
Aberystwyth University

Comparing Student Software Designs Using Semantic Categorization
Eckerdal, Anna; Ratcliffe, Mark	Bartley; McCartney, Robert; Moström, Jan Erik; Zander, Carol

Publication date:
2005

Citation for published version (APA):
Eckerdal, A., Ratcliffe, M., McCartney, R., Moström, J. E., & Zander, C. (2005). Comparing Student Software
Designs Using Semantic Categorization.

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 18. Apr. 2020

Comparing Student Software Designs
Using Semantic Categorization

Anna Eckerdal
Department of Information

Technology
Uppsala University
Uppsala, Sweden

Anna.Eckerdal@it.uu.se

Robert McCartney
Department of Computer
Science and Engineering
University of Connecticut
Storrs, CT 06269 USA

robert@cse.uconn.edu

Jan Erik Moström
Department of Computing

Science
Umeå University

901 87 Umeå, Sweden

jem@cs.umu.se

Mark Ratcliffe
Department of Computer Science

University of Wales
Aberystwyth, Wales

mbr@aber.ac.uk

Carol Zander
Computing & Software Systems
University of Washington, Bothell

Bothell, WA, USA

zander@u.washington.edu

ABSTRACT
This paper examines the problem of studying and comparing
student software designs. We propose semantic categoriza-
tion as a way to organize widely varying data items. We
describe how this was used to organize a particular multi-
national multi-institutional dataset, and discuss the impli-
cations of using such techniques for education researchers.

1. INTRODUCTION
A fundamental goal of computer science programs is that

their graduates be able to design software systems. This
suggests that it is important to assess whether this goal is
being met. There is, however, no agreed-upon method to do
this.

A fairly direct approach would be to analyze student-
produced designs for a common set of tasks. If students are
allowed to design as they wish, however, the data produced
will be very rich and varied, even in controlled settings. Al-
though this is positive in that it can illustrate the range of
approaches that students take, the complexity and variabil-
ity of the designs can make them difficult to analyze and
compare.

In this study, we worked with written designs produced
by near-graduating students under stringent interview con-
ditions. These designs were collected as part of a larger
study, the “Scaffolding” experiment; a multi-national, multi-
institutional project looking at the approach students take
to software design.

The Scaffolding study looked at two different groups of
students, novices and near graduates, as well as their edu-
cators. Its overall focus was developmental—so its questions
were largely comparative, as in “How do beginning students,
finishing students, and educators differ in the way they de-
sign software?”

By contrast, we are specifically interested in students at
the end of their academic training, when they are presum-
ably prepared to work professionally. The overall question
is: Can students near graduation design software systems?

In order to address this and other related questions, it is nec-
essary to characterize the designs for evaluation and com-
parison. We did this by grouping the designs into categories
that were meaningful for our purposes.

The structure of this paper is as follows. First, we pro-
vide an overview of the Scaffolding experiment: the larger
project in which the data were collected. Next, we describe
our methods: the processes by which we categorized and
analyzed the designs. Then we compare the results of these
processes with data from other research. Finally, we present
our conclusions, and provide suggestions for future study.

2. THE SCAFFOLDING STUDY
The Scaffolding study[1, 2, 12] was a multi-national, multi-

institutional study that looked at various aspects of soft-
ware design. It included 314 subjects from 21 institutions
in the US, UK, Sweden, and New Zealand. The subjects
were drawn from three pools:

First competency students (136 subjects) : students
who could be expected to program at least one problem
from the set proposed by McCracken et al. in [7].

Graduating seniors (150 subjects) : students within the
last eighth of a Bachelor degree program.

Educators (28 subjects) : faculty members who teach
computer science courses.

Each subject performed two tasks, a design task, in which
they designed a software system from its description, and
a design criteria prioritization task, in which they ranked
software design criteria by importance under different design
scenarios. These tasks were performed one-on-one with a
researcher who took notes, answered questions, and made
an audio recording of the session. In addition, academic
and demographic information was collected for each subject:
age, gender, grades, number of CS courses taken, knowledge
of different programming languages, and so forth.

������ �����
Getting People to Sleep

In some circles sleep deprivation has become a status symbol. Statements like “I pulled
another all-nighter” and “I’ve slept only three hours in the last two days” are shared with
pride, as listeners nod in admiration. Although celebrating self-deprivation has historical
roots and is not likely to go away soon, it’s troubling when an educated culture rewards
people for hurting themselves, and that includes missing sleep.

As Stanford sleep experts have stated, sleep deprivation is one of the leading health
problems in the modern world. People with high levels of sleep debt get sick more often,
have more difficulties in personal relationships, and are less productive and creative. The
negative effects of sleep debt go on and on. In short, when you have too much sleep debt,
you simply can’t enjoy life fully.

Your brief is to design a "super alarm clock" for University students to help them to
manage their own sleep patterns, and also to provide data to support a research project
into the extent of the problem in this community. You may assume that, for the prototype,
each student will have a Pocket PC (or similar device) which is permanently connected to a
network.

Your system will need to:

• Allow a student to set an alarm to wake themselves up.
• Allow a student to set an alarm to remind themselves to go to sleep.
• Record when a student tells the system that they are about to go to sleep.
• Record when a student tells the system that they have woken up, and whether it is

due to an alarm or not (within 2 minutes of an alarm going off).
• Make recommendations as to when a student needs to go to sleep. This should

include "yellow alerts" when the student will need sleep soon, and "red alerts" when
they need to sleep now.

• Store the collected data in a server or database for later analysis by researchers.
The server/database system (which will also trigger the yellow/red alerts) will be
designed and implemented by another team. You should, however, indicate in your
design the behaviour you expect from the back-end system.

• Report students who are becoming dangerously sleep-deprived to someone who
cares about them (their mother?). This is indicated by a student being given three
“red alerts" in a row.

• Provide reports to a student showing their sleep patterns over time, allowing them to
see how often they have ignored alarms, and to identify clusters of dangerous, or
beneficial, sleep behaviour.

In doing this you should (1) produce an initial solution that someone (not necessarily you)
could work from (2) divide your solution into not less than two and not more than ten parts,
giving each a name and adding a short description of what it is and what it does – in short,
why it is a part. If important to your design, you may indicate an order to the parts, or add
some additional detail as to how the parts fit together.

Figure 1: The design brief that was given to the subjects.

For the design task, subjects were given a one-page “de-
sign brief” that described the behavior of the desired sys-
tem: a “super alarm clock” for college students. This brief
is shown in Figure 1. Subjects were given as much time as
they wanted to perform this task, during which they could
ask questions of the researcher. After the subject indicated
that they had finished, they were asked by the researcher
to identify the parts of their design. The generic term part
was used (as opposed to object, module, package, etc.) to
reduce the introduction of bias. Information collected here
was their design—everything they wrote on paper—plus the
researcher’s notes which included the time spent, the sub-
ject’s part names, and any other observations that the re-
searcher chose to make.

Most of the analyses of the designs in the scaffolding study
were comparisons between groups. Some comparisons were
based on the design artifacts, using features to partition the
designs into groups, then examining the frequency of each

partition across subject groupings. These partitions were
based on:

• The form of the dominant representation used: text;
standard graphical (such as UML); ad hoc graphical;
code or pseudo-code; mixed (no one dominant)

• Whether the subject grouped parts into larger parts

• Whether the design showed any interactions between
the parts

• Whether the subject recognized ambiguity or made as-
sumptions (either explicit in the artifact or in state-
ments to the researcher during design), and/or asked
questions to resolve ambiguities

The results of these comparisons were mixed. Most of
these showed significant trends from first-competency to grad-
uating seniors to educators: increasing use of standard graph-
ical representations and decreasing use of text-only descrip-

tions; increased representation of interactions among parts;
increased recognition of ambiguity in the design task and
asking questions to resolve ambiguity. The grouping of parts,
however was significantly more frequent among educators
than students—the student groups were not significantly dif-
ferent.

All of these analyses involved extracting easily-recognized
features from the artifacts—features that might be used to
distinguish among groups of designs—but did not really at-
tempt to characterize the designs as designs.

By contrast, the focus of this study is quite different: how
do students design when they are at the end of an under-
graduate computing program? To address this question, we
undertook a detailed examination of the design artifacts (all
of the material written by the subjects) produced by the
graduating seniors group.

3. CATEGORIZATION METHODS
The goal of the present study was to examine students’

abilities to design software, using their written designs as the
primary data. To organize and simplify these data for anal-
ysis, we categorized them into groups of similar designs. We
chose a data-driven approach for this categorization, with
the intention that the categories reflect similarities that we
observed in the data. Moreover, we intended that the ob-
served similarities and differences be meaningful relative to
the design task.

3.1 Categorization and classification
We categorized, as opposed to classified, these designs.

We distinguish these terms as in Jacob[5]. Simplifying some-
what:

Categorization assigns items to categories based on se-
mantic similarity in context (design in our case). Mem-
bers have graded typicality, that is, they can be a more
or less typical for their category, so categories can
meaningfully be based on prototypes. Boundaries be-
tween categories can be fuzzy.

Classification assigns items to classes based on necessary
and sufficient membership conditions independent of
context. From this it follows that classes are disjoint
with well-defined boundaries, and all members are equally
representative of their class.

We grouped designs based on their semantics, that is what
they communicate rather than how, and how well they met
the stated requirement in the design brief that the design be
something that “someone (not necessarily you) could work
from.”

Based on this approach, we developed six categories of
designs, shown in Figure 2, which are ordered relative to
the degree to which the above requirement was met.

These category descriptions have a distinctive characteris-
tic: they include a description of category members in gen-
eral, and refer to a typical example, or prototype1. The
descriptions include qualitative terms without clear bound-
aries. For example, “add a small amount” in Skumtomte2

1These prototypes are actual designs from the dataset, not
general descriptions.
2The Swedish word Skumtomte refers to a pink-and-white
marshmallow Santa Claus, a traditional Christmas confec-

and “include some significant work” in First step both refer
to amounts of added information. The prototypes provide
guidance in making such distinctions. In this example, if the
amount of added information is closer to that in the Skum-
tomte prototype than either of the First step prototypes,
then it would be considered “a small amount.” This provides
a mechanism for dealing with “fuzzy” category boundaries,
but suggests that it may be difficult to precisely categorize
some of the artifacts.

3.2 Developing the categories and tagging de-
signs

The processes of developing the categories and assigning
the designs to categories, were data-driven and integrated—
both the category descriptions and the previous design as-
signments changed as the category assignment, or tagging
progressed.

The initial categorization was based on examination of
20 randomly-chosen designs. After a number of other at-
tempts based on syntactic features, one researcher proposed
a categorization based on semantic design content. This first
attempt had five categories, each described by both a writ-
ten description and specific examples of the category. This
proposed set of categories is shown in Figure 3.

The key features of this draft categorization (and the final
categorization that followed) are that the features are based
on understanding what the design communicates, and that
there are prototypes given for each category. Based on these
descriptions and prototypical designs, each researcher indi-
vidually tagged (that is, assigned to a category) a group
of 70 designs. Comparing the values from the different re-
searchers, we observed that around 60% of the tags agreed
(considering all pairwise comparisons). Of the disagree-
ments, most were between Restatement and Partial attempt
of a design. This level of agreement is actually fairly good,
given that the categories are based on semantic features of
the designs.

In order to reach agreement on the categories and assign-
ments, four of the researchers spent a number of days to-
gether in a conference room, projecting designs on the wall,
and discussing each design until we agreed on its category.
This process was interleaved with the refinement and mod-
ification of the categorization to try and best accommodate
the observed data.

The designs that were most difficult to categorize were
those that were more than a Restatement but less than a
Complete design—the proposed Made a partial attempt and
Made the first step categories did not correspond well to
the observed designs. Closer examination of these designs
revealed a number of possible categories:

1. There were a lot of designs that added some insignif-
icant information—more than a restatement, but not
much that would be helpful to someone implementing
the design.

2. There were designs that had most of the content of
a Complete design, but were lacking some aspects–
either the communications between the parts was not
explicit, or the part responsibilities were missing.

3. There were designs that concentrated on one aspect of

tion. It looks like there is something there, but it is only
shaped and colored marshmallow fluff.

Nothing This category has designs with little or no intelligible content. These tend to be very
short, typically a single unlabelled diagram. There are very few of these.

Restatement These are designs that merely restate requirements from the task description (Fig-
ure 1). A typical example is a list of functions that correspond to the bulleted items in that
description. These have no design content that was not stated in the description.

Skumtomte These are designs that add a small amount to restating the task. Some subjects added
a small amount of information in text, or a drawing of a GUI with no description of its design,
or some unimportant implementation details. There is no overall system view, nor is there
any significant work on any of the modules. A typical member would have a list restating the
bullet items, plus one or two details, such as a piece of code to calculate the difference between
two times, a drawing of the alarm clock’s screen, or the designer’s preferences for programming
language or development environment.

First step Designs in this category include some significant work beyond the description: either a
partial overview of the system (identifying the parts, but generally not identifying how they
are related in the system) or the design of one of the system’s components, such as the GUI or
the interface to the database. There are two prototypical members. One has a partial overview
expressed as a UML-like diagram (or text on single page) that identifies the system modules
but does not show their interactions; the other gives a fairly detailed description of the GUI,
but provides no overview of the system.

Partial design A partial design provides an understandable description of each of the parts and
an overview of the system that illustrates the relationships between the parts. The parts
descriptions may be incomplete or superficial, and the communications between the parts is
not completely described. A typical example is a design that describes the parts, and has an
architecture diagram with links between communicating parts, but no description of what is
being communicated.

Complete These designs show a well-developed solution, including an understandable overview,
part descriptions that include responsibilities, and explicit communication between the parts.
A typical example uses multiple formal notations (e.g. UML, Use cases, CRC cards) as well as
text.

Figure 2: The six categories used for design artifacts.

the design, but little else. Most of these involved the
design of the GUI or the database.

4. There were designs that provided some overview information—
a drawing showing the system components, e.g., but
did not show the relationships between parts.

Based on these, we replaced the proposed Made a partial
attempt and Made the first step categories with three new
categories: Skumtomte and Partial design, corresponding to
1. and 2. above, and First step, which are the designs corre-
sponding to 3. and 4. Although the latter two (from 3. and
4.) could have been distinct, they were classified together
as each of them showed significant progress past the Skum-
tomte, and neither provided a clear overview, or system ar-
chitecture. Implicit in these choices is that system overview,
responsibilities of parts, and relations and communications
between the parts are important parts of the design process,
a view consistent with software engineering texts such as [4,
11].

During the above process, we categorized 111 of the de-
signs, reserving 38 for subsequent individual tagging, as a
way to check how well we agreed on individual ratings af-
ter the categories were set. Comparing the four researchers’
tags, we found that 55% of the tags agreed, that is, consid-
ering all possible pairs for each design, 55% were in agree-

ment. To put this number in perspective, however, if three
researchers agree on a tag and the other disagrees, only half
of that design’s tags match.

Finally, the researchers met and discussed the last 38,
reaching agreement on all of the tags.

3.3 Student design results
The distribution of the designs among the categories is

shown in the frequency plot in Figure 4. Given that the
categories can be naturally ordered relative to the commu-
nicated design content, we can easily describe the overall
performance:

• 21% of the designs were simply restatements of the
specification or less—no value added at all.

• 41% of the designs were Skumtomte: those that added
an insignificant amount beyond the specification, and,
in particular, did not produce any usable “design con-
tent”.

• 29% of the designs were in the First step category,
showing some progress toward a design—a partial over-
view, or significant progress toward the design of one
part of the system.

Failed (Corresponds to Nothing in final categorization) There is no coherent text/drawing in the
design.

Typical example is design 292.

Restated the task (Corresponds to Restatement in final categorization) The problem has been
restated, usually as a number of bullets: “It should sound an alarm after X minutes”, etc. But
there is no original work there. The bullet might be divided into “parts” but these parts are
essentially the text of the design brief. Note that these might include graphics with connections
but there is still no additional information compared to the task description.

Example: 756, 606.

Made a partial attempt at a design Here you can find some original work, he/she has at-
tempted to add some information but has not continued to make an actual design.

Example: 925

Made the first step of a design He/she has started to make a design, drawing up different “ob-
jects”, relationships, etc. Contains a substantial part of original work and the task has been
analyzed, but the actual description is not finished and is in a “sketch” stage.

Example: 217

Have actually made a design (Corresponds to Complete in final categorization This group con-
tains designs that are actual designs: the problems have been analyzed and a first design has
been made. This means that a coherent description is made and it’s possible to continue the
design without re-analyzing the whole question. Does not need to make it possible for someone
else to start implementing the system.

Example: 734

Figure 3: Initial draft of categories. Numbers are ID codes of particular designs. These are the initial
categories based on twenty designs: the final categories evolved from these during tagging the rest of the data.

3%

18%

41%

29%

7%
2%

0%

10%

20%

30%

40%

50%

Nothing
Restatement

Skumtomte

First step

Partial design

Complete

Figure 4: Frequencies of observations in each of the
design classifications (based on 149 observations).

• 9% produced Partial or Complete designs: those in-
cluding an understandable system architecture/over-
view, with parts and their interactions explicitly stated.
Of these, less than a third produced Complete designs,
with explicit part responsibilities and inter-part com-
munications.

All in all, a poor performance from students who are near
graduation: over 20% produced nothing, and over 60% com-
municated no significant progress toward a design.

In terms of analysis, categorizing the designs was quite
time-consuming, even after the categories were defined, as

it required extracting the meaning from the artifacts, many
of which are poorly organized and nearly illegible. Gaining
complete agreement between raters required extensive dis-
cussion for designs that did not closely match the prototypes
or were difficult to read. Having placed designs in these cat-
egories, however, gives us useful information—the category
that a design belongs to provides information about the com-
municated design content, and allows us to easily compare
designs on that basis.

Regarding the distribution of designs in Figure 4, and
what that says about students’ design skills, it should be
noted that the experimental situation might have affected
their overall performance. The instruction said that “you
should (1) produce an initial solution that someone (not
necessarily you) could work from”, but they were also told
that they were going to explain the design to the researcher
once it was completed—the latter might have caused them
to make “sketches of solutions” instead of writing down a
complete design. In the analysis, we only considered the
written artifacts, and not any verbal explanations from the
researchers’ notes. All the authors agreed that a few of the
designs seemed to indicate that the students knew much
more than they communicated.

4. SYNTAX AND SEMANTICS
Extracting meaning from a design, which is necessary to

categorize it, is difficult as it requires a global understanding
of the artifact. Recognizing syntactic features, by contrast,
does not require such deep understanding; there are syn-

tactic features that are both local and visually apparent.
With an eye toward reducing the amount of work required
in analysis, we examined the relationships between our se-
mantic categories and the recognizable syntactic features.

Before and during the categorization, we identified a num-
ber of candidate syntactic features that might be used to
characterize designs. Listing these and collapsing similar
features, we agreed to use the following set:

Algorithm. The design contains a step-by-step recipe, for
example “1 - Add A and B, 2 - Store the result in C,
3 - Copy C to Z, . . . ”.

Block. Box with text in it, usually a single word.

Bulleted list. Text is organized in a bulleted, numbered,
or labeled list, where each list item contains a short
textual description. If the text descriptions are each
long, this should be counted as running text instead.

Class. The design includes a class, either represented in
code or in a diagram. This is not counted separately if
in UML diagram.

Code. Code snippets are included in the design, typically
something similar to “tmp = a; a = b; b = tmp”.

CRC. The student has included CRC (Class, Responsibil-
ity, and Collaboration) Cards in the design, typically
in the form of a drawing of a filled-out CRC Card.

Database. The design contained a representation of the
database. The representation was more detailed than
a simple square with “database” inside, usually a de-
scription of the different tables in the datbase.

Event-Action. The design is described in terms of “when
X happens the system should do Y”, more elaborate
than single sentences.

Flowchart. The design includes a graphical flowchart.

Methods. A method (function) is described. Not counted
separately if methods are included in the a class de-
scription or in a UML diagram.

Other diagram. Miscellaneous drawings (not counted else-
where).

Overview diagram. A diagram showing an overview of
the main parts of the design.

Running text. More that a couple of sentences of text. An
outline or bulleted list where items contains more than
a paragraph of text is considered to be running text.

Simple user interface. A simple drawing of the user in-
terface, for example a rectangle inside another rectan-
gle symbolizing a PDA with a hardware button.

Text outline. The design contains an hierarchical outline
where each item is described by, at least, a few words.

User Interface. An elaborate drawing of the user interface
for example including data, labels, diagrams, colors,
etc.

UML. The design includes a UML diagram. It does not
have to be complete or correct.

Nothing Restatement

Skumtomte

First step

Partial design

Complete

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

N
u

m
b

er
 o

f
d

es
ig

n
 f

ea
tu

re
s

Figure 5: The average number of different features
in designs of each category

Use case. A use case description is included.

User picture. The users of the system is explicitly drawn
as a stick figure or in a similar way. Not counted if
part of a Use case.

We then re-examined all of the designs relative to this
feature set, determining, for each design, whether or not
each of the above features was present. (We did not attempt
to count how many of each feature were present.)

At the most abstract level, we compared the number of
these features present in each design for each of our seman-
tic categories. We summarize this in Figure 5. The diagram
clearly shows the feature count increases as the designs be-
come better. The designs in higher categories tend to be
syntactically richer, in part because they tend to include
some of the formal structures like UML and Use case dia-
grams. As Table 1 indicates, however, there is a large range
of feature counts in each category.

If the number of features measures the syntactic richness
of the design, the overall length of the design is a measure
of the syntactic quantity of the design. As seen in Table 2,
the higher category designs tend to be longer. As with the
feature count, there is a great deal of variance, however, as
illustrated by the minimum and maximum values for each
category: there are examples of short Complete designs, as
well as extremely long Skumtomte designs.

5. RESULTS AND RELATED WORK
We summarize the results, which concern developing and

applying the categorization, as well as the comparison with
syntactic features, as follows:

• It is possible to develop cogent and purposeful cate-
gories based on design content. These groups provide
a meaningful basis of comparison in the context of our
problem and concerns.

• Some designs will be hard to tag, as it is sometimes
very difficult to extract information from their un-
structured data. On the other hand, by creating a
well-defined, yet broad categorization, a design’s cat-
egory assignment is independent of the methods used
to express the information.

Table 1: The average, minimum, and maximum number of features counted per design, by category
No of Nothing Restatement Skumtomte Start of Partial Complete

features design design design
average 1.20 1.30 2.57 3.30 4.20 4.67

minimum 1 1 1 1 2 4
maximum 2 3 6 5 6 6

Table 2: Length of designs by category. Entries are in number of pages except for last row, where entries are
percent of designs at least three pages long.

Number of Nothing Restatement Skumtomte Start of Partial Complete
pages design design design

average 1 1.9 2.9 3.7 5.2 5.0
minimum 1 1 1 1 2 2
maximum 1 4 9 9 10 9

≥ 3 0 18.5% 54.8% 66.7% 90% 66.7%

• Gaining complete agreement between raters is possible
with discussion, but probably not without it. Since the
category memberships are graded (based on closeness
to prototypes), this is to be expected, as there will be
designs that fall between prototypes and are hard to
tag. Additionally, the legibility problems mean that
not all raters will understand what is being presented,
a problem that discussion can address.

• Semantic content does correlate with syntactic richness
(number of features) and syntactic content (as mea-
sured by length); these syntactic features are easier to
extract. However, due to the variability, syntax is a
relatively poor predictor of category, so if the meaning
is what is important, a semantic categorization should
be more valuable.

5.1 Comparison with related work
As has been described above we have not tried to put the

designs into some pre-defined categories. Instead we have
tried to let the data speak for itself. Comparing our results
with previous work suggests that this has been a judicious
approach.

Whilst there has been much research over the years into
student coding [9], there is far less available on design. Re-
sults from both of these areas, however, are consistent with
what we have seen here.

Of particular interest to student design is recent work by
McCracken [8] which focusses on the learning of design skills.
He contrasts design and programming, and suggests study
techniques for studying design behavior: In situ observation,
Retrospective interviews, and Protocol analysis. The Scaf-
folding data collection was an example of In situ observa-
tion in his terms. The big difference between his approaches
and ours is that his concentration is on the process of de-
signing as opposed to the results. We chose not to use the
collected process data from the Scaffolding study: apparent
differences in experimental technique among the researchers
make these data difficult to compare, and the extracting of
the subject behaviors is quite labor intensive—too intensive
given the size of this entire dataset.

DuBoulay comments on novice programmers’ inability to
grasp the whole program and the relation between the main
parts: “This ability to see a program as a whole, understand
its main parts and their relation is a skill which grows only

gradually.” [3, p. 59]. This is in line with our conclusions
that overview of the parts and relations between parts are
important features found only in the more advanced designs.

Soloway et al. [10] discuss how to teach design. Based on
a study with expert software designers the authors advocate
five phases in developing a design. The phases are:

• Phase 1: Understand problem specification. The goal
here is simply to understand what the problem is ask-
ing for.

• Phase 2: Decompose problem into programmable goals
and objects. During this phase, the objective is to
“lay the components of the solution on the table”, that
is, decompose the problem and identify the solution
components.

• Phase 3: Select and compose plans to solve problems.
During this phase the pieces of the solution are wo-
ven together, that is, the components are composed to
form a working whole.

• Phase 4: Implement plans in language constructs.

• Phase 5: Reflect–Evaluate final artifact and overall de-
sign process. When all is said and done, a good strat-
egy is to look back over what has been done and learn
from both the successes and failures.

It is interesting to compare Soloway’s phases with the
data driven classification in this study. Soloway’s first phase
can be directly mapped to our Restatement and Skumtomte
groups, where the designs indicated that the students were
trying to understand the problem and form a model of it.
It is worth noting that the majority of the designs have not
passed the first of Soloway’s phases.

The second phase, to “lay the components of the solution
on the table,” we interpret as to get an overview of the
solution. The overview sometimes occurs in First step and
always in the two top categories in our study. These designs
showed an understanding of the problem as well as how it
should be solved.

In the third phase “the pieces of the solution are woven
together, that is, the components are composed to form a
working whole”. This assumes that both the responsibilities
and relations (connections and communications) among the

parts are determined, things which are part of the top two
categories in our study.

The fourth and fifth phases, implementation and evalua-
tion, are not within the scope of the task given in our study.
However, there were examples in designs of all categories
but Nothing of students including code fragments or making
other implementation decisions (fourth phase), especially in
the Skumtomte and First step categories. Additionally, there
were designs in the top groups that showed reflection and
evaluation of their solutions, and so illustrated Soloway’s
fifth phase.

Soloway et al. describe the phases as “activities” and that
“there may be (will be!) some jumping around – back and
forth” based on the results from the study with the expert
designers. This agrees with our data. We do not see a mono-
tonic progression through the phases in the written designs,
and we see traces of many of these phases throughout the
documents. Our data here are not very strong, however, as
it is not necessarily the case that the order of things in the
design corresponds to the order in which the work was done.
Since many of the designs seem to illustrate only the first
of Soloway’s phases, whether they jump around is a moot
question.

6. CONCLUSIONS
The results of this study show that a semantic catego-

rization is both possible and practical in studying designs.
Such an approach has one fundamental strength: the cate-
gories developed are consistent with the information desired
from the data. Additionally, these results suggest that use-
ful design data might be extracted from the design artifacts
alone. Although categorizing these artifacts can be some-
what labor-intensive, it is far less so than the standard al-
ternative, extracting process information from observations
of people designing, which means we might practically ex-
amine larger datasets.

The other strength of using semantic categories is that
they are relatively insensitive to stylistic differences. In
this study, researchers from three different countries and
five different institutions were able to compare designs from
21 institutions from different cultural and linguistic tradi-
tions, and could compare designs with radically different
presentations—from purely textual to purely diagrammatic.
In the future, we intend to examine the range of applicability
of such techniques in other multi-national situations.

7. ACKNOWLEDGMENTS
The authors would like to thank Sally Fincher, Marian Pe-

tre, Josh Tenenberg, the Scaffolding workshop participants,
and the National Science Foundation (through grants DUE-
0243242 and DUE-0122560) for their support and encour-
agement. Thanks also to Kate Sanders and Lynda Thomas
for helpful comments and suggestions on drafts of this pa-
per. Finally, thanks to the reviewers of this paper, and the
participants of Koli Calling, for their questions and sugges-
tions.

8. REFERENCES
[1] K. Blaha, A. E. Monge, D. Sanders, B. Simon, and

T. VanDeGrift. Do students recognize ambiguity in
software design? a multi-national, multi-institutional
report. In Proceedings of the 27th International

Conference on Software Engineering (ICSE 2005),
pages 615–616, 2005.

[2] T. Chen, S. Cooper, R. McCartney, and
L. Schwartzman. The (relative) importance of
software design criteria. In Proceedings of the 10th
Annual Conference on Innovation and Technology in
Computer Science Education (ITiCSE 2005), pages
34–38, Monte da Caparica, Portugal, June 2005.

[3] B. DuBoulay. Some difficulties of learning to program.
Journal of Educational Computing Research,
2(1):57–73, 1986.

[4] C. Ghezzi, M. Jazayeri, and D. Mandrioli.
Fundamentals of Software Engineering. Pearson
Education, Inc., Upper Saddle River, NJ, second
edition, 2003.

[5] E. K. Jacob. Classification and categorization: A
difference that makes a difference. Library Trends,
52(3):515–540, Winter 2004.

[6] R. McCartney, J. E. Moström, K. Sanders, and
O. Seppälä. Take note: the effectiveness of novice
programmers’ annotations on examinations.
Informatics in Education, 4(1):69–86, 2005.

[7] M. McCracken, V. Almstrum, D. Diaz, M. Guzdial,
D. Hagan, Y. B.-D. Kolikant, C. Laxer, L. Thomas,
I. Utting, and T. Wilusz. A multi-national,
multi-institutional study of assessment of
programming skills of first-year CS students. SIGCSE
Bulletin, 33(4):125–180, 2001.

[8] W. M. McCracken. Research on learning to design
software. In S. Fincher and M. Petre, editors,
Computer Science Education Research. Taylor and
Francis Group, London, 2004.

[9] A. Robins, J. Rountree, and N. Rountree. Learning
and teaching programming: A review and discussion.
Computer Science Education, 13(2):137 – 172, 2003.

[10] E. Soloway, J. Spohrer, and D. Littman. E unum
pluribus: Generating alternative designs. In R. E.
Mayer, editor, Teaching and Learning Computer
Programming, pages 137–152. Lawrence Erlbaum
Associates, Publishers, 1988.

[11] I. Sommerville. Software Engineering. Pearson
Education, Ltd., Harlow, England, sixth edition, 2001.

[12] J. Tenenberg, S. Fincher, K. Blaha, D. Bouvier,
T. Chen, D. Chinn, S. Cooper, A. Eckerdal,
H. Johnson, R. McCartney, A. Monge, J. Moström,
M. Petre, K. Powers, M. Ratcliffe, A. Robins,
D. Sanders, L. Shwartzman, B. Simon, C. Stoker,
A. Tew, and T. VanDeGrift. Students designing
software: a multi-national, multi-institutional study.
Informatics in Education, 4(1):143–162, 2005.

