
Aberystwyth University

Can Object (Instance) Diagrams Help First Year Students Understand Program
Behaviour?
Ratcliffe, Mark	Bartley; Thomas, Lynda

Publication date:
2004

Citation for published version (APA):
Ratcliffe, M., & Thomas, L. (2004). Can Object (Instance) Diagrams Help First Year Students Understand
Program Behaviour?.

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 18. Apr. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aberystwyth Research Portal

https://core.ac.uk/display/288842952?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://pure.aber.ac.uk/portal/en/persons/lynda-thomas(11e07165-8c91-4b14-8ce5-33c4975cacf3).html
https://pure.aber.ac.uk/portal/en/publications/can-object-instance-diagrams-help-first-year-students-understand-program-behaviour(b428b759-b124-4c6b-95c3-c2c4df494d51).html
https://pure.aber.ac.uk/portal/en/publications/can-object-instance-diagrams-help-first-year-students-understand-program-behaviour(b428b759-b124-4c6b-95c3-c2c4df494d51).html

Can Object (Instance) Diagrams Help First Year
Students Understand Program Behaviour?

Lynda Thomas, Mark Ratcliffe, Benjy Thomasson

Department of Computer Science, University of Wales, Aberystwyth SY23 1BJ, UK
{ltt,mbr,bjt98}@aber.ac.uk

Abstract. This paper investigates whether first year programming students can
be helped to understand program behaviour through the use of Object (Instance)
diagrams. Students were introduced to this diagramming technique as a way of
visualising program behaviour and then given questions that tested their under-
standing of object referencing. It appears that drawing their own diagramsis a
strategy applied by more successful students. Attempts to encourage all students
to use this technique through scaffolding with partially completed diagrams
failed however. Weaker students did not appear to find that the partially com-
pleted diagrams helped their understanding or go on to use the technique them-
selves.

1 Introduction

There seems to be a general agreement amongst CS educators that many of our stu-
dents have problems in mastering programming. One of the manifestations of lack of
understanding of program behaviour, is that many students do not seem to be able to
trace code. In particular, some students do not seem to be able to themselves produce
a diagram that demonstrates an understanding of object references, which as has been
pointed out, is a fundamental concept in learning Object-oriented programming [1].

In order to understand a program’s behaviour it is necessary for the programmer to
have a model of the computer that will execute it. This ‘notional machine’ provides a
“foundation for understanding the behaviour of running programs” [2].

In the introductory programming sequence in Aberystwyth, we demonstrate pro-
gram behaviour in lectures and tutorials mainly by drawing pictures of variables and
what they reference, as in Figure 1. These diagrams represent a rough UML Object
(Instance) diagram [3] - essentially providing a snapshot of the objects in a system at
some point in program execution. They are a diagrammatic representation of the ‘no-
tional machine’ that can then be mentally animated to observe the changes in values as
the code executes. Students have had quite a bit of practice in creating these diagrams.

One problem we have observed is that when students might appropriately use this
technique themselves (eg. debugging their own programs), weaker students fail to do
so. We have found that these students may be impatient when the instructor resorts to
drawing a diagram, then surprised that the approach works. Even in the more re-
stricted situation of a test that asks the students to trace out what happens when just a

few lines of code are executed, as in Figure 1, scratch sheets are often returned blank.
In a previous investigation we discovered that only 36% of the sheets were returned
with any kind of ‘working out’.

2 Background, Questions and Results

In a previous Diagrams conference, Hegarty and Narayanan [4] outlined a cognitive
model of understanding dynamic systems that supposes that the viewer: decomposes
the system into simpler components; constructs a static model by making representa-
tional connections to prior knowledge and other components; integrates information
between different representations (e.g. text and diagrams); hypothesizes lines of ac-
tion, and finally constructs a dynamic mental model by mental animation.

In addition, they have empirically validated the design guideline that people learn
more from being induced to mentally animate a system before viewing an animation
than by passively viewing the animation. If we examine Object diagrams we can see
that the first two steps outlined in the Hegarty/Narayanan model are essentially the
creation of the basic diagram, and the last three steps involve the actual tracing of the
program code with reference to that diagram. This provides some justification that our
approach of encouraging students to produce Object diagrams for their notional ma-
chine is a reasonable one. We were, however, frustrated that many students did not
produce such diagrams themselves and we wanted to encourage them to do so.

We performed an experiment that sought to answer three research questions about
the use of Object diagrams (see below) The students were divided into a control group
and a group who were given partially completed object diagrams (the Experimental
group). Although these students were not explicitly told to use the diagrams, diagrams
were identified as belonging with particular questions. A follow-up test was also
given. See [5] for a complete report on the experiment.
Is drawing some kind of Object-like diagram correlated with success in solving
multiple-choice tracing questions?There is an indication that the techniqueis used
by higher achieving students. The follow up test did not provide students with dia-

Figure 1: A partially completed Object diagram and related question

person1

Fred

person2
Person person1 =
new Person(“Fred”, “Aber”);

Person person2 =
new Person(“Bill”, “Borth”);

person2 = person1;
person1.setAddress (“Llan”);

What is person2’s address?

Bill

Aber Borth

grams but a higher score was obtained by those beginners who drew their own. This
score came close to statistical significance (p=.07 with one tailed t-test).

Table 1: Correlation between Diagram Use and Performance

Group Follow-up Test Average -on tracing questions

Beginners who do not use diagrams (23) 47%

Beginners who do use diagrams (45) 68%

Does providing students with scaffolding in the form of partially completed
Object diagrams help them correctly answer multiple-choice tracing questions?
It seemed very unlikely that students would NOT do better if they were given partial
diagrams than if we simply give them the code with no help whatsoever. We wanted to
confirm this conjecture but were very surprised by the results. When we initially tested
the experimental group against the control group we discovered that Object diagrams
hardly helped students trace code at all (not significant). When we looked at the
results in a follow-up test, we saw that students who had been given the diagrams on
the first test did slightly (but not significantly)worsethan the control students.

Table 2: Intervention Test Results

Group Test Average
Beginners Control (28) 28%

Beginners Experimental (40) 36%

In light of this result it was not surprising that the answer to our third research
question:Do students who have been provided with this scaffolding continue to
use it in such multiple-choice questions?was ‘no’. Since the technique was not
‘useful’ why would students continue to use it?

We are still pondering the results of this experiment. We assumed that we were
providing the students with what seems like a reasonable notional machine, but we
have considered that by producing the diagrams ourselves we have removed the first
two steps of the Hegarty/Narayan cognitive model and thus short-circuited the stu-
dents’ creation of theirownmental model. Research is still on going.

References

1. Holland, S., R. Griffiths and M. Woodman. Avoiding Object Misconceptions. In Proceed-
ings of SIGCSE 1997. ACM Press, 1997.

2. Robins, A., J. Rountree and N. Rountree, Learning and Teaching Programming: A Review
and Discussion, Computer Science Education, Vol. 13, Number 2, and June 2003.

3. Fowler, Martin with Kendall Scott. UML Distilled. Addison Wesley, 2000.
4. Narayanan, N. Hari and Mary Hegarty. Communicating Dynamic Behaviors: Are Interac-

tive Multimedia Presentations Better than Static Mixed-Mode Presentations? in Theory and
Application of Diagrams 2000, Springer Lecture Notes in Artificial Intelligence, 1889.

5. Thomas, L.A., M. Ratcliffe, B. Thomasson, Scaffolding with Object Diagrams in First Year
Programming Classes: Some Unexpected Results, SIGCSE 2004 (to appear).

