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Abstract

Candidates to the least perimeter partition of a disk intoN planar connected regions are
calculated forN ≤ 43. A Voronoi construction is used to randomly create the candidates and
then the perimeter of each is found with the Surface Evolver.Formulae for the perimeter
and number of peripheral regions are given, and the candidates classified according to their
topology. The simulation technique also provides improvedcandidates to the unconstrained
problem of finding the least perimeter arrangement ofN planar regions.

1 Introduction

The surface energy of a two-dimensional foam is simply its perimeter multiplied by surface ten-
sion [1]. A foam attains a local minimum of this perimeter, subject to the constraint of fixed
bubble volumes. Here, we seek the two-dimensional arrangement of bubbles that gives the global
minimum.

Hales [2] proved the honeycomb conjecture: that the honeycomb is the least perimeter division
of the (infinite) plane into cells (bubbles) of equal areaA. Each cell has six edges of lengthL,
with A andL related byA = 3

√
3L2/2. Since each edge is shared between two cells, each cell

contributes a perimeter of 3L. Thus the total perimeter isEhex= 3NL, whereN is the number of
cells.

For finite collections of cells, there are proofs (see [3]) that a circle provides the least perimeter
of a single cell, the familiar double bubble is the least perimeter arrangement of two cells, and that
the “obvious” candidate forN = 3 is optimal [4]. ForN > 3, estimates of the optimal configuration
and the associated perimeter have been given forN ≤ 15 [5, 6], and extended toN ≤ 22 [7], and
thenN up to 42 [8]. The candidates show, in general, a more or less rounded overall shape with
mostly hexagonal cells in the centre (see figure 1a).

Perimeter bounds for the finite case have been given by Heppesand Morgan [9]. These are
asymptotically of the form

E/L = 3N+k
√

N, (1)

for some numberk. The first term is the usual contribution of hexagonal cells and the
√

N term is
a correction due to the peripheral cells. In fitting this formto the results of simulations, the second
term must also account for deviations of hexagons from regularity and any non-hexagonal cells in
the centre, or bulk, of the cluster.
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Simulations by Cox and Graner [10] showed that forN up to 10,000 the trade-off between
reducing the length of the periphery of the cluster and attaining regular hexagons in the bulk is
“won” by the bulk. That is, the perimeterE of the cluster is minimized by a cluster that has a
periphery that is itself hexagonal, allowing the bulk to consist only of regular hexagons, rather
than rounding the cluster to reduce the length of the periphery.

In this paper we impose the periphery of the cluster to be circular, determine candidates to the
least perimeter arrangement, and examine the influence of the periphery in creating deviations of
the cluster from the regular hexagonal lattice. That is, we seek the least perimeter partition of a
circular disk intoN cells of equal area, equivalent to the energetic groundstate for N monodis-
perse bubbles or the optimal packing of equal-area objects in a disk. We assume that each cell is
connected, that is, it is not split into a number of components. This seems reasonable, but remains
unproven forN > 3; indeed, it is one of the main stumbling blocks to proving that a given candidate
is optimal. We examine values ofN up to 43 (beyond which the simulation technique performs
less well since there are many more possible topologies to explore) and record the least perimeter,
the number of peripheral cellsNp and the topology (number of sides) of the cells in the bulk of the
cluster.

Topological defects are classified using the idea ofcharge [11]. Bulk cells have a charge
q = 6− n, wheren is the number of sides. Thus hexagons have zero charge. In thesame way,
peripheral cells have chargeq = 5− n. The total charge of the cluster is then∑q = 6. In the
free cluster case, positive and negative charges tend to be associated, and the remaining positive
charges are usually well-spaced around the periphery of thecluster [8].

The aim of this paper is partly to inspire the derivation of exact results, as in the recent work of
Cañete and Ritore [12] forN = 3. Tomonaga [13] assumed connectedness, and explored candidate
solutions forN = 2 to 5 and Bleicher [14] gave conjectured minimizers forN≤ 6, although neither
found the optimal candidate forN = 5 and 6: improved estimates can be found in [12] and agree
with the present study.

In addition, in the same way that the minimal arrangement of afree cluster of cells appears to
predict the arrangement of retinal cells inDrosophila[15], the solutions found here may provide
information about other biological structures, such as thearrangement of seeds in a flower [16, 17].

The structure of perimeter-minimizing bubble clusters is at least locally well defined [14].
Perimeter minimization implies Plateau’s rules [18]: three and only three edges meet at a point at
120◦ [19]. The Laplace Law relating pressure difference and curvatures gives the further condition
that each edge is a circular arc. These conditions are augmented in the present case by the rule that
edges meet the bounding circular wall at 90◦. Topological relationships between peripheral and
bulk cells in a confined two-dimensional foam are derived in [20] in the context of diffusion-driven
coarsening.

2 Method

The value of surface tension, which is equal for all internaledges, is taken as one. Candidates to the
minimal arrangement of cells are created as follows. 250 points are scattered at random in a unit
square and their Voronoi partition calculated. PeripheralVoronoi cells are successively removed
until N cells remain in the centre of the domain. This structure is imported into the Surface Evolver
[21], which we use in circular arc mode. The cell areas are setto the valueA = 3

√
3/2 and the

tension of peripheral edges is set to 102 to approximate the circular constraint. (This level of
description is sufficient to distinguish the least perimeter candidate.) The equilibrium perimeter
E of the candidate configuration is then calculated, excluding the contribution of the outer wall
of lengthEw/L = 2

√
πNA, allowing T1 neighbour switching events to occur when shortedges
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result. Up to 25 successive attempts at finding a lower perimeter structure “close” to this one
are performed by initiating a T1 event on the shortest edge inthe cluster and calculating the new
equilibrium.

This complete procedure is repeated up to two thousand timesfor eachN, and the least-
perimeter candidate recorded in each case. Finally, an exact circular constraint is imposed upon
this candidate and the perimeter recorded precisely.

We find this method to be an improvement on the one used by Cox etal. [8]. In that work candi-
dates were generated from a starting topology consisting ofhexagons. In each “shuffling” step the
cluster was randomly perturbed and a new configuration created by performing a T1 change on the
shortest edge. A method of this kind evolves very slowly since only local changes are made in each
step, and the algorithm easily becomes stuck in a local minimum. With the present method, we
introduce a a balance between this type of shuffling step and starting again from a new, randomly
generated, structure, albeit one without hexagonal structure. This allows a wider exploration of
possible candidates, with improved results as discussed below.

3 Simulation results

Candidates to the minimum perimeter partition of a disk intoN regions of areaA = 3
√

3/2 are
shown in figures 2 and 3 and recorded in Table 1. The values of conjectured optimal perimeter and
the corresponding number of peripheral cells are shown in figure 4.

The perimeter increases monotonically withN. A fit of equation (1) to the perimeter has
k = −2.336±0.158. The addition of the peripheral termEw gives a value ofk = 3.378, slightly
greater than the asymptotic value of 3.097 for free clusters[8, 9], indicating that the cells are more
deformed in this constrained case.

The number of peripheral cellsNp does not increase monotonically, although, as for the free
case, it scales roughly as

√
N [8]. A fit to the formNp = −3+kp

√
N haskp = 3.407±0.459.

Turning now to the actual configuration of cells, we note a number of symmetric patterns. The
defect-free cases ofN = 7,19,37, . . . ,1+ 3i(i + 1), i ∈ N, have a 6-fold, rotationally symmetric,
structure consisting of nested rings of hexagons.

Similarly, some configurations attain rotational symmetryby having a single defect at the very
centre of the cluster and hexagons elsewhere in the bulk. Five-fold rotational symmetry is exhibited
for N = 6,16,31, and may continue to be found forN of the form 1+5i(i +1)/2, i ∈ N. Seven-fold
symmetry is found forN = 8 and 22, but surprisingly does not hold forN = 43, the next in the
series (this symmetric cluster hasE/L = 114.006688, 0.2% greater than the best candidate).

Of the other candidates, all of those forN ≤ 24 show reflective symmetry as doN = 27,43 and
all evenN in the range 30≤ N ≤ 40.

It is therefore clear that the least perimeter structure does not always have only hexagons in the
bulk, although in addition to the six-fold rotationally symmetric cases above,N = 10,12,14,24,27,30
and 40 do. Figure 1 emphasises that this is not because such candidates were not checked for each
N. Instead, in many cases the perimeter is reduced below that of the hexagonal candidate with a
five- or seven-sided defect in the bulk of the cluster. Seven-sided cells usually neighboured by at
least one five-sided cell, and no more than one seven-sided cell is ever present.

How do the candidates compare with those for the free clusterproblem? The configurations
found in [8], despite being rounded at lowN, do not all show the same topology as the candidates
found here. We make a comparison by relaxing the boundary constraint from each candidate in
figures 2 and 3, to give a free cluster with the same topology, as in figure 1d). The difference in
perimeter between these and the candidates found in [8] is shown in figure 5. In most cases this
difference is zero, indicating that the same topology solves both the least perimeter partition of the
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N E/L Np Bulk topology
2∗ 2.572148 2
3∗ 4.725338 3
4 7.176379 4
5 9.829442 5
6 12.043888 5 51

7 14.436146 6 61

8 17.097664 7 71

9 19.956447 7 5161

10 22.537405 8 62

11 25.150735 8 5162

12 27.721101 9 63

13 30.503419 9 5163

14 33.167561 10 64

15 35.963480 10 526271

16 38.559205 10 5165
17 41.292347 11 516471

18 43.910651 11 5166
19 46.484518 12 67

20 49.468519 13 6671

21 52.206625 13 516671

22 55.016341 14 6771

N E/L Np Bulk topology
23 57.842433 13 5169

24 60.544438 14 610

25 63.359499 14 516971

26 66.089961 14 51611

27 68.757748 15 612

28 71.723683 15 5161171

29 74.485437 15 51613

30 77.216169 16 614

31 80.149221 15 51615
32 82.934537 16 5161471

33 85.689991 16 5261471

34 88.486652 17 5161571

35 91.207126 17 5161671

36 93.888640 17 51618

37 96.587085 18 619

38 99.639955 19 61871

39 102.529436 19 5161871

40 105.492341 19 621

41 108.271113 19 5162071

42 111.149408 18 52622

43 113.851517 19 51623

Table 1: PerimeterE/L, the numberNp of peripheral cells and the bulk topology of the minimal
candidates found here. The topology is recorded in the form 5l6m7n, indicatingl 5-sided internal
cells,m6-sided internal cells etc. Note that the topology of the periphery can be inferred from this:
the number of 4-sided cells on the periphery is 6− l + n, the remainder are 5-sided. Asterisked
values were calculated analytically.
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disk and the least perimeter free arrangement of cells. Positive differences indicate that the least
perimeter for a cluster constrained within a circular boundary is found by changing the topology.
In four cases,N = 23,29,35 and 41 we find improved candidates to the free cluster problem; these
are shown in figure 6.

4 Conclusion

We have found candidates to the minimal perimeter of partitions of a circular disk intoN regions
of equal area. Equivalently, we have found the global energetic groundstate of a two-dimensional
foam confined within a circular boundary. This extends previous work on finite, unbounded, clus-
ters.

The perimeter of the minimal candidates is well-described by the formulaE/L = 3N−2.336
√

N
and the number of peripheral cells byNp =−3+3.407

√
N. Thus the “excess” perimeterE/L−3N

scales linearly withNp.
Classifying the structures found by their symmetry is an attractive concept but, as the optimal

solution forN = 43 shows, frustrating. Few general results emerge from the data, except that only
five, six and seven-sided cells are observed. In only one instance (N = 22) is a seven-sided cell not
adjacent to a five-sided one. Even the defect-free values ofN of the form 1+3i(i +1), i ∈ N will
not be perimeter-minimising at largeN since their overall hexagonal shape will be penalised and
improved upon by rounding the corners, as figure 7 shows.

The simulation technique used here is an improvement on previous attempts [8], as indicated by
the new candidates proposed for the free cluster problem. However, for eachN, the algorithm, even
though repeated thousands of times, explores only a few hundred different candidates at most. It
remains an open question as to how many candidates actually exist, but it is surely many more than
this for the largest values ofN treated here. To extend such a search to largerN would therefore
require a more sophisticated numerical procedure.

Finally, related problems include the problems of finding the least perimeter partition of a
triangle [14] and a square [13, 14]. This presents an interesting area of further study, and one in
which numerical solutions such as those presented here may be usefully applied.
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a) b) c) d)

Figure 1: Free and constrained candidates forN = 33. Cells with chargeq = +1 are coloured red,
those with charge -1 are yellow. (a) The least perimeter freecluster found in [8], with perimeter
E/L = 116.582537. (b) The cluster in (a) confined within a circle, with bulk topology 616 and
perimeterE/L = 85.805016. (c) The least perimeter cluster obtained, withE/L = 85.689991 and
bulk topology 5261471. Thus a bulk honeycomb structure within a disk is not always optimal. (d)
The least perimeter partition of the disk, from (c), with theboundary relaxed to provide a candidate
to the free cluster problem, in this case with greater perimeterE/L = 116.793811.
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Figure 2: Candidate configurations for the least-perimeterpartition of the disk intoN regions of
equal area for 6≤ N ≤ 25.
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Figure 3: Candidate configurations for the least-perimeterpartition of the disk intoN regions of
equal area for 26≤ N ≤ 43.
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Figure 4: The perimeterE/L and numberNp of peripheral cells of the candidate configurations
shown in figures 2 and 3. Lines are best fits to the forms given inthe text. The short vertical lines
indicate those configurations that have a single negative charge.
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Figure 5: Least perimeter candidates for free clusters are constructed by relaxing the boundary of
the confined clusters in figures 2 and 3. Here, we compare theirperimeter with the candidates found
in [8]. In just over half of the cases the clusters are the same, and several more of the topologies
dictated by the circular constraint have greater perimeterwhen unrestrained. The candidate for
N = 33, illustrated in figure 1c) and d), shows the greatest difference. Negative differences indicate
that four better candidates to the free cluster problem are found, forN = 23,29,35 and 41.
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N=41N=35N=23 N=29

Figure 6: Improved candidates (cf. [8]) to the free cluster problem forN = 23,29,35 and 41 arise
from the confined problem considered here.

a) b)

Figure 7: For largerN, nested rings of hexagons are no longer the least perimeter partition of
the disk. (a) ForN = 217, with i = 8 shells of cells, the perimeter isE/L = 618.636583. (b)
Despite having many more defects, this cluster of 217 cells,although undoubtedly not optimal,
has perimeterE/L = 618.531445.
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