
Aberystwyth University

Hierarchical Multi-classification with Predictive Clustering Trees in Functional
Genomics
Clare, Amanda; Džeroski, Sašo; Struyf, Jan; Blockeel, Hendrik

Publication date:
2005

Citation for published version (APA):
Clare, A., Džeroski, S., Struyf, J., & Blockeel, H. (2005). Hierarchical Multi-classification with Predictive
Clustering Trees in Functional Genomics.

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 18. Apr. 2020

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Aberystwyth Research Portal

https://core.ac.uk/display/288842862?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://pure.aber.ac.uk/portal/en/persons/amanda-clare(68a76505-96f0-4105-86b5-ccdd4f75ef0f).html
https://pure.aber.ac.uk/portal/en/publications/hierarchical-multiclassification-with-predictive-clustering-trees-in-functional-genomics(ab77444b-02af-44e9-8fa8-739efd6063f6).html
https://pure.aber.ac.uk/portal/en/publications/hierarchical-multiclassification-with-predictive-clustering-trees-in-functional-genomics(ab77444b-02af-44e9-8fa8-739efd6063f6).html


Hierarchical Multi-classification with Predictive
Clustering Trees in Functional Genomics

Jan Struyf1, Sašo Džeroski2, Hendrik Blockeel1, and Amanda Clare3

1Katholieke Universiteit Leuven, Dept. of Computer Science
Celestijnenlaan 200A, B-3001 Leuven, Belgium

{Jan.Struyf,Hendrik.Blockeel}@cs.kuleuven.be
2Jozef Stefan Institute, Dept. of Knowledge Technologies

Jamova 39, 1000 Ljubljana, Slovenia
Saso.Dzeroski@ijs.si

3The University of Wales, Aberystwyth, Dept. of Computer Science
Penglais, Aberystwyth, Ceredigion, SY23 3DB, Wales, UK

afc@aber.ac.uk

Abstract. This paper investigates how predictive clustering trees can
be used to predict gene function in the genome of the yeast Saccha-
romyces cerevisiae. We consider the MIPS FunCat classification scheme,
in which each gene is annotated with one or more classes selected from
a given functional class hierarchy. This setting presents two important
challenges to machine learning: (1) each instance is labeled with a set of
classes instead of just one class, and (2) the classes are structured in a hi-
erarchy; ideally the learning algorithm should also take this hierarchical
information into account. Predictive clustering trees generalize decision
trees and can be applied to a wide range of prediction tasks by plugging
in a suitable distance metric. We define an appropriate distance metric
for hierarchical multi-classification and present experiments evaluating
this approach on a number of data sets that are available for yeast.

1 Introduction

Saccharomyces cerevisiae (baker’s or brewer’s yeast) is one of biology’s classic
model organisms, and has been the subject of intensive study for years. Its
genes have annotations provided by the Munich Information Center for Protein
Sequences (MIPS) under their FunCat scheme for classifying the functions of
the products of genes. FunCat is a hierarchical system of functional classes. A
small part of this hierarchy is shown in Fig. 1. Many yeast genes are annotated
with more than one functional class.

This classification setting presents two main challenges to machine learning:
(1) each instance (gene) is labeled with a set of classes instead of just one class,
and (2) the classes are structured in a hierarchy; ideally the learning algorithm
should also take this hierarchical information into account.

A simple approach is to ignore the hierarchy and to learn separate models
for each class (indicating whether a single instance belongs to the class or not).



(a) 1 METABOLISM
1/1 amino acid metabolism
1/2 nitrogen and sulfur metabolism
...
2 ENERGY
2/1 glycolysis and gluconeogenesis
...

(b)

1 (1) 2 (2)

2/1 (3) 2/2 (4)

3 (5)

Fig. 1. (a) A part of the hierarchical FunCat classification scheme. (b) A toy hierarchy
that will be used as example throughout the text. (Note that the class labels indicate
the position in the hierarchy: 2/1 is a subclass of the class 2.)

In this work, we consider instead the task of learning one model for all classes.
This has the advantage that the total size of the predictive theory is typically
smaller, and that dependencies between different classes w.r.t. membership can
be taken into account and may even be explicitated. Advantages of learning a
single model for multiple related prediction tasks have been reported several
times in the literature (see e.g., [6] for decision trees, [8, 1] for neural networks,
[15] for text classification).

Taking into account the hierarchical structure of the classes is also important
while learning. The hierarchy concisely conveys relevant information about the
similarity and differences between classes and also expresses the constraint that
an instance belonging to a class also belongs to the parent class. The combina-
tion of multi-classification and hierarchical classification is known as hierarchical
multi-classification [3].

Blockeel et al. [3] show how predictive clustering trees (PCTs) can be ap-
plied to hierarchical multi-classification. PCTs form a very general framework
for prediction that can be instantiated to a particular prediction task by defin-
ing a distance metric and prototype. The distance metric used in [3] is a generic
distance between sets of classes that is subsequently instantiated for hierarchical
classification by plugging in the weighted shortest path distance between indi-
vidual classes. The set distance has however two major disadvantages: (1) the
distance between two given sets is difficult to interpret (it involves the compu-
tation of a kernel), and (2) it is not guaranteed to be positive because the kernel
matrix is not positive definite. The impact of the latter is difficult to evaluate.

In this work we take an approach similar to that of [3]. We also use PCTs,
but we introduce a new distance metric that is specific to hierarchical multi-
classification and that does not have the disadvantages of the distance metric
used in [3].

Recently, an extension to C4.5 [11] has been introduced by Clare [9] that is
also capable of hierarchical multi-classification. This is accomplished by adapting
the definition of entropy to take into account both the multi-class aspect and
the hierarchical relationship between the classes. In the experimental evaluation
included in this paper we compare our approach to the results presented in [9].



This paper is organized as follows. We first define hierarchical multi-classi-
fication more formally (Section 2). Then follows a brief description of PCTs
(Section 3). Section 4 shows how PCTs can be instantiated for hierarchical multi-
classification. This approach is validated experimentally in Section 5. Section 6
discusses further work, and Section 7 states the main conclusions.

2 Hierarchical Multi-classification

We represent a hierarchy on a set of classes C as a tree, defined by a set of
top-level classes T ⊆ C and a parent function that maps the children of a tree
node onto the node (it is not defined for the top-level classes). A valid set is a
set of classes that is closed with respect to the parent function, i.e., if c ∈ S then
parent(c) ∈ S or c ∈ T . 2C denotes the power set of C and V (C) ⊆ 2C denotes
the set of valid sets constructed from C.

Example 1. In Fig. 1.b, C = {1, 2, 2/1, 2/2, 3}, T = {1, 2, 3}, parent(2/2) = 2,
and {1, 2, 2/2} ∈ V (C) is a valid set of classes. Note that a valid set of classes
always corresponds to a subtree of the hierarchy. In the case of hierarchical
single-classification, the subtree reduces to a path.

The problem of hierarchical multi-classification can now be stated as follows.
Given:
– an instance space X
– a class space C
– a hierarchy H defined on C

– a set of labeled instances D ⊆ X × V (C)
– a quality criterion Q

Find: a function h : X → V (C) that maps an instance x onto a valid set of
classes S, so that h maximizes the quality criterion Q.

The hierarchy concisely conveys relevant information about the similarity
and differences between classes. Intuitively, the distance between two classes is
smaller if they are closer to each other in the hierarchy. Further, the siblings
of a node should be equidistant, and the distance from a node to its parent is
the same for all the nodes on a given level. The distance metric that we will
introduce in Section 4 fulfills these criteria.

The quality criterion Q can, but need not be based on the distance. For
instance, it could be just the average precision with which all the different classes
are predicted, or it could take into account the fact that predicting {2, 2/1} is
a smaller mistake for an instance that is labeled {2, 2/2} than for an instance
labeled {1}.

We finally remark that by representing the labels as subtrees of the hierarchy,
the natural constraints on class membership, i.e., anything belonging to a specific
class (e.g., 2/1) automatically belongs to the more general ancestor classes (e.g.,
1) are automatically honored. This would not be guaranteed if independent
models were learned for all different classes.



3 Predictive Clustering Trees

A variety of algorithms for predictive modeling exists. Among the better known
are algorithms that induce decision trees [7, 11]. Compared to other well-known
techniques such as neural networks [2], decision trees have the advantage of
being more interpretable: they clearly explicitate the factors that influence the
outcome most strongly.

Decision trees are most often used in the context of classification or single-
target regression; i.e., they represent a model in which the value of a single
variable is predicted. However, as a decision tree naturally identifies partitions
of the data (course-grained at the top of the tree, fine-grained at the bottom), one
can also consider a tree as a hierarchy of clusters [10]. A good cluster hierarchy
is one in which individuals that are in the same cluster are also similar with
respect to a number of observable properties. This leads to a simple method for
building trees that allow the prediction of multiple target attributes at once. If
we can define a distance measure on tuples of target variable values, we can build
decision trees for multi-target prediction. Similarly, if a distance on hierarchical
target values is defined, we can build decision trees for hierarchical classification.
The methodology has been used successfully for a variety of applications such
as conceptual clustering [5], simultaneous prediction of multiple parameters [6],
and ranking tasks [13].

The algorithm for inducing these so-called predictive clustering trees (PCTs)
is essentially a standard TDIDT (Top-Down Induction of Decision Trees) algo-
rithm such as C4.5 [11]. The general idea is to recursively partition a set of data
into clusters in such a way that the intra-cluster variation is minimized. (The
heuristic for selecting the test to include in a node of the tree is the sum of the
intra-cluster variations of the subsets induced by the test.) Intra-cluster variation
is defined as the sum of squared distances between the members of the cluster
and its prototype p, where the latter is defined as p = arg minq

∑
i d(xi, q)2, i.e.,

roughly the point that is closest to all the instances in the cluster, according to
the distance defined. This prototype may or may not be a valid prediction. For
instance for 0-1 prediction the prototype could be the mean of all target values,
e.g., 0.8, but when making a prediction for a specific instance this has to be
converted into a valid prediction (0 or 1). The result of the induction process
is a decision tree in which each leaf contains (a prediction derived from) the
prototype of the examples covered by that leaf.

A detailed description of PCTs can be found in [5]. The main point to be
made here is that the proposed method for inducing PCTs relies entirely on the
definition of the distance measure, the prototypes, and the mapping of prototypes
onto valid predictions. These issues are the focus of the following section.

4 PCTs for Hierarchical Multi-classification

In this section, we show how PCTs can be applied to hierarchical multi-classi-
fication. As indicated above, this comes down to defining a suitable distance
metric and prototype.



4.1 Representing a Valid Set of Classes as a Vector

In the hierarchical multi-classification setting, each instance i is annotated with
a valid set of classes Ci ∈ V (C) selected from a hierarchically structured set of
classes C. The distance metric and prototype that we will use are based on a
vector representation of Ci. This representation is constructed as follows. The
vector vi representing Ci is a vector with |C| components. Each component
corresponds to a class of C. The components of vi that correspond to classes in
Ci take the value 1, the others are set to 0.

Example 2. Consider the class hierarchy shown in Fig 1.b and suppose that
a given instance i is annotated with the valid set Ci = {1, 2, 2/2}. Assuming
that vi,k corresponds to the class at position k in the preorder traversal of the
hierarchy (as indicated by the numbers between parenthesis in Fig 1.b), the
vector representing Ci is vi = [1, 1, 0, 1, 0].

4.2 The Distance Metric and Prototype

Because each valid set of classes is represented as a vector, we can use the
Euclidean distance as distance metric and define the distance between two valid
sets Ci and Cj as the Euclidean distance between their vector representations.

d(Ci, Cj) = dEuclidean(vi, vj) =
√∑

k

wk · (vi,k − vj,k)2 (1)

The hierarchical relationship among the classes can be taken into account
by setting the weights wk in (1) to appropriate values. If the weight for classes
deeper down the hierarchy is smaller than that of classes closer to the top, then
the distance between two top-level classes will be large and the distance between
sibling classes deeper down the hierarchy will be small. In the experimental
evaluation, we will use weights that decrease exponentially with hierarchy depth:
wk = w

depth(ck)
0 , with w0 a parameter, which we set ad-hoc to 0.75. It can be

easily verified that this choice fulfills the criteria listed in Section 2.

Example 3. Consider two instances, the first one annotated with Ci = {1, 2, 2/2}
and the second one with Cj = {2}. The distance between Ci and Cj is
d(Ci, Cj) = dEuclidean([1, 1, 0, 1, 0], [0, 1, 0, 0, 0]) =

√
w0 + w2

0. Note that this dis-
tance can be interpreted as the square-root of the sum of a penalty w0 because
class 1 does not occur in Cj and a penalty w2

0 because class 2/2 does not occur
in Cj .

Consider a set of vectors V . The prototype pV of V corresponding to the
Euclidean distance is the vector mean of V , i.e., pV =

∑
vi∈V vi/|V |. If D is

a set of instances and V is the set of vectors representing their target values
then each component of pV represents the proportion of the instances in D that
belong to the corresponding class.



Table 1. Data set properties. |D| is the number of instances (genes) and |A| the number
of attributes.

Data set |D| |A|
D1 Sequence (seq) 3932 478
D2 Phenotype (pheno) 1592 69
D3 Secondary structure (struc) 3851 19628
D4 Homology search (hom) 3867 47034
D5 Spellman et al. (cellcycle) 3766 77
D6 Roth et al. (church) 3764 27

Data set |D| |A|
D7 DeRisi et al. (derisi) 3733 63
D8 Eisen et al. (eisen) 2425 79
D9 Gash et al. (gasch1) 3773 173
D10 Gash et al. (gasch2) 3788 52
D11 Chu et al. (spo) 3711 80
D12 All microarray (expr) 3788 551

Example 4. Consider the instances of Example 3. The prototype is pV =
([1, 1, 0, 1, 0] + [0, 1, 0, 0, 0])/2 = [0.5, 1, 0, 0.5, 0] and indicates that all instances
belong to class 2 and 50% belong to the classes 1 and 2/2.

The intra-cluster variation of D, which is used in the heuristic when build-
ing PCTs, can now be computed as the sum of squared distances between the
members of V and its prototype pV .

Using the Euclidean distance has the advantage over other distance metrics
defined on sets [12] that both the distance and the prototype can be computed
efficiently. This is important in the context of PCTs because the distance and
prototype are used in the computation of the heuristic and this heuristic must
be evaluated for each possible split of the instances considered by the system.

4.3 Mapping a Prototype to a Prediction

The prediction associated with a leaf is the set of classes that occur in at least
50% of the training examples belonging to the leaf. Note that this set is always
a valid set. It can be computed based on the prototype as the set of classes that
correspond to the components that are greater or equal to 0.5.

5 Experimental Evaluation

In this section we present experiments evaluating PCTs for hierarchical multi-
classification, i.e., PCTs with the prototype and distance metric discussed in
the previous section plugged in. We first describe the data sets used in the
evaluation, then we define the experimental setup and finally we present and
discuss the obtained results.

5.1 Data Sets

We use the 12 data sets that were also used by Clare [9] (Table 1). The reason is
that we will compare PCTs for hierarchical multi-classification to the hierarchical
extension to C4.5 [11] presented in [9].

The data sets describe different aspects of the genes in the Saccharomyces
cerevisiae genome (baker’s or brewer’s yeast). Each gene included in the data



sets is annotated with one or more classes selected from the MIPS FunCat hi-
erarchical classification scheme. The annotations and classification scheme that
was available on 24/4/02 were used. The hierarchy has 250 classes: 17 at the
first level, 102 at the second, 89 at the third, and 42 at the fourth level.

Five types of bioinformatic data for yeast are considered in the data sets:
sequence statistics, phenotype, predicted secondary structure, homology, and ex-
pression. Different sources of data should highlight different aspects of gene func-
tion. Below, we describe each data set in turn. Note that the relevant references
to the literature have been omitted because of space restrictions. These references
are available in [9], which can be obtained together with the data sets themselves
at http://www.aber.ac.uk/compsci/Research/bio/dss/yeastdata/.

(D1, sec) Sequence statistics are recorded that depend on the amino acid
sequence of the protein produced by the gene. These include amino acid ratios,
sequence length, molecular weight and hydrophobicity. Some of the properties
were calculated using Expasy’s ProtParam tool, some were listed by MIPS as
part of the description of the sequence such as the chromosome on which the gene
was located, and some were simply calculated directly. Attributes are mostly real
valued, although some (like chromosome number or strand) are discrete.

(D2, pheno) Phenotype data represents the growth or lack of growth of
knock-out mutants that are missing the gene in question. A gene is removed or
disabled and the resulting organism is grown with a variety of media to determine
what the modified organism might be sensitive or resistant to. Phenotype data
was taken from EUROFAN, MIPS and TRIPLES. Attributes for this dataset
are discrete, and the dataset is sparse, since not all knock-outs have been grown
under all conditions.

(D3, seq) The secondary structure of a protein is also known to influence the
function of the protein. Secondary structure is caused by hydrogen bonding along
the protein’s backbone, and there are two main classes of secondary structure
elements, the alpha helix and the beta sheet. Structure that can’t be classified
as alpha or beta is usually termed “coil”. Yeast does not have known structure
for all of its genes; however secondary structure can be predicted from protein
sequences with reasonable precision. The program Prof was used to generate
predicted secondary structure for each gene. Due to the relational nature of this
type of data a preprocessing step of relational association mining was employed
to generate frequent associations from the data. The discovered associations are
included as binary attributes.

(D4, hom) Genes are homologous when they share a common ancestor. In
determining the function of a yeast gene, information about a homologous gene
from another species can provide clues to the possible role of the gene. Homology
is usually determined by sequence similarity. If two genes have similar sequences
they are deemed homologous, and standard software exists for finding all such
similar sequences in a large database. PSI-BLAST was used to compare yeast
genes both with other yeast genes, and with all genes whose proteins are indexed
in SwissProt version 39, a database of well-annotated genes from all species. This
provided for each yeast gene, a list of homologous genes, and for each of these



homologous genes various properties were extracted, such as keywords, sequence
length and the names of the other databases they were known to be listed in.
This relational dataset was then mined for frequent associations in the same way
as the secondary structure data, to produce binary attributes.

(D5, . . . , D12) The use of microarrays to gather information on the expression
of genes is currently popular in biology and bioinformatics. Microarray chips now
provide the means to test the expression levels of genes across an entire genome
in a single experiment. Many expression data sets exist for yeast, and several of
these were used. Attributes for these datasets are real valued, representing fold
changes in expression levels.

5.2 Method

Implementation The distance metric and prototype for hierarchical multi-
classification introduced in Section 4 are implemented in the Clus system1.
Clus is a system for building PCTs and is essentially a propositional version of
the Tilde system [4, 5].

Clus has a parameter that controls the minimum number of instances in each
leaf. This parameter was set ad-hoc to 5. Clus only considers tests that yield a
significant reduction in intra-cluster variation. The significance level of this test
was tuned for each experiment using a 3 fold cross-validation on the training set
to maximize average class-wise precision (see further). Other parameters were
set to their default values.

Obtaining Validated Predictions As already said above, we are interested
in comparing our method to the hierarchical extension of C4.5 [11] introduced
by [9]. In [9], the predictions are validated on a separate validation set to obtain
a higher precision at the expense of coverage. For each class predicted by a leaf
of the decision tree, a significance test is performed. Suppose that the leaf covers
N validation instances and that the proportion of instances belonging to the
predicted class is a (the precision of the prediction). The test then computes the
probability that the proportion of instances of the predicted class in a random
sample of size N is greater than a (using the hypergeometric distribution). If
this probability is above the significance level, then the prediction is considered
insignificant and removed.

In [9], the significance level was set to 0.05 and the Bonferroni correction was
used. The latter divides the significance level by the number of tests performed
(in this case the sum of the predicted number of classes over all leaves of the
decision tree). Such a correction is advised if the number of tests is large. We
use the same significance level and perform experiments with and without the
Bonferroni correction. Note that, because of the validation step, the predictions
are no longer guaranteed to be valid sets.

1 Clus is available from the authors upon request.



Table 2. Average precision and coverage for all data sets (in percent).

Precision Coverage

Name C
l
u
s(

B
)

C
l
u
s

C
4
.5

H

C
l
u
s(

B
)

C
l
u
s

C
4
.5

H

seq 72 61 71 8.35 80.18 14.16
pheno 67 67 68 3.09 3.09 3.26
struc 51 68 58 19.91 29.71 2.05
hom 65 64 55 35.51 81.41 12.06
cellcycle 79 82 54 0.86 0.86 71.34
church 72 75 53 3.50 8.18 58.64

Precision Coverage

Name C
l
u
s(

B
)

C
l
u
s

C
4
.5

H

C
l
u
s(

B
)

C
l
u
s

C
4
.5

H

derisi 75 77 61 2.90 2.90 8.39
eisen 84 88 48 5.73 5.73 37.63
gasch1 89 67 38 4.20 15.77 47.24
gasch2 96 96 60 3.09 3.09 64.06
spo 86 79 46 2.29 3.70 12.82
expr 75 77 75 7.26 27.28 5.56

Data Set Partition The experiments are based on a three-way split of each
data set: a training set, a validation set and a test set. The test set contains
33% of the data. The remaining 66% are split again using a 66%/33% split to
create the training and validation set. We use the same split as is used in [9].
The training set is used to induce the PCT, the validation set is used to remove
predicted classes that are not significant and the test set is used to measure the
predictive precision and coverage.

Note that there is a large number of classes (250) and that validated predic-
tions are only obtained for some of them. Predictive precision is computed for
each predicted class individually (class-wise precision), whereas average preci-
sion is computed over all predicted classes. Coverage is defined as the proportion
of instances for which at least one class is predicted.

5.3 Results

Table 2 presents the obtained average precision and coverage for each data set.
It contains results for Clus(B), the Clus system with Bonferroni correction
enabled, for Clus (no Bonferroni correction) and for C4.5H, the hierarchical
extension of C4.5.

The average precision obtained by Clus(B) and Clus are generally higher
than those obtained with C4.5H (Clus(B) yields a higher precision on 9 data
sets and Clus on 10), but this increased precision comes in most cases at the
expense of a lower coverage (the coverage obtained with Clus(B) is lower than
that of C4.5H in 9 data sets). Note however that domain experts prefer precise
predictions over a high coverage in this domain.

By disabling the Bonferroni correction the coverage increases, but not for
all data sets. There are 4 data sets where Clus yields a larger coverage than
C4.5H: seq, struc, hom, and expr. For 3 of these, the precision obtained by Clus
is also higher than that of C4.5H. On the other hand, on the 8 data sets where
C4.5H has a higher coverage than Clus, the precision obtained with C4.5H is
only higher in one case (pheno).

Table 3 lists the class-wise precision for each data set for Clus and C4.5H.
In most cases, the set of classes predicted by Clus and C4.5H is similar. In



Table 3. Class-wise precision. For each predicted class, the prior probability is given
together with the precision obtained by Clus and C4.5H (in percent).

pheno Prior Clus C4.5H

3/1/3 2 67
30 8 67
30/1 6 67 69

struc Prior Clus C4.5H

8/4 2 73
40 58 68
67 8 55
67/28 1 44

cellcycle Prior Clus C4.5H

4 20 34
5 9 82 33
5/1 5 73 64
40 59 91 61
40/3 14 82 57

church Prior Clus C4.5H

1 28 36
5 9 62 55
5/1 5 56 61
40 59 88 65
40/3 15 76

derisi Prior Clus C4.5H

2/13 2 63
5 9 76 58
5/1 5 69 54
40 59 88
40/3 15 76 64

eisen Prior Clus C4.5H

5 12 85 64
5/1 7 79 56
40 74 98
40/3 19 88 55
40/10 27 39
40/16 12 38

gasch1 Prior Clus C4.5H

1 28 51 50
4 20 29
5 9 86 78
5/1 6 87 83
6/13/1 3 20
40 59 89
40/3 15 89 43
40/10 20 25

gasch2 Prior Clus C4.5H

2/16 1 0
5 9 95 56
5/1 6 90 100
40 59 100 64
40/3 15 98 56
40/16 9 29

expr Prior Clus C4.5H

3 17 44
5 9 100 87
5/1 6 93 78
40 59 72
40/3 15 100 80

spo Prior Clus C4.5H

5 9 77 56
5/1 5 72 79
40 59 88
40/3 14 79 47
40/10 21 26

seq Prior Clus C4.5H

1 27 56 48
5 9 88 78
5/1 5 83 77
8 13 37
29 3 81
40 57 60
40/2 4 50 14
40/3 14 80 81
67 8 66 78

hom Prior Clus C4.5H

1 27 61
1/5/1 7 60
4 20 73
4/5 14 56
4/5/1 10 41
4/5/1/4 9 37
5 9 84
5/1 5 84 78
6 15 100
6/13 4 100
6/13/1 3 100
8 12 86
8/4 2 86 100
29 3 64 55
40 57 64
40/3 14 71 35
40/7 4 100
40/10 20 64
40/16 9 64
67 8 65 88

5 data sets, C4.5H predicts more classes than Clus (usually one or two extra
classes are predicted). Clus usually yields higher class-wise precisions. These
observations are consistent with the higher average precision obtained by Clus
and the larger coverage obtained with C4.5H.

The result most in favor of the Clus system is obtained on the homology data
set. Here, Clus predicts 19 classes, including one level 4 class. C4.5H predicts
6 classes for this data set. As discussed above, both the average precision and
the coverage obtained on this data set is higher for Clus than for C4.5H. The
PCT for this data set is shown in Fig. 2. The bottom-right leaf for example
represents a cluster in which the genes are predicted to have two functions: 40/3
and 5/1. Note that the tests in the nodes above the leaf provide a description
of the cluster. We have compared our PCT to the rules found in [9]. There are
a number of similarities, but the knowledge discovered by both systems can be
considered complementary.



hom(X,Y,[0,1e-8]),class(Y,rhizobiaceae-group),dbref(Y,interpro)

yes no

hom(X,Y,[0,1e-8]),
class(Y,kinetoplastida),
keyword(Y,transmembrane)

yes no

67 [123] y to y(X,Y,[2e-7,5e-4]),
hom(X,Z,[0,1e-8]),
class(Z,hydrozoa)

yes no

40 [57] 1 [209]

hom(X,Y,[0,1e-8]),
class(Y,desulfurococcales)

yes no

hom(X,Y,[0,1e-8]),
dbref(Y,aarhus-ghent2dpage)

yes no

40/10,40/7,
6,6/13,6/13/1 [6]

hom(X,Y,[4e-4,4.5e-2]),
class(Y,alpha-subdivision)

yes no

40 [11] 40,40/3,5,5/1 [50]

subtree of
13 nodes
(not shown)

Fig. 2. Part of the PCT obtained for the homology data set. Recall that the attributes
are binary relational features. Each node contains such a feature, expressed in first
order logic. The variable X represents the given gene and Y and Z refer to homologous
genes. Details can be found in [9]. Each leaf of the PCT shows the predicted set of
classes together with the number of training examples belonging to the leaf.

6 Further Work

A first item for further work is investigating the trade-off between coverage and
precision. Ideally, it should be possible to specify this trade-off by means of a
parameter. This is already possible to some extent by altering the significance
level used in the validation step, but also the test selection and pruning mecha-
nism of the induction algorithm influence this trade-off. These effects should be
studied further.

Ženko et al. [14] propose a system for building predictive clustering rules.
By plugging in the distance metric and prototype introduced in this paper, this
system will also be suitable for hierarchical multi-classification. Rules are better
suited than trees in situations where a high precision is required and a coverage
less than 100% can be tolerated.

It would be interesting to evaluate our approach in other domains where
hierarchically structured classes occur. E.g., in ecological modeling, samples of
soil or river water are collected and the species occurring in these samples are
often classified using a hierarchical scheme. Our method could be used to cluster
such samples.

7 Conclusions

Predictive clustering trees form a generic framework for prediction that can be
instantiated to a particular task by defining the distance metric and prototype.
We have introduced such a distance metric and prototype for the task of hier-
archical multi-classification. This task occurs in several domains, most notably
functional genomics, where each gene is annotated with a set of classes selected
from a hierarchical classification scheme.



We have experimentally validated our approach (implemented in the Clus
system) on 12 data sets that are available for the yeast Saccharomyces cerevisiae
by means of a comparison to C4.5H, a hierarchical extension to C4.5 that has
recently been proposed. Our results show that Clus generates precise predic-
tions. In further work, we will investigate the trade-off between precision and
coverage further.

References

1. B. Bakker and T. Heskes. Task clustering for learning to learn. In Proceedings of
the 13th Belgium-Netherlands Conference on Artificial Intelligence, pages 33–40,
Amsterdam, 2001.

2. C. M. Bishop. Neural Networks for Pattern Recognition. University Press, Oxford,
1999.

3. H. Blockeel, M. Bruynooghe, S. Džeroski, J. Ramon, and J. Struyf. Hierarchical
multi-classification. In Proceedings of the ACM SIGKDD 2002 Workshop on Multi-
Relational Data Mining (MRDM 2002), pages 21–35, 2002.

4. H. Blockeel and L. De Raedt. Top-down induction of first order logical decision
trees. Artificial Intelligence, 101(1-2):285–297, June 1998.

5. H. Blockeel, L. De Raedt, and J. Ramon. Top-down induction of clustering trees.
In Proceedings of the 15th International Conference on Machine Learning, pages
55–63, 1998.

6. H. Blockeel, S. Džeroski, and J. Grbović. Simultaneous prediction of multiple chem-
ical parameters of river water quality with tilde. In Proceedings of the 3rd European
Conference on Principles of Data Mining and Knowledge Discovery, volume 1704
of Lecture Notes in Artificial Intelligence, pages 32–40. Springer, 1999.

7. L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification and Re-
gression Trees. Wadsworth, Belmont, 1984.

8. R. Caruana. Multitask learning. Machine Learning, 28:41–75, 1997.
9. A. Clare. Machine Learning and Data Mining for Yeast Functional Genomics.

PhD thesis, University of Wales, Aberystwyth, 2003.
10. P. Langley. Elements of Machine Learning. Morgan Kaufmann, 1996.
11. J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann series in

Machine Learning. Morgan Kaufmann, 1993.
12. J. Ramon and M. Bruynooghe. A polynomial time computable metric between

point sets. Acta Informatica, 37:765–780, 2001.
13. L. Todorovski, H. Blockeel, and S. Džeroski. Ranking with predictive cluster-

ing trees. In Proceedings of the 13th European Conference on Machine Learning,
volume 2430 of Lecture Notes in Artificial Intelligence, pages 444–455. Springer-
Verlag, 2002.

14. B. Ženko, S. Džeroski, and J. Struyf. Learning predictive clustering rules, 2005.
Submitted to the Workshop on Knowledge Discovery in Inductive Databases at
the 16th European Conference on Machine Learning (ECML).

15. K. Wang, S. Zhou, and S.C. Liew. Building hierarchical classifiers using class
proximity. In VLDB’99, Proceedings of 25th International Conference on Very
Large Data Bases, September 7-10, 1999, Edinburgh, Scotland, UK, pages 363–
374. Morgan Kaufmann, 1999.


