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Combining functional and structural reasoning for
safety analysis of electrical designs

C . J . P R I C E , N . S NOOKE , D . R . PUGH , J . E . HUNT a n d

M . S . W I L SON

Department of Computer Science, University of Wales, Aberystwyth, Ceredigion, SY23 3DB, UK, email: cjp@aber.ac.uk

Abstract

Increasing complexity of design in automotive electrical systems has been paralleled by increased

demands for analysis of the safety and reliability aspects of those designs. Such demands can place a

great burden on the engineers charged with carrying out the analysis. This paper describes how the

intended functions of a circuit design can be combined with a qualitative model of the electrical

circuit that ful®ls the functions, and used to analyse the safety of the design. FLAME, an automated

failure mode and e�ects analysis system based on these techniques, is described in detail. FLAME

has been developed over several years, and is capable of composing an FMEA report for many

di�erent electrical subsystems. The paper also addresses the issue of how the use of functional and

structural reasoning can be extended to sneak circuit analysis and fault tree analysis.

1 Introduction

Failure Mode and E�ects Analysis (FMEA) of a design involves the investigation and assessment of

the e�ects of all possible failure modes on the system being designed. For electrical design, it means

examining what would happen if any component failed or if any wire in a circuit went open circuit,

shorted to ground or shorted to battery unexpectedly. This kind of analysis is of growing

importance in the automotive, aerospace and other advanced manufacturing industries, where

increasingly complex electrical, electronic and mechanical systems are being combined in safety-

critical applications.

Automation of FMEA is an attractive proposition, as it is a tedious and repetitive task, yet one

which is time consuming and needs to be done by skilled engineers. Previous research on automation

of FMEA has concentrated on automating a few aspects of the FMEA process. Some work has

concentrated on assisting the engineer with management of FMEA information (Legg, 1978), or on

manipulating signi®cance values entered by engineers (Kara-Zaitri et al., 1992). A second important

strand of research has automated the generation of e�ects for each failure mode (Bell et al., 1992;

Palumbo, 1994; Price et al., 1992). The work on the FLAME system described in this paper

combines these aspects with an automatic generation of signi®cance values, thus providing a

complete automated FMEA assistant.

FLAME has evolved over a period of ®ve years, moving gradually from research prototypes that

addressed only the di�cult issue of generating failure e�ects (Price & Hunt, 1991), through systems

capable of covering the whole FMEA process but demanding much modelling e�ort from the user

(Price et al., 1995) to the present system, capable of producing FMEA reports for most of the

electrical systems in a modern car but demanding little modelling input from the user. The paper

describes both the technology underlying the FLAME system, and the kind of user interface needed

to make it usable by engineers. Finally, it addresses the use of the technology in the FLAME system

for other types of safety analysis.

The rest of the paper is arranged as follows. Section two of the paper deals with the demands that



an automated FMEA system must meet in order for the engineer to regard it as an improvement

over generating an FMEA report by hand, or using a clerical FMEA tool to help produce a neatly

printed FMEA report. Section three describes the FLAME system from the engineer's point of

view. Section four describes the technology underlying the FLAME system, including details of the

functional representation used and the qualitative circuit simulation techniques applied. Section ®ve

evaluates how well the FLAME system meets the criteria put forward in section two. Section six

shows how the technology used here for FMEA can also be applied to other design analysis

techniques. Section seven examines related work by other researchers, and compares it with the

work described here.

2 Challenges for an automated FMEA system

Failure Mode and E�ects Analysis (FMEA) involves the investigation and assessment of the e�ects

of possible failure modes on a system (Coker et al., 1989; IEC, 1995). For electrical system designs,

this involves investigating what happens when each wire in the circuit goes open circuit, shorts to

ground, or shorts to battery, or when other components fail in expected ways (for example, a pump

might stall or a relay be stuck at open). The signi®cance of each failure is assessed and the failure is

assigned a Risk Priority Number (RPN). The RPN value for a failure is obtained by multiplying

three separate values each on a scale of 1 to 10 (where 10 is the most serious):

. Severity: how bad the consequences of the failure are.

. Detection: whether the failure can be detected.

. Occurrence: how frequently the failure will occur.

Automation of the record-keeping aspects of FMEA is fairly widely accepted, acting as a sort of

cross between a word processor and a spreadsheet program. It can make the entry of information

much simpler, but leaves the main burden of ®lling the formÐgenerating all the e�ects and

assigning signi®cance valuesÐsquarely on the shoulders of the engineers.

On the other hand, the e�orts to automate the generation of e�ects and signi®cance values have

not been developed enough to use for practical tasks. Experience of evaluating prototype e�ect

generation systems with engineers has generated a list of requirements for an automated FMEA

assistant. These requirements need to be met for such systems to be accepted in everyday practice.

. Help for the whole FMEA report generation process. It is not enough just to generate e�ects for

failure modes. Engineers are capable of generating answers for themselves. The maximum bene®t

comes from integrating the e�ects generation with the signi®cance assignment and the form

®lling.

. Timely assistance. FMEA is often performed late in the design cycle, once detailed information,

such as wire lengths, is known. However, the e�ectiveness of FMEA depends on reacting to any

problems that are highlighted. That means that it should be possible to perform the automated

FMEA without having the information needed for an accurate simulation in a quantitative

simulator such as Saber (Montgomery et al., 1996).

. Reuse of information. Where information already exists, the engineer should be able to access it

rather than reenter it into the automated system. This both increases e�ciency and takes away

any possibility of erroneous entry.

. Usable by engineers. The engineers should be able to enter any extra information needed

themselves rather than requiring computer experts to do it for them.

. Greatly improved e�ciency. Resistance to process change means that it needs to be signi®cantly

less e�ort to use the automated system than to perform the analysis by hand. Such e�ciency must

be an improvement of at least an order of magnitude in order for new technology to be adopted

enthusiastically.

Any attempt to automate the FMEA process needs to be assessed against the criteria outlined

above.
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3 The FLAME system

The FLAME system provides automated assistance to the engineer for all aspects of FMEA report

generation. Use of the FLAME system can be broken down into three stages:

. Model construction.

. FMEA generation.

. Interactive FMEA veri®cation.

The relationship between the three stages is depicted in Figure 1. The rest of this section will explain

what happens during each stage, illustrating the discussion with the example of a car headlight

system. This system is simpler than the kind of system that would be considered in practice. The

lighting system would be considered as a whole, including items such as fog lamps, sidelights and

indicator lights. The FLAME system is capable of dealing with that degree of complexity. This

simpler system has been used as an illustration because it can be fully explored within the limitations

of the paper.

3.1 Model construction

3.1.1 Capturing the circuit design

The model construction phase of using FLAME has been streamlined to use existing information as

much as possible. The ®rst stage is to obtain a description of the circuit to be analysed. The circuit

will have been designed using an Electrical Computer Aided Design (ECAD) tool to draw the

electrical components and the connections between components. The FLAME system contains

routines to import circuit descriptions from an ECAD tool and to verify that FLAME's component

library contains descriptions of the operation and failure modes for each type of component. The

headlight circuit is composed of common components such as wires, relays and lamps, and so there

is a description of all components except for the operation of the electronic control unit (ECU). The

engineer uses the Component Builder (described in section 4.2) to describe the operation of the

ECU.

Once the engineer has a complete circuit description, as illustrated in Figure 2, it is possible to

simulate the operation of the circuit under di�erent conditions by opening and closing switches. The

circuit simulator will show which paths are active by changing the colour of components. This

facility can be used to ensure that the circuit has the correct behaviour when all components are

working properly.

3.1.2 Describing the system's functionality

The circuit design is not enough to be able to generate meaningful e�ects for failures of the system

being examined. Knowledge of the intended functions of the system is also necessary to interpret the

state of the circuit in ways that are meaningful in an FMEA report.

In earlier versions of the FLAME system (e.g. Price et al., 1995), the functionality of a system was

described as a set of states of the system and details of the transitions between the states. Evaluation

of this scheme with engineers showed that it had several drawbacks:

. The engineers found it di�cult to construct functional descriptions of how a system worked.

. Linking the functional description to states of the circuit was also a challenge.

. If the functional descriptions were badly constructed, then they were not reusable between

di�erent versions of the same design.

These problems have been overcome by a radical simpli®cation of the functional layer. For each

subsystem in a car, FLAME has a set of functional labels that describe what the system is intended

to do. These labels are held in a database, along with numbers used in RPN generation that describe

the severity and detection values for absence of the function when it is expected (columns headed fail

in Figure 3), and presence of the function when it is not expected (columns headed succ in Figure 3).
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These functional labels are highly reusable provided that the automobile designers decompose the

electrical system into subsystems in the same manner for each car. This seems like a reasonable

restriction, given the bene®ts in reusability that it provides.

The reusable functions for the headlight system are shown in Figure 3. The engineer can add extra

Figure 1 Stages of the use of the FLAME system

Figure 2 Headlight circuit imported to FLAME circuit drawing tool
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functions or change the values if necessary, but in this case they can be used as they are, so having

examined them, the engineer dismisses the display.

3.1.3 Linking function to structure

To be able to interpret the state of the circuit, the engineer must link the functional labels to the state

of signi®cant components in the circuit. In this particular example, it is easily done. The main

headlights are on when the main lamps are active, the dipped headlights are on when the dipped

lamps are active, and no lights are on when no lamps are active. This linking of structure to function

must be done for each new design of the subsystem, and it is shown for the headlight system in

Figure 4. The expressions are constructed by clicking on a list of available components, legal

operators and allowable states for each component. This makes the linking much simpler and less

error-prone than it would be if the engineer had to type in the text of the expression.

3.1.4 Constructing FMEA tests

To decide on the interesting e�ects of any failure, it is necessary to describe how the headlight system

will be used, so that the described use can be simulated for each possible failure. Figure 5 shows that

the headlight system will be tested by switching the dipped headlights on, then switching them o�,

Figure 3 Functions for the headlight system

Figure 4 Linking headlight functions to structure for headlight system
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switching the main headlights on, then switching them o�, and ®nally switching the dipped

headlights on again.

In more realistic cases than the simple headlight example shown here, it is impossible to provide

complete coverage of all possible combinations of switch states in a circuit. The engineer needs to

identify all combinations of states likely to be interesting for a failure. In practice, this is likely to be

all combinations that occur as normal operating states.

3.2 FMEA generation

FMEA generation is performed in batch mode. Once the FLAME system has all the model

components described above, the engineer can choose ``Run FMEA'' from the main control panel

of the FLAME system (see Figure 6).

The expected behaviour of the circuit can be obtained by running the circuit simulator through

the switch states set up in section 3.1.4 with a correct version of the circuit.

For each failure mode of each component in the circuit, the FLAME system will simulate the

behaviour of the circuit under each of the changes described in section 3.1.4. The functional labels

are used to interpret the state of the circuit after each change, and di�erences from the expected

functions in each state are noted. The di�erence between the expected functions in each state and the

actual functions in each state are the e�ects for that failure mode. For example, if the dipped

Figure 5 Simulation states for testing headlight system

Figure 6 Main control panel of FLAME system
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headlight switch was turned on and the dipped headlight function did not occur, the failure e�ect

would be that the dipped headlight function did not occur when expected.

Once all failure e�ects have been generated, the FLAME system calculates signi®cance values for

each e�ect. For some complex e�ects, the FLAME system might not be able to decide on the e�ects

or might be unable to decide on the signi®cance values. Where that is the case, the entry is left blank,

and the engineer is expected to ®ll in the answer during the interactive FMEA veri®cation phase.

3.3 Interactive FMEA veri®cation

The reason for performing an FMEA is to identify potential problems in a design and to rectify

them. This means that the engineer must examine the results and identify where action needs to be

taken. The FLAME system removes much of the e�ort of producing the FMEA report, but

responsibility for the correctness of the report is left with the engineer.

The results of the FMEA can be examined on the screen by the engineer, who can ®ll in missing

details, amend reports or alter signi®cance values. Such changes are annotated with the name of

their originator. An example screen of the FMEA report for the headlight system is shown in Figure

7. The results of the FMEA can be manipulated in several ways: the most signi®cant failures can be

shown ®rst, or those with missing values, or the failures which have changed since the previous

design for the circuit. When the engineer is satis®ed with the contents of the FMEA, it can be turned

into a printed report.

4 Technical aspects of FLAME

The previous section dealt with the way in which the engineer used the FLAME system. This section

deals with important aspects of the technology underlying the ability to produce an FMEA report.

The most challenging aspect is being able to generate failure e�ects for an electrical design given a

Figure 7 FMEA output for headlight system
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speci®c failure mode. This is achieved by qualitative simulation of the circuit design combined with

descriptions of the overall functions of the circuit.

The other noteworthy area is the automatic generation of RPN values from the deduced e�ects.

This is accomplished by rule-based combination of signi®cance values assigned to di�erent e�ects

and by reuse of previous results.

4.1 Deciding on e�ects of a failure mode

The e�ects generation software takes as input the following products of the model construction

stage:

. the functions of the subsystem to be analysed;

. a description of the structure of the circuit to be analysed;

. a set of links between the functions and the circuit structure;

. a list of events which change the state of the circuit (e.g. closing a switch).

The following additional information can be obtained by the system:

. A list of failure modes for each component in the circuit. The FLAME system has a library

containing details of how each component operates, and this includes details of the di�erent ways

in which that component can fail. The component library has been constructed within the user

companies, and appropriate failure modes for each type of component have been identi®ed by the

engineers.

. The correct behaviour of the circuit. This is obtained by loading the description of the circuit into

the qualitative circuit simulator, then applying in turn each event in the list of events. After each

event, the possible functions are matched against the state of the circuit, in order to ascertain

which functions are achieved by each event. For each event, this produces the expected e�ects of

that event, for example:

When the dipped beam switch is closed, the ``dipped beam'' function occurs.

When the dipped beam switch is opened, the ``no lights'' function occurs.

When the main beam switch is closed, the ``main beam'' function occurs, etc.

The generation of each failure e�ect is done by the following method:

For each failure mode of each component:

Load a version of the circuit with that failure included into the circuit simulator.

For each event in the list of events:

Apply the event to the circuit simulator.

Match the possible functions against the state of the circuit in order to identify which

functions occur.

Compare the functions that occur with the functions that were expected to occur (the correct

behaviour for that event).

Add the di�erences to the list of unexpected e�ects.

So, for example, take the failure mode where wire 1, the output wire from the dipped beam switch,

fails open. The circuit simulator loads a circuit where wire 1 has in®nite resistance, and then applies

the set of events as was done for the correct behaviour. The results of the simulation are:

When the dipped beam switch is closed, the ``no lights'' function occurs.

When the dipped beam switch is opened, the ``no lights'' function occurs.

When the main beam switch is closed, the main beam function occurs, etc.

When these results are compared with the expected behaviour, the following di�erences are

obtained:
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When the dipped beam switch is closed, the ``dipped beam'' function was expected, but the ``no

lights'' function occurred.

When the dipped beam switch is opened, the expected functions occurred.

When the main beam switch is closed, the expected functions occurred, etc.

The circuit simulator is vital to the process of generating failure e�ects, and merits a more complete

description of its operation.

4.2 The qualitative circuit simulator

FLAME'S qualitative circuit simulator consists of two parts: a network analyser, and a controller

which converts a circuit description into a form understood by the analyser, and dynamically

monitors and updates component interdependencies.

4.2.1 The network analyser: CIRQ

The network analyser, based on CIRQ (Lee & Ormsby, 1993), takes as input a graph made up of

qualitative resistances which represent either a component or part of a component; the resistances

can take the values of zero, load or in®nity. The output generated by CIRQ consists of a qualitative

description of the electrical state of each resistance. This description will indicate active and inactive

paths, as well as any short paths in the circuit. The CIRQ algorithm is based upon Dijkstra's

shortest distance algorithm (Dijkstra, 1959).

The analysis of a circuit network is split into two stages. The ®rst stage labels the terminals of each

resistance in the graph with a forward/reverse (F/R) value; this speci®es the number of loads which

will be traversed to reach the negative and positive terminals respectively. In some instances, it will

not be possible to reach one of the terminals, in which case ``in®nity'' is used instead. Figure 8 shows

a simple CIRQ graph labelled with F/R values. To aid readability, nodes for wires have been

omitted from the example network. Switch1 is closed (resistance 0), switch2 is open (resistance

in®nity).

In the second stage, deciding which paths are active, short, and inactive, the network is traversed

using a form of depth ®rst traversal. All components whose terminal F/R values include an in®nity

are immediately marked inactive. Short paths are identi®ed by a branch of the circuit having the

same (non-in®nite) F/R value at both ends; this implies that no load is being drawn by this part of

Figure 8 Resistance graph and F/R values for simple circuit

Combining functional and structural reasoning 279



the circuit. Components on other branches between these two points will be marked inactive

(assuming that these branches are not short paths also) as the zero-resistance branch will draw all

current. All other paths are marked active, i.e., they have not been shorted out, and are not inactive.

4.2.2 Dynamically analysing a circuit: QCAT

The example used to describe the CIRQ algorithm contained only simple components; that is,

components which could be represented as a simple resistance value. The question is, how can CIRQ

be used to analyse circuits which contain components whose behaviour cannot be represented in this

way? For example, relays, ECUs, multi-way switches, etc.

QCAT provides a computational layer above CIRQ which allows circuits to be analysed

dynamically. For example, if a circuit contained an open relay, the relay would be represented as

two resistance valuesÐone for the coil, one for the switch. The status of the switch will be de®ned as

being dependent upon the state of the coil; that is, if the coil is active then the switch will be closed,

otherwise the switch will be open. To ®nd out the state of a circuit containing an open relay, QCAT

does the following:

. Find out the electrical state of the circuit using CIRQ with the relay switch resistance set to

in®nity (representing an open switch).

. If CIRQ returns with the result that the relay coil is active, then set the switch resistance to zero.

Pass the new resistive network to CIRQ for analysis.

. If the coil is still active, then closing the switch did not a�ect the state of the coil. Stop processing.

. If the coil is inactive, set the switch state to in®nity and re-simulate.

The processing will continue until the circuit reaches equilibrium or a feedback loop is identi®ed.

4.2.3 Building realistic components: the Component Builder

QCAT has a library containing descriptions of behaviour for common types of components. Where

new components are needed for a circuit, the Component Builder provides the ability to specify the

behaviour of components interactively, including failure mode behaviour, and to add the new

component to the component library. The structure of a new component is de®ned in terms of

resistance values and internal dependencies.

Figure 9 shows the component builder description of a change-over relay. In the top left of the

®gure, the component type, and component class have been de®ned. Below this is a description of

each of the terminals associated with the component (the input and output options are not relevant

to this example, they are used in association with ECUs). At the top right, the internal con®guration

of the component is de®ned in terms of terminals and qualitative resistance values. Here, the coil is

de®ned as drawing a load and the switch contacts are de®ned as having dependent behaviour which

is described at the bottom of the screen. The dependency expression indicates that when the coil is

inactive, contactA has a resistive value of in®nity (closed), and contactB has a resistive value of zero

(open). The switch state is reversed when the coil is active. At the top right of the ®gure an icon

editor can be invoked which allows the user to describe how the component will appear in the circuit

drawing tool.

The component builder also allows the engineer to de®ne failure modes for a component. Figure

10 shows the failure mode de®nition for relay switch fused to contactA. This failure mode is

described by changing the qualitative resistance values for the component. In this case, the

resistance for contactA is set to zero, representing the switch being closed, and contactB is set to

in®nity. Therefore, this failure mode would cause the component to allow current ¯ow through

contactA irrespective of the state of the coil.

4.3 Assessing signi®cance

The Risk Priority Number (RPN) assigned to each failure e�ect is made up of three values: severity,

detection and occurrence. The easiest of these to generate is occurrence. It can be calculated by
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mapping component reliability ®gures onto the severity scale of 1 to 10 using the company's usual

mapping. For example, an occurrence of 1 might mean that there is a 1:50,000 possibility of a relay

failing by staying closed during the lifetime of the car. Wires give a slight complication, as several

wires joined in series are considered as a single failure mode. Automatic rules can be applied here for

combining wire reliabilities and producing a composite value.

Figure 9 Component builder description of a change over relay

Figure 10 Failure mode description for change over relay
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Severity and detection values for single e�ects can be obtained by taking the relevant values from

the function databaseÐfor example, if the dipped beam function is expected but absent then take

the relevant values for that e�ect declared in the database.

Multiple values are more complex. For example, in a windscreen wiper system, achieving slow

wipe when fast wipe is expected is not as bad as the wipers not working at all. Values for these more

complex e�ects could be obtained by declaring entries for each more complex e�ect. FLAME takes

a simpler possibility, leaving the entry empty and allowing the engineer to examine the e�ect and

produce a value.

The FLAME system has a second way of producing severity and detection values, by reusing

values assigned by the engineer in previous designs for the same functional system. This is only

possible because of the consistency of the failure e�ects generated. This method is most e�ective for

previous versions of the same design, but because the e�ects are related to function, not speci®c to a

particular design for the circuit, it is possible to reuse values between di�erent model years as well.

5 Evaluating the FLAME system

Section two stated a number of di�erent criteria against which a system to automate the FMEA

process could be judged. How does the FLAME system fare against these criteria?

. Help for the whole FMEA report generation process. The FLAME system is capable of generating

e�ects for each failure mode in a readable form that can be automatically ®lled in to an FMEA

report form. It also generates signi®cance values and allows the engineer to annotate its results.

After the interactive session with the engineer, the FLAME system is capable of printing a

completed analysis.

. Timely assistance. The qualitative nature of the FLAME system enables FMEA to be performed

early in the design process. However, the ability to perform an incremental FMEA (Price, 1996)

means that the analysis can be repeated each time the design is changed, just showing the engineer

the entries that have changed since the previous FMEA was run.

. Reuse of information. The circuit information is imported from the ECAD tool used by the

engineers to design the circuit. This has been done for three di�erent ECAD tools in the user

companies. The functional information is generic to each subsystem (lighting, central locking,

etc.), and so can be reused from model year to model year. Descriptions of common components

are kept in a component library. All of this reuse makes model construction a fairly simple

process.

. Usable by engineers. Where components do need to be built for a circuit, construction can be

done pictorially, and tested by running the simulator and checking that the component works

correctly.

. Greatly improved e�ciency. The simple headlight circuit used as an example earlier in the paper is

a fairly trivial circuit, and yet a conservative estimate is that it would take a week to produce an

FMEA report on the circuit without the use of a tool such as the FLAME system (it has 92 failure

modes). Using the FLAME system to perform FMEA on the lighting subsystem speeds up the

generation of an FMEA report signi®cantly. Model construction should only take a few minutes

of the reliability engineer's time. The FLAME system takes about 10 minutes on a Sparc 5 to

identify all failure modes, generate all failure e�ects, and assign RPN values for each failure

e�ect. While this does take some time, the engineer need not be present, and could be carrying out

some other duty, or just taking a co�ee break. The major commitment of time comes during the

interactive examination phase. For a circuit of the complexity of the example, this process might

take a couple of hours. Thus it can be seen that the FLAME system reduces the task of producing

this FMEA report from one which previously took a week to one which can be performed within

half a day at the most. For more complex circuits, the time savings are even more signi®cant.

There are other bene®ts in using the FLAME system which cannot be quanti®ed as easily as the

engineer's time.
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. Consistency. The FLAME system always reports the same failure e�ect in the same way, and

ascribes the same RPN values to it. This makes it a more objective report than is the case when it

is produced by hand, where reporting of e�ects can be variable, and RPN values can depend on

how an engineer is feeling.

. Analysis of multiple failures. No work has been carried out on generating FMEA reports for

multiple failures, but the simulator is capable of working with multiple failures. It is clear that it

would be possible to investigate the implications of all pairs of failures on a circuit (exploring all

permutations of failures is not feasible because of the exponential e�ect of considering all fault

combinations). The report could then be pruned to present only e�ects which did not occur for a

single failure. This would be valuable information, and is not possible when performing FMEA

``by hand'': even for the headlight example, it would mean considering 8372 failure modes.

. Changes to the way FMEA is performed. The ability to perform incremental FMEA (considering

only the changes caused by a change to the circuit) means that FMEA can be performed early in

the design cycle and then repeated whenever the circuit is changed. For example, changing the

lighting circuit so that the main beams and dipped beams are fused separately changes just eight

of the entries in the FMEA report. Showing the engineer just the changes means that incremental

FMEA takes up just a few minutes of engineer time. This may well cause the FLAME system to

be used as a ``what-if '' tool, answering questions such as: what are the reliability implications if

this change to the design is made?

The FLAME system has been in experimental use by Jaguar Cars and Ford Motor Company Ltd

for more than a year. It can satisfactorily simulate about 85% of the circuitry of a modern car

(complex analog circuits can have behaviour too dependent on quantitative values to be amenable

to qualitative simulation), and produce useful FMEA results. We are currently reimplementing the

FLAME system in C++, to improve the speed of simulation.

5.1 Scope and limitations of the FLAME system

FLAME is intended to be used early on in the design of electrical systems, where FMEA results can

be fed back into the design to improve both the safety and reliability of a circuit. Qualitative

reasoning is used to generate circuit behaviour, and this gives FLAME both its greatest strengths

and weaknesses. Many of the strengths have already been discussed:

. FMEAs can be performed without knowing about quantitative information such as wire lengths,

fuse ratings etc.

. The qualitative analysis is much quicker than a comparable quantitative analysis; for example,

performed by Saber.

. The operation of very complex components can be simulated, including Electronic Control Units

(ECUs).

. The analysis can identify where a short circuit may cause a fuse to blow, or a ®re to occur.

. The technique scales up: it can generate reports for the largest subsystems in modern cars within

an hour.

The weakness of this technique lies in the fact that some failure modes require a quantitative

analysis to be performed to discover the e�ect on the circuit. An example of such a failure is where a

contact on a switch is partially corroded. The immediate e�ect on the circuit is that less current ¯ows

through the switch than was intended by the designer. The overall e�ect on the circuit could be that

a bulb does not shine as brightly as it shouldÐan e�ect that FLAME cannot identify.

This weakness can be overcome by using a quantitative analysis for cases where a qualitative

analysis is not su�cient; this could be done late in the design cycle when detailed information about

the circuit is known. We are currently investigating how to best combine these two types of analyses.

See Montgomery et al. (1996) for further details.

Combining functional and structural reasoning 283



6 Application to other design techniques

Research into automation of design techniques other than FMEA is less advanced, but early

experiments indicate that the use of modelling and simulation of electrical systems provides a

potential basis for automatic production of results for other design techniques too. This section will

brie¯y describe work done towards the automation of sneak circuit analysis and fault tree analysis.

6.1 Sneak circuit analysis

In complex electrical systems, the interaction of several subsystems can cause further systems to be

activated unexpectedly. A good example is given in Savakoor et al. (1993) of the cargo bay doors of

a particular aircraft design, where operating the emergency switch for the cargo doors can cause the

landing gear to lower unintentionally. Typically, such problems are caused when a line which was

expected to provide current in one direction is used in the opposite direction, causing a sneak path.

Sneak Circuit Analysis (SCA) is the process of identifying and eliminating such sneak paths where

they might occur. If a line is enabling current ¯ow in an unexpected direction, this can often be

prevented by the addition of a diode to the design. Cost considerations mean that diodes should not

be added to the circuit unless they are really needed.

The QCAT circuit analyser can be used to perform sneak circuit analysis between a number of car

subsystems. Say that the engineer wanted to ®nd out whether there were any sneaks between the

lighting systems, the central locking system and the wash/wipe system for a car design. It can be

done in the following way:

. Perform FMEA on each of the subsystems separately (if not already done). This provides much

of the information needed to do SCA.

. Load the circuit composed of all of those subsystems (linked together to the battery and to any

common grounds) into the circuit analyser.

. Load the links from circuit state to function for each separate subsystem.

. Identify the functions activated by each switch in each of the subsystems (from the correct

behaviour description for each individual subsystem generated when doing the FMEA).

. Activate each combination of switches in the composite circuit. Use the function-to-circuit links

to identify which functions are active in each state. Compare the active functions with the

functions that are expected to be active (the ones that were active when those switches were closed

in the individual subsystems).

. If any additional functions occur, then there is a signi®cant sneak between the subsystems, and a

report to that e�ect should be generated, giving the switches that were closed at the time, and the

additional e�ect that happened. The engineer can then use the circuit simulator to study the e�ect

in detail.

Experiments with several classic documented sneak problems indicate that this method is capable of

®nding all signi®cant sneaks in a circuit (assuming that sneaks which do not activate any extra

functions are not signi®cant). This has only dealt with sneaks in correctly behaving circuits, but it

should extend to faulty versions of circuits fairly simply.

6.2 Fault tree analysis

Fault Tree Analysis (FTA) is a method for identifying the reliability of a function (IEC, 1990).

Unlike FMEA, which looks at all possible e�ects in a circuit, FTA identi®es all of the combinations

of failures that might cause one e�ect of interest to occur. It is driven by a single question. An

example of such a question for the simple headlight circuit might be ``what failures might cause no

headlights at all (either dipped beam or main beam) to be available when requested?''

Such questions can be answered from the output of the FLAME system, if they are rephrased in

terms of events and functions. The rephrased question would be: ``What single failure modes or

c . j . p r i c e e t a l . 284



combinations of failure modes can cause the e�ect that when the dipped beam switch is turned on,

the dipped beams do not work, and when the main beam switch is turned on, the main beams do not

work?

The FTA software constructs a tree where one branch contains all single failures which can cause

both sets of headlights to fail, and the other has an ``AND'' function combining the possibility that

the dipped beams will fail and the possibility that the main beams will fail. Under each of the single

branches, are put the failure modes that can cause the single e�ect.

Having constructed the tree, it is possible to generate cut sets and do the analysis in the normal

way.

7 Related work

FLAME is the ®rst FMEA tool to automate the production of e�ects descriptions and risk priority

numbers for electrical system design. Previous research on automation of FMEA has concentrated

on automating individual parts of the process:

. Managing FMEA information. At its simplest, computerised assistance for FMEA involves using

spreadsheet like tools which allows the results to be presented and stored in a neat tabular form;

an example of this is FMEAplus. Other tools in this category have been developed to ensure that

results are consistent (Coker et al., 1989), automatically documented (Goddard & Davis, 1985),

or produced in a more readable form (Legg, 1978; Lind, 1985). This work complements the work

done on FLAME, and the latest version of FLAME can export its results to FMEAplus.

. Automatic generation of e�ects. There are two main strands to this work. The ®rst is best

illustrated by Lehtela (1990) on an FMEA tool which uses quantitative reasoning to generate

e�ects descriptions. Each component has both normal and failure mode behaviours; however,

there is no concept of the function that a system performs. Therefore, the results are described

simply in terms of altered component behaviourÐthere is no description of the e�ect of the

failure on the system as a whole. In addition, as the circuit size increases, the time a quantitative

analysis would take to perform a complete FMEA on a circuit would be immense.

The second strand of automatic e�ects generation is documented in Bell et al. (1992). They use

a qualitative circuit analysis tool to generate the e�ect descriptionÐthe model is described using

a graphical representation, which is converted directly into a causal model of the circuit. This

system does not contain the concept of the e�ect of the failure on the system as a whole; therefore,

the results would not be as detailed as those found in FLAME. Processing times for this work

would be very similar to those found in FLAME.

. Manipulating signi®cance values. Kara-Zaitri et al. (1992) have shown that it is possible to

generate signi®cance values automatically based upon the probabilistic combinations of RPNs.

Because there is no functional level description of system behaviour, results are generated from

combinations of values at the component level. In FLAME, the severity and detection values are

generated at the functional level. This is a more intuitive way to de®ne these indices; for example,

we can de®ne the severity of ``wash screen'' failure without worrying about the component which

causes this failure. It also makes the results more re-usable because the indices are not directly

attached to speci®c components.

. A task structure for an FMEA tool. One of the most interesting papers on automating the FMEA

process has been written by Russomanno et al. (1994). The paper contains summaries of several

experimental e�ects generation systems, such as those mentioned above. It also proposes a richer

architecture for building an automated FMEA system. As FMEA is often done by a team of

specialists working together, it proposes an FMEA system based on a blackboard architecture.

The main agents in this architecture are: the design expert, managing the FMEA process; the

simulation expert, providing the modelling abilities of the system; the analysis generator, giving

the report generation facilities; the mission expert, with knowledge of how changes in simulation

a�ect the outside world; the discourse manager, providing an intelligent user interface. We would
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disagree with the necessity for separate agents in an automated FMEA system, but the paper

gives some insight into the di�erent processes that take place when performing an FMEA, and

how these processes can be related to various arti®cial intelligence techniques.

8 Conclusions

The FLAME system demonstrates that it is possible to automate much of the tedium of producing

an FMEA report. This has been accomplished, not just on simple circuits such as the one given as a

detailed example in this paper, but on actual automobile circuits imported from ECAD tools. The

techniques discussed have been proven to work on a wide range of automobile circuits, and to scale

up to systems with hundreds of components. The report produced by the automated FMEA is

similar to those produced by engineers, with the added advantage of a greater degree of consistency

in e�ect description and RPN generation.

The techniques used in producing an automated FMEA system also provide great leverage for

automating two other design techniques, fault tree analysis and sneak circuit analysis. The research

on automation of those techniques is at an earlier stage, but the ®nal goal is to provide an automated

design analysis system capable of applying a number of design analysis techniques.
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