c) One of the possible “ejected”

states [20] withF = 13 petals and\; = A.

3.1 The kissing problem for 2D bubbles

For completeness, we consider first the two-dimensionddlpro. How many 2D bubbles can be
packed around one other of the same area?

Our initial pattern is that of the “flower” clusters introdedt recently [15, 19, 20]. It consists
of a central cell of areé. surrounded by identical petals of areA. A symmetric example with
F = 12 petals and; = 2A = 2 is shown in figure 2(a). A priori, one could imagine that theer
of petals could increase without limit, with titesides of the central bubble becoming increasingly
curved.

However, Weaire et al. [15] showed that for> 6 there is a “buckling” instability at a critical

ratio of the bubble areas given approximately by
Ac/A~ 0.04(F —6)2.

For unit areas anBl > 6+ (0.04)~1/2 = 11, the symmetric shape is therefore no longer stable, the
flower becomes “floppy” and many modes of buckling, corresipomto different shaped central
bubbles, are possible (all with the same energy). An exarigpl€ = 12, in which there is an
elliptical mode of buckling, is shown in figure 2(b).

Is it possible to pack even more bubbles? We find thaEfor 12, any of the buckled configu-
rations of clusters with unit areas are unstable to a topoébghange caused by the length of one

of the internal edges shrinking to zero [20]. An example isvahin figure 2(c) forF = 13, for



which three bubbles are “ejected” in an equilibrium confagion withA¢/A = 1.
Thus we conjecture that the maximum number of bubbles thatatech the central one is 12.

This is twice the value for hard discs.

3.2 The kissing problem for 3D bubbles

In three dimensions the idea is the same. In principle on&dmagine that there should be no
limit to the number of bubbles which will fit around the cemtoae, albeit with the latter being
hugely distorted. However, since the area of each of thesided faces shrinks ds increases,
our simulations of bubbles with unit volumég,/V = 1 do not find a stable cluster for all possible
numbers of petals. In fact, we could only find clusters fet b < 32. That is, we cannot obtain a
bubble with more than 32 faces and volume equal to that okitghibours which satisfies Plateau’s
laws after energy (surface area) minimization.

For most values df, the shrinkage of five-sided faces is accelerated by arsellifal distortion
of the central bubble (see figure 1(c)), due to the asymmiktcation of the pentagonal faces
amongst the hexagonal ones. Might there be a discontinugkdiihg transition for 3D clusters?
As a result of further simulations, we believe not: this asyetry, and the consequent elliptical
deformation of the central bubble, means that the tramsitidhe asymmetric pattern is continuous.

It is interesting to note that the caBe= 32 is special: it is probably the most symmetric cluster
for F > 12 —it corresponds to th&so Buckminster fullerene. Hence, by analogy, one might expect
that stable clusters with unit volumes exist for higher ogbon structures. We tri€igo (F = 42)
and the ellipticalC7; (F = 40) and didn’t find them to be stable. We thus conjecture tbhahore
than 32 bubbles can touch the central one: 32 appears to Bleskeg” number for 3D bubbles.

Recall that for hard spheres the kissing number is 12.

4 Shape, pressure and growth-rate

We next analyse in detail the statistics of the bubbles fonmadir simulations.
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Figure 3: The normalized surface a&/&/z/3 varies, albeit over a small range, non-monotonically
asF increases. Inset: zoom over the rarlge- 11 to 16. Data is shown for volume ratios of
Ve/V = %(-l—), 1(x),2(),3(E]) and §M). For all values of the volume rati./V, the pentagonal
dodecahedron & = 12 has the same value 8fV?/3, but for all otherF the surface area fluctuates
widely, although in general it decreases as the volume mati@ases. Also shown is the data for
bubbles with constant curvatufe) rather than with fixed volume [12]. Shown as horizontal lines
(from top to bottom) are the value SVVZ/3 for the Kelvin structure (solid line), for the Weaire-
Phelan structure (quadruple dashes), for the “ideal” balftslple dashes) and for an infinitely

large bubble with hexagonal faces (double dashes) [21].

4.1 Equal-volume bubble clusters

We consider first the monodisperse case, relevant to tharkgteblem, where the volume of the
central bubble is equal to that of its neighbots= V. As mentioned above, we can go frdm
= 5 to 32. The ratid5/V%/3, shown in figure 3, is lowest & = 12, and increases steeply fér
greater than about 16.

The inset on figure 3 shows the data around the optimal rdgienll to 16. These bubbles,
which do not pack to fill space, have lower area than Kelvig!8(Q6) and even Weaire-Phelan’s

(5.288) (see [22] for details of other space-filling foanustures). They are barely above the value
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Figure 4: The line-length ratib/Vl/3 increases in proportion to the square-rooEdfL2] (inset).
We therefore plot the ratib/V1/3/F1/2, for volume ratios of/c/V = 3(+),1(x),2(),3(J) and
5(M). The data is everywhere closelto= 4.35V1/3F1/2 confirming the square-root behaviour.

The dispersity increases as béttandV./V increase.

for the so-called “ideal” bubble (5.254) [23]. The latteitwi = 13.39, describes a regular (but
unphysical) “bubble” which would have flat faces, and hengecavth-rate of zero.

Also of interest is the normalized Iine-lengllﬂvl/3 of each bubble, plotted in figure 4. Note
that all data lies close to a lire/VY/3 0 v/F [12]. We therefore show the ratio/VY/3/F1/2 in

figure 4: the maximum deviation (i.e. the shallow minimumhe tlata) occurs fdf ~ 25.

4.2 Non-equal volumes
4.2.1 Simple volume ratios

We next consider the case where the volume of the central®dishot equal to the volume of its
neighbours. There are again limits to the possible stabigteils, but they vary with the volume
ratio. We study the simple ratidg/V = %,2,3 and 5. This choice of volume ratios allows us to
exploreF from 4 to 60.

Note that the possible range Bfis not always continuous. For instance, we cannot construct



a stable cluster with 26 neighbours fdy/V = % hence we find= € [4 —25,27]. Similarly, 11
neighbours is unstable fot/V =5, and we find= € [10,12— 60.

For each value df we record the topology of each bubble, collated for all vadunattios (table
1), using the notatiomy to mean that the bubble hadaces withn-sides. The topology of the
central bubble might depend &f/V: we find such non-uniqueness in only two instances. We
accept this as due to the slight randomness used in placen@Rtouter points to truncate the
initial Voronoi pattern.

The line-length, shown in figure 4, fall close to the same ews in the monodisperse case.
The square-root approximation becomes slightly worse asttbbles become larger and gain

more faces, with the maximum deviation occurring at highdor increasingvc/V.

4.2.2 Large volume ratios

With largerV;/V we can look at bubbles with many faces and very low surfacsaifor instance,
with F = 122 (corresponding to the fullere@g40) andV./V = 200 we find a bubble with topology
5126110 andS/V?/3 = 5.239: see figure 5.

We could extend this process to larger bubbles with moresfatae normalized area should
eventually approach the value for an infinitely large bubtith hexagonal facesS/Vz/ 3=5229
[21]; note that this is not the theoretical lower bound fag ttormalized area, which corresponds

to a spherical bubble with — 1 infinitesimally small neighbours [24].

4.2.3 Correlations

Real foams often have a distribution of bubble volumes, &il topology is correlated to the
geometry: larger bubbles tend to have more neighbours [25].

Such correlations appear in our results, although we digpetifically include them. Their
physical origin is clear. In fact, consider a bubble of vo&g, and consider the average of its
neighbours’ volumes, denotdd (mean-field description). Then, for this give/V ratio, the
physically realizable values d¢f are limited. Within the possibl€, the S(F) curves admit an
optimum: there is a value d¥ which minimizes the bubble area. These optifalalues do

increase with/;/V. Moreover, on figure 3 we can read the optimal surfagg/V?/2 as a function
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Table 1: The topology of each central bubble, whgrdenotes the numberof n-sided faces.

* denotes configurations fér = 2 and 3 from [12].

** denotes alternative configurations for givewith differentV;/V: F = 11 (4586, for V/V = 3)
and 34 (54620 for V. /V = 2).

F | Topology | F | Topology | F | Topology | F | Topology
1 — 16| 51264 31| 51361771 46| 512634
2 1" 17| 51265 32| 512620 47| 51463172
3 23" 18| 51266 33| 51361971 | 48| 512636
4 34 19| 51267 34| 512620™ 49| 515637
5 3243 20| 51068 35| 51461972 50| 512638
6 4g 21| 51269 36 | 51462072 51| 512639
7 455, 22| 512610 37| 512625 52| 51363871
8 4444 23| 512611 38| 512626 53| 51363971
9 4356 24| 512612 39| 512627 54| 512642
10| 458 25| 512613 40| 512628 55| 51463972
11| 435662™ 26| 512614 41| 512629 56| 512644
12 912 27| 512615 42| 519630 57| 512645
13| 4151062 28| 512616 43| 512631 58| 512646
14| 51269 29| 512617 44| 517632 59| 512647
15| 51263 30| 512618 45| 51363171 60| 512648
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Figure 5: The optimal normalized surface a&g/v% for a range of values of the volume ratio
Vc/V. Data are shown for values ¥§/V = 1,2, 3 and 5 ¢) and for the representative calculation
for F = 122 withV/V = 200 (x). The limiting value folV;/V — « atS/VZ/3 = 5.229 is shown

as a horizontal line and we also show a power-lawgit/?/3 = 5.229+ 0.078/F %423,

of F: it is the envelope of all curves plotted, shown in figure 5ddtreases roughly as one over
the square-root df as the volume ratio increases.

In 2D, the expression fokept/AY? versus n has been used to estimate the energy of a 2D
foam [26], then to determine the correlations between gégni@eaA) and topology (number of
sidesn) [27]. Here, its 3D counterpart, the)pt/vz/?’ versus F relation, is more complicated (in
particular, unlike in 2D, it depends on the volume ratio)t ibappears to have the same essential
property as in 2D, namely to be a non-increasing functioR;ofie thus hope to extend to 3D this

2D result [27].

4.3 Growth-rate

As a result of these simulations, we are able to calculatengtantaneous growth-rate of many
bubbles, with many different numbers of sides, through dgnmfila (1). It is shown in the inset to

figure 6 — all data lies close to (2), except at (for us unolaali® smalF where the results of Cox

12



Table 2: The growth-rates, averaged over all simulaticrdydibbles with few faces; < 12. They

differ significantly from the analytic equation (2) [11],t&how very little dispersion.

F 2 3 4 5 6 7 8 9 10 11
—dVv?/3/dt | 5.632| 4.655| 3.967| 3.326 | 2.849| 2.350| 1.899| 1.506 | 1.130| 0.760

and Fortes [12] are useful.

More instructive is the difference between the analytierfola and our data, shown in figure
6. ForF > 12, our data are above and below the analytic line: it agrads thve suggestion
that the analytic formula approximates the average groatth{11], and quantifies the dispersion
around this average (less than 1 % dispersion). Convefselly, < 12, our data are clustered and
significantly (up to 10 %) larger than the analytical formukdich confirms that the analytical
approximations gradually lose their validity at Idw as expected [11]. In a coarsening foam,
the bubbles with lowF are important because it is these bubbles that disappealti®ugh for
F > 12 the growth-rate is well approximated by (2), we give inggbthe growth-rates for bubbles

with F < 12, averaged over all simulations.

5 Conclusions

Using the Surface Evolver, we have studied finite clustersutibles to give information about
the structure of three-dimensional foam and a 3D coarsdaimgThis approach allows us to get
a high level of detail and accuracy of the relevant quasti(surface area, pressure difference)
to get a good insight into how foams evolve. Our calculatddasof the growth law require no
assumption about the curvature being small, and can be foubdbbles with an arbitrary number
of faces.

As the volume ratio between the central bubble and its neigitochanges, we find upper
and lower bounds on the possible number of faces, becaudmubiides deform. This leads us
to conjecture a value for the kissing problem for foams: noertban 32 bubbles can be stably

packed around one other of the same volume.

13
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Figure 6: The difference in the rate of change of volume of bbltel with F faces, calculated
from our simulations using (1), and the value calculate@eting to the analytic formula (2). The
inset shows the values themselves, again next to the anhhgi from which it deviates at small
F. Data is shown for volume ratios &/V = 3(+),1(x),2(*),3(C)) and §M). The data for
bubbles with constant curvatufe) [12], rather than fixed volume, is more scattered, but useful

for low F.
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Although we don't tackle infinite (or, equivalently, periojistructures, we expect that this data
will eventually lead to greater insight into the Kelvin ptein, since we are starting to understand

better what happens for bubbles with between 12 and 16 faces.
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