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Abstract: 

Melting snow is generally patchy; upward sensible heat fluxes from patches of 

snow-free ground warm the air and contribute energy for snowmelt. A simple 

model is presented for advection of heat over partial snowcovers and compared 

with measurements of temperature profiles over snow and snow-free ground. Ap- 

proximations for flux and temperature profiles in the internal boundary layers 

over snow patches are used to develop parametrizations for local and average 

surface fluxes into the snow. In comparison with results from the advection 

model for regular patterns of alternating snow patches and snow-free ground, a 

tile model is found to give a good parametrization for average heat fluxes over 

the whole surface but does not match the local fluxes into snow and snow-free 

ground separately; an extended tile model that gives better results is developed 

from the flux profile parametrization. For complex snowcover patterns with a 

fractal distribution of patch sizes, average fluxes are found to be close to those 

obtained for a regular pattern with an effective patch size linearly related to the 

average patch size of the complex pattern. 

INTRODUCTION 

The initial melt of a homogeneous snowcover can be driven by radiation or large- 

scale advection of warm air, but snow inevitably becomes patchy as it melts. 

Snow-free ground has a much lower albedo than snow, and is not limited to 

a maximum temperature of 0•‹C: so it can become substantially warmer than 

the surrounding snow, and upward fluxes of sensible heat from the snow-free 

ground warm the air. As this warmed air flows over a snow patch, downward 

heat fluxes cool the air and warm the snow; heat is thus advected from snow-free 

ground to snow and provides an additional source of energy for melt. An internal 



boundary layer (IBL) in which air temperatures and heat fluxes differ from those 

at  the upwind edge of the snow patch develops and grows in depth with downwind 

distance. Vertical temperature profiles and IBL growth rates have been measured 

over snow patches by Takahara and Higuchi (1985) and Granger et al. (2005). 

Advection of heat to snow patches has been investigated previously using high- 

resolution boundary-layer models that solve the Navier-Stokes equations with the 

Boussinesq approximation and some flux closure (Weisman 1977, Liston 1995, Es- 

sery 1997). Such models are computationally expensive and prone to numerical 

instabilities, limiting their application to simple snowcover geometries and nar- 

row parameter ranges. As an alternative, a highly simplified advection model is 

presented here. The model is first evaluated in comparison with measurements 

of temperature profiles and IBL growth rates from Granger et al. (2005). 

Simple methods for calculating the advection of heat to patchy snowcovers 

are required for practical applications. From measurements of temperatures over 

a patchy tundra snowcover, Marsh and Pomeroy (1996) developed an empirical 

index for the efficiency with which heat fluxes from snow-free ground contribute to 

fluxes into snow; this has been used to represent advection in the VIC hydrological 

model (Cherkauer and Lettenmaier 2003) and the snowmelt model of Pohl and 

Marsh (2005). Granger et al. (2002) suggested a method based on integration 

of the horizontal advection of heat through the depth of the IBL at  the upwind 

and downwind edges of a snow patch to find the net advection. 

For large-scale atmospheric and hydrological models, efficient parametriza- 

tions are required to calculate average surface fluxes on the catchment or grid 

scales on which these models are applied. Patterns of fractional snowcover are 

not explicitly represented on subgrid scales. Gridbox-average surface fluxes have 

to be calculated using measured air temperatures or gridbox-average air tem- 

peratures on the lowest model level, which is typically 10 to 20 m above the 



surface in a global atmospheric model. Although the standard assumption of a 

constant-flux layer fails for heterogeneous surfaces, the same equations used to 

calculate fluxes over homogeneous surfaces can be used with effective parame- 

ters for heterogeneous surfaces if there exists a height range above the 'blending 

height' at which horizontal variations in temperature fall below some threshold 

that is still sufficiently close to the surface that the average vertical flux is close 

to the average surface flux (Mahrt 2000). A more direct method for calculat- 

ing fluxes over heterogeneous surfaces is to gather distinct surface types within 

a gridbox into homogeneous 'tiles' and calculate fluxes separately over each tile 

(Avissar and Pielke 1989). Using this method to calculate local surface fluxes in 

addition to average fluxes relies on the assumption that flux perturbations, which 

extend higher than temperature perturbations, will still be close to their surface 

values at the temperature blending height (Wood and Mason 1991). For surfaces 

with small horizontal variations in heat flux, tile models have been found to give 

good estimates of the local fluxes produced by boundary-layer models (Wood and 

Mason 1991, Essery 1997). Clearly, this will not be the case for a surface with 

regions of both upwards and downwards flux, as often occurs for partial snow- 

cover. If there is a downwards flux into the snow but the average flux over an area 

of partial snowcover is upwards, there will be a temperature maximum at some 

height above the snow. The heat flux thus changes direction from downwards at 

the surface to upwards above the temperature maximum, and the local flux at 

the blending height is far from its surface value. In comparison with simulations 

for partial snowcover, Liston (1995) found that a tile model could give a good 

estimate of average heat fluxes, but Essery (1997) found that the separate fluxes 

over snow and snow-free ground were not well represented. For an atmospheric 

model, only gridbox-average fluxes between the surface and the atmosphere are 

required as boundary conditions. If fluxes from distinct surface types within the 



surface are not accurately represented, however, evolving errors in surface state 

variables such as soil moisture or fractional snowcover will lead to evolving errors 

in average fluxes. 

In this paper, the surface flux parametrization suggested by Granger et al. 

(2002), which is based on integration of the energy conservation equation, is de- 

veloped and supplemented by a second parametrization based on an assumed 

form for the flux profile within an IBL and integration of the flux-gradient re- 

lationship; both parametrizations are evaluated in comparison with results from 

the advection model for isolated snow patches. For regular patterns of alternating 

snow patches and snow-free patches, a tile model is again found to give a good 

simulation of average fluxes but a poor simulation of local fluxes in comparison 

with the advection model. An extended tile model, based on the second integral 

parametrization, is found to give better results. Finally, the advection model is 

used to simulate fluxes over more realistic complex snowcover patterns, and the 

resulting flux distributions are related to results from simulations with regular 

snowcover pat terns. 

MODEL DESCRIPTION 

A crucial simplification in the model used here is that horizontal adjustments in 

windspeed over heterogeneous surfaccs are neglected, so the model is not suitable 

for application to large contrasts in surface roughness or heterogeneity on length 

scales large enough for the generation of mesoscale circulations. The windspeed 

is assumed to follow a logarithmic profile 

where u, is a velocity scale, z is the height above the surface, zo is the surface 

roughness length and K is the von Karman constant. Energy conservation then 



gives the downwind evolution of potential temperature T with distance x as 

where p and cp are the density and heat capacity of air and H is the vertical heat 

flux, taken to be positive when directed downwards. The heat flux is related to 

vertical temperature gradients through 

This first-order closure is used for efficiency, although higher-order schemes may 

be more appropriate for non-equilibrium conditions near changes in surface char- 

acteristics (Rao et al. 1974, Garratt 1992). The influence of atmospheric stability 

on eddy diffusivities is represented by the stability function 

[l - 16(x + zo)  / L ] ~ ' / ~  L < 0 (unstable) 
W L )  = (4) 

1 + 5(z + zo)/L L > 0 (stable) 

where 

is the Monin-Obukhov length and g is the gravitational acceleration. 

Surface flux Ho is obtained by integrating Equation (3) over z from 0 to the 

height zl of the lowest model level, assuming a constant flux. This gives 

- 1 

Ho = pc,r;u,(Tl - To) [In (y) - $ ($)I 
where To is the surface temperature, TI is the temperature at zl and 

An implicit numerical scheme is used to solve Equation (2) on a regular grid 

with a 10 cm spacing in the horizontal and 2 cm in the vertical, extending up to 



a fixed-temperature boundary condition at a height of 4 m. Greater numerical 

efficiency could be achieved by using a stretched vertical grid. 

ADVECTION OVER AN ISOLATED SNOW PATCH 

Temperature profiles and IBL growth 

Granger et al. (2005) describe a system for making simultaneous measure- 

ments of temperature profiles above snow and snow-free ground. The system 

consists of two masts; each with a vertical array of fine-wire thermocouples. One 

mast is placed on snow-free ground and the other is placed on a snow patch. 

Figure 1 shows temperature profiles measured above bare soil with an estimated 

roughness length of 2 mm (crosses) and 2.5 m downwind from the edge of a snow 

patch (diamonds); the windspeed at a height of 2 m was 6.3 ms-l. 

If there is a sufficient fetch of snow-free ground for a constant-flux layer to have 

developed to some arbitrary height, inverting Equation (6) gives a temperature 

profile 

for temperature Tg and heat flux H, on the snow-free surface. Fitting Equation 

(8), as shown by the dashed line on Figure 1, gives Tg = 11.3"C and H, = - 

85 Wm-2. It should be noted, however, that the surfacc temperature measured 

with an IR thermometer was 8.9"C; such a discrepancy could result from heating 

of the air by vegetation elements, spatial variations in surfacc temperature due 

to variations in the wetness of the soil or the mismatch between radiative and 

aerodynamic surface temperatures. This is not considered further, as surface 

temperatures are not explicitly modelled here. 

Equation (8) is used as an inflow boundary condition for simulations of advec- 

tion over isolated snow patches. As air flows over snow at temperature To < T,; a 

downward heat flux into the snow cools the air. Assuming that the snow surface 



temperature was O•‹C, the solid line on Figure 1 shows that taking a snow surface 

roughness length of 0.2 mm in the model gives a good match to the measured 

profile. 

The difference between the profiles near the ground in Figure 1 shows that 

there was an IBL over the snow patch. One possible definition for the depth of 

the developing IBL is the height zb such that,  given some t, 

for z > xb. Figure 2 shows IBL depths calculated from temperature profiles 

measured at  various distances from the upwind edges of snow patches in fields of 

different roughness (Granger et al. 2005). The lines on Figure 2 were obtained 

from modelled temperature profiles with 6 = 0.05. 

Many theoretical and experimental studies (reviewed by Brutsaert 1982) have 

found that IBL growth downwind of a change in surface characteristics can be 

approximated by a power law 

b xb(x) = ex . (10) 

The use of logarithmic axes in Figure 2 emphasises that power laws give good fits 

to both the measured and modelled IBL depths. Granger et al. (2005) present 

results from seven sets of experiments grouped into three classes according to the 

roughness of the snow-free ground, showing that the rate of IBL growth increases 

with increasing upwind roughness and increasing temperature contrasts. The 

simple model used here, however, allows investigation of a far wider range of 

surface and atmospheric conditions. 

Some features of IBL growth can be determined by a scaling analysis of Equa- 

tions ( I ) ,  (2) and (3). Ignoring the influences of atmospheric stability by setting 

4 = 1 and introducing the dimensionless coordinates Z = (z+zo)/zo and x = x/zO 



gives 

which is independent of windspeed and surface roughness. IBL growth in the 

dimensionless coordinates is assumed to follow 

with b' and c1 independent of windspeed and surface roughness, giving 

Comparing with Equation ( lo) ,  this suggests that b and c should be independent 

of windspeed, b should be independent of surface roughness, and c should scale as 

assuming that b < 1, this gives an increasing IBL growth rate for increasing 

roughness. 

Figure 3 shows how b and c obtained from simulations vary with surface rough- 

ness xo, 2 m windspeed U2, surface tempemture difference Tg - To and upwind 

stability measured by H,; as each parameter is varied in turn, the others are held 

at  constant values of zo = 2 mm, U2 = 4 ms-l, Tg - To = 5•‹C and H, = -50 

W I I - ~ .  Figure 3(a) also shows results derived from measured profiles by Granger 

et al. (2005) for three roughness classes. Results in Figures 3 (a) and (b) broadly 

confirm the conclusions of the scaling arguments above. For variations in upwind 

surface roughness, c increases approximately as ~ 0 0 . ~ ;  but b shows a weak decrease 

with increasing roughness in both simulations and observations. The coefficients 

are nearly independent of windspeed, except at  low windspeeds for which the IBL 

depth becomes undefined; with no advection, there is no IBL growth. In calm 

conditions, thermal gradients can induce "snow breeze" circulations (Segal et al. 

1991, Taylor et al. 1998), but this behaviour is not reproduced by the model. 

Figures 3 (c) and (d) include results for both positive and negative values of 



T, -To and H, to cover the cases of isolated snow patches and isolated snow-free 

patches. The coefficients are approximately linear functions of H,, with b and 

c both decreasing as the upwind temperature profile is made progressively more 

unstable. For fixed H,, there is no IBL growth when there is no temperature 

difference, but c increases with increasing magnitudes of the temperature differ- 

ence. Both b and c take slightly larger values for the unstable case of cold air 

being advected over a warm surface (T, - To < 0) than the reverse. 

Because the diffusion coefficient in Equation (3) increases with height, flux 

perturbations extend higher above the surface than temperature perturbations 

(Philip 1996). Although flux profiles are not available from the observations of 

Granger et al. (2005), IBL heights can be determined from simulated flux profiles 

through the condition 

so that the difference between upwind and downwind fluxes is less than a fraction 

E of the surface flux difference for heights greater than xb. This gives IBL heights 

that are greater than those determined from temperature profiles but can still be 

approximated by a power law. Flux measurements over heterogeneous surfaces 

either have to be made above this height to obtain representative area-average 

fluxes, or a footprint analysis has to be used to interpret the results (Schmid 

1997). 

Parametrization of surface fluxes 

A boundary-layer integration method for parametrizing the advected heat flux 

into a snow patch was suggested by Granger et al. (2002). Integrating Equation 

(2) over x from 0 to patch length X and over z from 0 to IBL height xb gives 



Here, Ho(x) and H(x, zb) are local fluxes at the surface and the top of the IBL; 

T,(z) and T(X,  z) are temperature profiles above the upwind and downwind edges 

of the patch. If zb is taken to be the flux IBL height, rather than the temperature 

IBL height used by Granger et al. (2002), Equation (15) gives 

where (Ho) is the average heat flux into the snow and A S  is the difference in 

horizontal transport of heat between the upwind and downwind edges of the 

patch due to cooling of the air. 

To evaluate the right-hand side of Equation (15), the temperature profile at 

the downwind edge of the snow patch has to be known. Simulated flux and 

temperature profiles at the downwind edge of a 10 m snow patch are shown 

by solid lines on Figures 4 (a) and (b), and crosses on Figure 4(b) show the 

equilibrium temperature profile for a constant-flux layer. The te~nperature and 

heat flux profiles are only in equilibrium with the snow in a shallow layer near the 

surface. Above this equilibrium layer, the temperature profile adjusts towards the 

upwind profile at the top of the IBL and cannot be described by a constant-flux 

profile. Instead, suppose that the flux profile can be approximated by 

This profile is chosen to have the bourldary conditions H(0) = Ho, H'(0) = 0 

and H(z)  + H, as z + oo. Choosing a as the solution of 

the profile also satisfies the IBL condition Equation (14); for E = 0.05, this gives 

a = 4.74. Integrating Eq. (3) using Eq. (17) gives the temperature profile as 

E) exp (-:)I d z .  (19) 
Zb 



Stability has only a small influence for a shallow IBL and moderate stability; 

simplifying Equation (19) by setting 4=1 gives 

where 

Equation (21) can be expressed in terms of exponential integrals, for which ap- 

proximations are available (Abramowitz and Stegun 1976): or evaluated numeri- 

cally. Ho is found by evaluating Equation (20) for z = zb and matching T(zb) to 

the known temperature Tb = Tu(zb) at the top of the IBL, to give 

This gives the local flux into the snow surface at a distance x from the upwind 

edge such that the IBL height is q,. Using a power law approximation for xb, 

Equation (22) is compared with simulated fluxes in Figure 4 (c). To find the 

average heat flux into a snow patch, Equation (22) can be integrated over x or 

Equation (20) can be used in a numerical integration of Equation (15). Figure 4 

(d) compares Equation (15) with average simulated fluxes for patches of varying 

size. Parametrization errors in comparison with simulated average and local 

fluxes are greatest for small patches or close to the patch edge, decreasing to less 

than 10% for x and X greater than 0.5 m. 

ADVECTION OVER PARTIAL SNOWCOVER 

In the preceding section, it was assumed that the boundary layer was fully de- 

veloped upwind of the snow patch and had a temperature profile in equilibrium 

with the surface heat flux. Although the early or late melt stages of a snow- 

cover may be characterized by isolated snow-free patches surrounded by snow or 



isolated late-lying snow patches, this will not generally be the case for a partial 

snowcover with alternating patches of snow and snow-free ground. Advection 

over partial snowcover is considered below, first for regular snowcover patterns 

and then for complex patterns. The advection model is now run with periodic 

horizontal boundary conditions rather than an inflow boundary condition 

Regular snowcover patterns 

Previous modelling studies (Liston 1995, Essery 1997) have considered regular 

snowcover patterns, with snow patches of length X covering a fraction f of the 

surface. Figure 5 shows simulated surface fluxes for f = 0.5 and X = 5 m (dashed 

line) or 10 m (solid line). Heat fluxes into the snow are greatest at the upwind 

edges of the snow patches and decline as the air is cooled travelling over the 

patches. Because there are smaller upwind snow-free fetches, the maximum heat 

flux into the snow is smaller for smaller length scales: 155 Wm-2 for X = 5 m 

and 161 Wm-2 for X = 10 m in Figure 5. Because there are more snow-free to 

snow transitions, however, the average flux into the snow is greater: 62 Wm-2 

for X = 5 m and 53 Wm-2 for X = 10 m. 

As found by Weisman (1977) for simulations of heat fluxes into isolated snow 

patches, the flux at a distance x from the upwind edge of each snow patch in a 

regular pattern can be approximated by a power law 

Parameters obtained by fitting Equation (23) to simulations with 10 m snow 

patches, varying snow-free fetches and two different roughness lengths are shown 

in Figure 6. For a regular snowcover pattern, the snow-free fetch is related to the 

snow patch size and the snowcover fraction through 



The coefficient d increases rapidly with increasing fetch and is a linear function of 

zo while the exponent n remains within a fairly narrow range and is less sensitive 

to xo; both d and n approach constant values for large fetches. 

Marsh and Pomeroy (1996) introduced the concept of the efficiency with which 

heat flux Hbare from snow-free ground contributes to the flux H,,,, into snow, 

such that 

where Hzow is the heat flux at the downwind edge of a large snow patch with 

negligible advection and F, is the advection efficiency; this is expected to ap- 

proach 1 for near-complete snowcover and 0 for very small snowcover fractions. 

Advection efficiencies for fluxes calculated using bulk formulae and temperature 

measurements over snow and snow-free areas at a tundra site in 1993 (Marsh 

et al. 1997) and 1996 (Neumann and Marsh 1998) are shown in Figure 7; an 

approximately exponential decrease in advection efficiency with increasing snow- 

free area is observed. Figure 7 also shows advection efficiencies calculated from 

simulations with 20 m and 200 m domain sizes; heat is more efficiently advected 

for snowcovers with smaller patch sizes. The observations show a sharper de- 

crease in efficiency with decreasing snowcover than the simulations do, but there 

is a great deal of scatter in the observations. It should also be noted that air tem- 

peratures at the measurement height may themselves be influcnccd by advection, 

reducing the accuracy of fluxes calculate from bulk formulae. 

Tile models are often used to calculate average fluxes over heterogeneous sur- 

faces, calculating separate fluxes for distinct surface types using the air tempera- 

ture on a reference level at or above the blending height. For snow patches with 

temperature T,,,, and snow-free patches with temperature Tbare, a tile model 

based on Equation (6) would calculate average surface heat fluxes for snow and 



snow-free ground as 

and 

where xref is set to the temperature blending height and Tref is the temperature 

at that height. The domain-average surface flux is then given by 

Tile model predictions are compared with results from simulations with varying 

snow patch sizes and fractions in Figures 8 (a) and (b). As found previously, the 

tile model closely matches domain-average fluxes but gives poor estimates of local 

fluxes over snow and snow-free ground separately. Fitting power laws to average 

fluxes from the simulations gives Hsnow % 87X-0.21 and Hbare % to 

very good approximations. 

Although Equation (15) still applies in principal to average surface fluxes over 

patches, the temperature profiles at both the upwind and downwind edges of a 

patch are now unknown a priori, complicating its application. Equation (17), 

however, might provide a parametrization for average flux profiles above distinct 

surface types. Extending Equation (10) to partial snowcover, the height at which 

the fractional difference between average fluxes falls below some threshold can be 

approximated by a function of the form 

and the temperature at that height can be estimated as 



with ( H o )  supplied by the tile model; (To)  is the domain-average surface tem- 

perature. Adapting Equation (22): average fluxes over the snow-covered and 

snow-free fractions are then given by 

and 

Dashed lines on Figures 8 (a) and (b) show that this extended tile model gives 

much closer matches to the simulated fluxes than the tile model did. 

Complex snowcover patterns 

Partial snowcovers do not, of course, consist of regularly spaced snow patches. 

Instead, they have been observed to have fract a1 characteristics. Analysing aerial 

photographs, Shook et al. (1993) found the number of snow patches of area A or 

greater to follow a power-law relationship 

with Dk between 1.2 and 1.8. Similarly, Granger et al. (2002) found a relationship 

between area and length scale X for snow patches, with Dh = 1.25. The number 

of patches with length X or greater thus scales as 

with h = Dk/Dh % 1. 

Shook and Gray (1997) described a method for generating synthetic two- 

dimensional snowcovers with realistic characteristics. Because only patterns of 

snowcover along transects are required here, the simpler method of generating 



patch lengths by sampling random numbers with a distribution given by Equation 

(35) is used. Thirty simulations were performed in 200 m domains with 50% 

snowcover, giving a total of 5200 snow patches. Figure 9 (a) shows the average 

fluxes into snow patches of different sizes in these simulations; vertical bars extend 

to one standard deviation on either side of the averages. In terms of advection 

efficiency, these simulations would plot very close to the upper (short length scale) 

curve in Figure 7. 

Some features of the average fluxes into snow patches of varying sizes in a 

complex pattern can be deduced from results for regular patterns if it is assumed 

that local fluxes can be approximated by Equation (23) with an exponent that is 

independent of patch size. The average flux into patches of a particular size will 

then be a power-law function of the patch length with the same exponent as for a 

regular pattern; the solid line on Figure 9(a) is a power law with an exponent of 

-0.22, very close to the value of -0.21 obtained for regular patterns with the same 

roughness and stability in the preceding section. The variance of the patch fluxes 

will be a decreasing function of patch length because the flux is less sensitive 

to upwind conditions for larger patches; in fact, a logarithmic function of patch 

length (dashed lines) gives a good fit to standard deviations. 

The temperature of the air at the upwind edge of a snow patch is determined 

by additions and subtractions of heat as the air passes over many upwind snow- 

free and snow patches, so it might be expected from the Central Limit Theorem 

that heat fluxes into patches of a particular size will have a normal distribution. 

This is confirmed in Figure 9 (b); solid lines are cumulative distributions for 

simulated heat fluxes over 1 m and 4 m patches and dashed lines are cumula- 

tive normal distributions with the same means and standard deviations as the 

simulated distributions. 

Because the blending height is dominated by large patches (Philip 1996) but 



the average flux is dominated by small patches, the blending height over a com- 

plex snowcover does not provide information on average surface fluxes and nei- 

ther the tile model nor the extended tile model can be expected to give a good 

parametrization when driven with temperatures at the blending height. Although 

fractal objects do not have characteristic length scales and the average patch 

length for Equation (35) diverges, an average length X can be calculated for any 

finite transect. Cornparing results from simulations with regular and complex 

patterns, an effective patch length such that 

can be defined. For the simulations considered here, it turns out that the effec- 

tive patch length can be approximated by a linear function Xeff = 11X - 3.2 

for both snow and snow-free patches, as shown by the crosses on Figure 8 (a). 

The parameters of this approximation will depend on surface and atmospheric 

characteristics and need to be further investigated, along with characterizations 

of snowcover geometry and relations to landscape characteristics, to develop a 

robust parametrization for fluxes over partial snowcovers. 

The complex snowcover patterns used here were generated by alternately 

choosing random snow patch lengths and snow-free patch lengths with the same 

distribution. Using diffcrcnt distributions for snow and snow-frcc patches would 

give patterns with different clustering. Patterns with the same snow patch lengths 

but diffcrcnt clustering will give diffcrcnt surfacc fluxes, with average fluxcs into 

snow patches being less for patterns with greater clustering. The degree of clus- 

tering, or 'lacunarity', in a pattern can be measured using a gliding-box algo- 

rithm introduced by Allain and Cloitre (1991). To extend previous studies of the 

snowcover geometry, aerial photographs could be analyzed to investigate their 

lacunarity. This is likely to be strongly influenced by topography and the scale 

under consideration; a transect crossing snow-free ground on south-facing slopes 



and patchy snowcover on north-facing slopes, for example, would have a higher 

lacunarity than a transect confined to a single slope. 

CONCLUSIONS 

Results from the simple advection model presented here compare well with tem- 

perature profiles and internal boundary layer depths measured over snow patches 

in fields of varying roughness. The growth of an internal boundary layer can be 

approximated as a power law of distance downwind from the patch edge; with 

parameters that depend on surface roughness and atmospheric stability. Because 

of variations in vertical heat flux with height in the internal boundary layer, 

standard flux parametrizations that rely on the existence of a constant-flux layer 

below some reference height cannot be used over snow patches. For isolated 

snow patches, however, the flux profile can be approximated by an exponential 

function of height in the internal boundary layer matched to a constant flux 

above; integrating the flux-gradient relationship using this approximation gives 

a parametrization for the local surface flux at some point on a snow patch and 

an approximation for the local temperature profile in the internal boundary layer 

above the snow. The parametrized temperature profile can be used in an in- 

tegration of the horizontal advection of heat through the depth of the internal 

boundary layer at the upwind and downwind edges of a snow patch to estimate 

the average flux into the patch. 

For a partial snowcover of regularly spaced snow patches, surface fluxes can 

be approximated as power-law functions of patch length. A tile model gives good 

estimates of average surface fluxes in comparison with the advection model but 

does not match the fluxes into snow and snow-free patches separately. Applying 

the exponential approximation to average flux profiles in an extended tile model 

gives a much better parametrization of local surface fluxes. 



Complex patterns of snowcover along transects can be generated by sampling 

snow and snow-free patch lengths from statistical distributions based on mea- 

surements of snowcover geometry. Simulations over complex snowcover patterns 

give fluxes with a normal distribution for patches of a particular size; the stan- 

dard deviation and average flux decrease with increasing patch length, and the 

average can be approximated as a power law with the same exponent as for reg- 

ular snowcover patterns. It appears that fluxes into snow and snow-free ground 

for complex patterns can be approximated by those for a regular pattern with 

an effective patch length that is a linear function of the average length for the 

complex pattern. 

Surface temperatures for snow and snow-free ground were specified as model 

parameters here. In reality, surface temperatures are determined by the energy 

balance of the surface and influenced by heterogeneities in characteristics such 

as the albedo and wetness of the surface. Parametrizations for the full energy 

balance over partial snowcovers will be considered in future work. 
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FIGURE CAPTIONS 

Figure 1. Temperature profiles measured over snow-free ground (0) and 2.5 m 

downwind from the edge of a snow patch (+), compared with model results over 

snow-free ground (- - -) and snow (-). 

Figure 2. IBL heights from simulations (lines) and measured temperature pro- 

files grouped according to upwind surface roughness in 0.002 - 0.005 m (+) and 

0.08 - 0.12 m (0) classes. 

Figure 3. Exponent b (-) and coefficient c (- - -) obtained by fitting Equation 

(10) to simulated temperature profiles for variations in (a) upwind surface rough- 

ness; (b) windspeed at  2 m, (c) surface temperature difference and (d) upwind 

surface sensible heat flux. The values marked by crosses for b and diamonds for 

c on (a) were obtained by fitting to measured temperature profiles. 

Figure 4. (a) Heat flux profile with height 10 m downwind from the edge of a 

snow patch. (b) Temperature profile with height 10 m downwind from the edge 

of a snow patch. (c) Surface heat flux at  distance x from the edge of a snow 

patch. (d) Average heat flux into a snow patch of length X. Solid lines are from 

simulations and dashed lines are from parametrizations. Crosses in (a) and (b) 

show a constant-flux layer and the corresponding temperature profile. 

Figure 5. Simulated surface heat fluxes for 50% snowcover in patches of length 

5 m (- - -) and 10 m (-). 

Figure 6. Coefficient d and exponent n in Equation (23) obtained by fitting to 

simulations with 10 m snow patches, varying snow-free fetches and zo = 0.001 m 

(-1 or 0.002 m (- - -). 

Figure 7. Advection efficiency as a function of snowcover fraction estimated 

from measurements over melting tundra snowcovers in 1993 (0)  and 1996 (+) 

and from simulations with domain sizes of 20 m (-) and 200 m (- - -). 

Figure 8. Surface heat fluxes for snow and snow-free ground, and average fluxes, 



for (a) varying snow patch sizes with 50% snowcover and (b) varying snowcover in 

a 20 m domain. Results are shown from the advection model (-), a tile model 

(-  . -) and an extended tile model (- - -). For simulations with complex snowcover 

patterns, fluxes (+) are plotted against an effective patch size XeR = 11X - 3.2 

in (a). 

Figure 9. (a) Average heat fluxes into snow patches (0)  from simulations, with 

vertical bars extending to plus and minus one standard deviation. The solid line 

is a power law and the dashed lines are logarithmic fits to the standard deviation. 

(b) Cumulative distributions of average fluxes into 1 m and 4 m snow patches 

(-), compared with cumulative normal distributions (- - -). 



Figure 1. 

Temperature profiles measured over snow-free ground (0) and 2.5 m downwind 

from the edge of a snow patch (+), compared with model results over snow-free 

ground (- - -) and snow (---). 



Figure 2. 

IBL heights from simulations (lines) and measured temperature profiles grouped 

according to upwind surface roughness in 0.002 - 0.005 m (+) and 0.08 - 0.12 m 

(0)  classes. 
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Figure 3. 

Exponent b (---) and coefficient c (- - -) obtained by fitting Equation (10) to 

simulated temperature profiles for variations in (a) upwind surface roughness, 

(b) windspeed at 2 m, (c) surface temperature difference and (d) upwind surface 

sensible heat flux. The values marked by crosses for b and diamonds for c on (a) 

were obtained by fitting to measured temperature profiles. 



Figure 4. 

(a) Heat flux profile with height 10 m downwind from the edge of a snow patch. 

(b) Temperature profile with height 10 m downwind from the edge of a snow 

patch. (c) Surface heat flux at distance x from the edge of a snow patch. (d) 

Average heat flux into a snow patch of length X. Solid lines are from simula- 

tions and dashed lines are from parametrizations. Crosses in (a) and (b) show a 

constant-flux layer and the corresponding temperature profile. 



Figure 5. 

Simulated surface heat fluxes for 50% snowcover in patches of length 5 m (- - -) 

and 10 m (---) . 



Figure 6. 

Coefficient d and exponent n. in Equation (23) obtained by fitting to simulations 

with 10 m snow patches, varying snow-free fetches and zo = 0.001 m (---) or 

0.002 m (- - -). 



Figure 7. 

Advection efficiency as a function of snowcover fraction estimated from mea- 

surements over melting tundra snowcovers in 1993 (0)  and 1996 (+) and from 

simulations with domain sizes of 20 m (---) and 200 m (- - -). 



Figure 8. 

Surface heat fluxes for snow and snow-free ground, and average fluxes, for (a) 

varying snow patch sizes with 50% snowcover and (b) varying snowcover in a 

20 m domain. Results are shown from the advection model (---), a tile model 

(-  - -) and an extended tile model (- - -). For simulations with complex snowcover 

patterns, fluxes (+) are plotted against an effective patch size XeR = 11X - 3.2 

in (a). 



Figure 9. 

(a) Average heat fluxes into snow patches (0) from simulations, with vertical 

bars extending to plus and minus one standard deviation. The solid line is a 

power law and the dashed lines are logarithmic fits to the standard deviation. 

(b) Cumulative distributions of average fluxes into 1 m and 4 m snow patches 

(---), compared with cumulative normal distributions (- - -). 


