
Aberystwyth University

Functional decomposition for interpretation of model based simulation
Bell, Jonathan; Price, Chris; Snooke, Neal

Publication date:
2005

Citation for published version (APA):
Bell, J., Price, C., & Snooke, N. (2005). Functional decomposition for interpretation of model based simulation.
192-198. Paper presented at 19th International Workshop on Qualitative Reasoning, Graz, Austria.

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 18. Apr. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aberystwyth Research Portal

https://core.ac.uk/display/288842818?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://pure.aber.ac.uk/portal/en/persons/jonathan-bell(e16fbd6d-dc59-42ac-940a-84b9bd924c56).html
https://pure.aber.ac.uk/portal/en/persons/chris-price(d3852e42-5eec-4dc5-b85b-94c37ebeb8db).html
https://pure.aber.ac.uk/portal/en/persons/neal-snooke(9f499076-14db-46d5-b45e-03d835b970ce).html
https://pure.aber.ac.uk/portal/en/publications/functional-decomposition-for-interpretation-of-model-based-simulation(5162499b-4c94-4a3f-b176-ae321168baee).html

Functional decomposition for interpretation of model based simulation

Jonathan Bell, Neal Snooke and Chris Price
Department of Computer Science, University of Wales Aberystwyth

Penglais, Aberystwyth, Ceredigion, SY23 3DB, U. K.
jpb, nns, cjp@aber.ac.uk

Abstract

Description of system function is already in use as
the basis of an approach to interpretation of the re-
sults of simulation in design analysis, allowing an
automated design analysis tool to generate a tex-
tual report detailing the results of the simulation in
terms of its purpose. This paper presents a novel
functional description language that allows cases
where the individual elements of a required system
function themselves constitute (subsidiary) func-
tions from cases where this is not so. This increases
the expressive power of the functional description,
allowing the automatic generation of design analy-
sis reports of greater precision than has previously
been possible and increases the range of systems
and design analysis tasks for which the approach
can be used.

1 Introduction
Design analyses of engineered systems typically entail the
production of a textual report that describes the result of the
analysis. This report will be cast in terms of whether the sys-
tem fulfils its intended purpose and any consequences of it
failing to do so, or of any other unexpected behavior. The
production of such a report therefore entails the interpretation
of the results of some simulation (which might be qualitative
or numerical) of a system in terms of the system’s purpose.
While the use of computerised simulation saves a good deal
of effort on the part of the engineer, for design analysis to be
fully automated the interpretation and production of the re-
port (or at least a draft thereof) should also be undertaken by
the design analysis system. As functional knowledge is gen-
erally taken to be concerned with the relationship between
the behavior of a device and its purpose, this interpretation of
simulation is a useful r̂ole for such knowledge.

All but the simplest systems have functions that depend on
several inputs and outputs, so functional descriptions have to
allow these to be related to one another. This paper presentsa
language for functional representation that allows this decom-
position of function to distinguish between subsidiary func-
tions (each with its own purpose) and collections of required
effects of a function. This allows an automated design analy-
sis tool to generate reports that are more detailed and precise

than was previously possible. The greater expressiveness of
the language presented also increases its usefulness in support
of other design activities.

The increasing sophistication of modern systems places in-
creasing reliance on design analysis to establish the correct-
ness and safety of their design. It also complicates the func-
tionality of devices, so if a functional model of a device is
to be used as part of the design process, the language used
must be capable of representing this greater complexity. Typ-
ical examples of such system functions are warning functions
that inform the user of the state of the device.

The automation of design analysis, resulting in the auto-
matic production of a suitable report is particularly useful
with safety analyses such as Failure Mode Effects Analysis
(FMEA) and Sneak Circuit Analysis (SCA). These tasks are
repetitive and require an engineer who is familiar with the
system to undertake them. Their automation means the anal-
yses can be carried out early, when any changes indicated are
easily made, and often, in response to such changes. FMEA
is a example of failure analysis, the basis of which is com-
parison between the simulation of the correctly working sys-
tem with simulation of the system as affected by component
failures. This allows the triggers of system functions to be
derived from the correct simulation (in many cases) unlike in
the case of design verification analyses (such as SCA).

2 Background - the uses of function

Representations of function have been used for three main
tasks. The functional reasoning community have used knowl-
edge of a system’s structure and of the functions of its compo-
nents to derive the system’s behavior. This has been done to
support diagnosis[Sticklenet al., 1989] and FMEA[Hawkins
and Woollons, 1998]. Here system function is expressed in
terms of the relations between component functions. This
contrasts with a “top down” view of system function that has
been used in support of the design process by[Iwasakiet al.,
1993], following the model of the design process in[Gero,
1990] where design is viewed as the functional refinement of
a system, breaking down the system functions until they can
be related to component behaviors.

A similar system level view of function is used for inter-
pretation of results of model based simulation for automatic
design analysis in[Price, 1998]. In this “functional labeling”

approach, system functions are attached to significant behav-
iors, showing which system outputs are required to achieve
a specific purpose. These behaviors are typically represented
in terms of outputs or goal states, so the function “room lit”is
associated with the system state in which the light is on. The
expressiveness of this approach was increased by allowing hi-
erarchies of function, described in[Snooke and Price, 1998],
so that the resulting design analysis report, instead of sim-
ply reporting that, say, a car’s headlamp function had failed,
might now present a more detailed report, such as “headlamps
failed because left headlamp failed”. The present work is pri-
marily concerned with increasing this expressiveness further
by distinguishing between cases where the presence of some
of the required output mitigates the failure of the main func-
tion and cases where it does not and also cases where outputs
provide alternative ways of achieving a system function.

The functional labels in[Price, 1998] did not include any
description of the triggers or preconditions of the function
because they could be derived from the simulation of the sys-
tem behaving correctly for the intended use of failure analy-
sis. They were added to allow the use of functional labels for
SCA. The present language adds a representation of the trig-
ger of a function, which, it is suggested, increases the useful-
ness of the language, both for interpretation of model based
simulation in design analysis and for support for functional
refinement in the design process itself.

3 A language for functional description
The basis for the functional description language presented in
this paper is a concern with how a device achieves an intended
purpose, when viewed from the outside of the device. A more
formal definition is

Function: An object O has a function F if it
achieves an intended goal by virtue of some exter-
nal trigger T resulting in the achievement of an ex-
ternal effect E.

While this definition is novel it is consistent with the idea of
function as a relation between purpose and behavior in[Chit-
taro and Kumar, 1998]. Indeed it could be seen as combining
both their “purposive” and “operational” ideas of function. It
is also not inconsistent with the idea of function as effect in
[Chandrasekaran and Josephson, 1996] and with the idea of
function viewed as a device’s response to an external stimu-
lus in [Sembugamoorthy and Chandrasekaran, 1986]. Unlike
many other views of function used in the model based rea-
soning and functional reasoning communities, this view of
function is distinct from both behavior and purpose.

This definition of function leads to the idea that a represen-
tation of function must include three elements, a represen-
tation of the purpose fulfilled when the system achieves the
function, the trigger that stimulates the function and the func-
tion’s effect. If the trigger and effect are treated as Boolean
expressions, then they can be used to define the state of
achievement of the function, as illustrated in Table 1. The
function states in the third column of the table are defined in
terms of the truth of the trigger and effect, so where a function
is ‘achieved’ for example, its trigger and effect expressions
both resolve to true. The trigger acts as the precondition for

Trigger Effect Function
false false inoperative
true false failed
false true unexpected
true true achieved

Table 1: Achievement of function using trigger and effect.

the function, so when it resolves to false then the function
is not called for. Likewise, the effect is the post-condition.
This captures the possibility that a function’s effect might be
achieved unexpectedly as well as the more likely case where
the trigger does not result in the expected effect, when the
function is said to have failed. The trigger and effect agreeing
in value are consistent with correct behavior of the system,
though it should be noted that an effect might be associated
with more than one trigger, and also, as the function is seen
as an external “black box” view of the system, the possibility
exists that an incorrect behavior might result in (apparently
correct) achievement of a function. It is not appropriate to
reduce the four states of a function to these consistent and
inconsistent pairs, however, as the consequence of failureof
the function (trigger true and effect false) typically differ from
those of unexpected achievement of the function (or strictly
speaking of its effects).

The keyword TRIGGERS is used to separate the trigger
from the effect while ACHIEVES is used to label the purpose
associated with the function. The function’s recognizer (used
to show the state of achievement of the function) is labelled
using BY. In simple cases the recognizer is the pair of trigger
and effect. A simple functional description of a room light is
FUNCTION room_light

ACHIEVES "light room"
BY
switch_on
TRIGGERS
lamp_on

where the labels “switchon” (the trigger) and “lampon” (the
effect) are used to attach properties of the simulated behavior.

In practice a description of purpose will be more complex
than the simple textual statement shown above. It will typi-
cally also include a description of the consequences of fail-
ure to fulfil the purpose (that is of failure of the function) and
possibly also numerical values for the severity and detectabil-
ity of such a failure to allow the generation of a “risk prior-
ity number” for the failure to fulfil the purpose. Therefore
it is preferable to separate the description of purpose from
the functional description itself. This is, of course, consistent
with the idea that function is concerned with how a purpose
is fulfilled as distinct from the purpose itself. It also has the
practical advantage of encouraging model reuse, as different
systems will fulfil a given purpose in different ways. For ex-
ample, the external lighting systems of a car and motorbike
fulfil the same purposes, so these models could be reused,
while both the triggers and effects are different. In the func-
tional description, then, the description of purpose is replaced
by a reference to a separate model.

The unexpected achievement of a function’s effect will also
have a similar set of consequences, though the content will

differ in most cases. As these consequences do not typically
relate to the purpose of the system, and are more specific to
the system, they are better associated with the coupling be-
tween the functional model’s effect and the system property
that implements that effect.

The inclusion of the trigger is an important difference from
the functional labeling approach in[Price, 1998]. Not only
does it allow the functional model to be used for design verifi-
cation, as well failure analysis, it also allows functionalmod-
els to be used in cases where a function’s trigger cannot be
unambiguously derived from the simulation of the correctly
working system. These include cases where a given function
is triggered by the state of some other system function. Ex-
amples include telltale and warning functions and fault tol-
erant backup functionality. This is illustrated later. As the
precondition for the function, the trigger captures the exter-
nal stimuli that call for the function to be achieved, so model
the user’s intention for the system, for example by describing
switch positions.

The description of the trigger, together with the use of la-
bels in the trigger and effect allow the functional model to be
constructed independently of any system to which it is to be
attached. This aids reuse of the functional model and supports
its use for functional refinement of the design similarly to the
approach in[Iwasakiet al., 1993]. It also allows the language
to be used for establishing the functional requirements of a
system.

While in simple cases, the trigger and effect of a function
might simply be labels, as illustrated in the example above,
the fact that they are treated as Boolean expressions allows
the use of logical operators to combine expected triggers and
/ or effects. These might be the Boolean operators while to
describe more temporally complex combinations the sequen-
tial operators described in[Bell and Snooke, 2004] can also
be used. This is the simplest case of functional decomposi-
tion, which area forms the subject of the following section.

4 Decomposition of function
The idea that a function can depend on more than one trig-
ger and effect can also usefully be extended to cases where
a given system function is best decomposed in terms of sub-
sidiary functions. This allows cases where achievement of
some but not all of a top level function’s required effects have
different consequences from failure of all of the effects tobe
described, and also cases where a function can be achieved
by one of several alternative combinations of triggers and ef-
fects. These are illustrated below.

If functions are decomposed into subsidiary functions, this
raises the necessity of relating the state of the top level func-
tion (as in Table 1) to the states of the child function(s). These
relations are shown in Table 2. In the table, where an entry
is in brackets, the automatically generated failure reporttext
will not refer to the top level function, but rather to the fail-
ure of the child function. The rule used is that the triggering
and effect of the top level function depend on the relations
between the triggers and effects of the child functions. For
example, in the third row of Table 2, Child 1 is inoperative
(defined as its trigger and effect both false) and Child 2 is

failed (trigger true but effect false). A function dependent on
Child 1 AND Child 2 is therefore inoperative as the trigger of
Child 1 AND the trigger of Child 2 resolves to false and the
effect of Child 1 AND the effect of Child 2 also resolves to
false. As this function is inoperative the report can ignoreit
in this case and instead draw attention to the failure of Child
2. This approach gives rise to apparently anomalous results,
such as where there are two children combined using OR and
one child has failed and the other effect is unexpected. It is
perhaps questionable whether this amounts to achieving the
top level function. Where a function is achieved by alterna-
tive effects (as here) arguably its purpose can be fulfilled if
an unexpected alternative effect is present. For example, a
hob might have a function that is achieved provided that at
least one ring heats up in response to being turned on. Ar-
guably this function is achieved if the wrong ring comes on
(you could still cook on the hob, at least if you know which
ring is on) even though it is not consistent with correct behav-
ior of the system. In such cases, the report will include entries
for the subfunction failures, which reduces the significance of
such possible anomalous results.

Where a function is composed of subsidiary functions,
these might be complete representations of a function, each
with its own (reference to) purpose, trigger and effect or they
can be incompletely represented, because they share an el-
ement with other linked subsidiary (child) functions. Given
that there are three elements in a complete functional repre-
sentation, there are three possible incomplete representations
of function, pairing trigger and effect, pairing effect andpur-
pose and pairing trigger and purpose. As a trigger cannot
fulfil a purpose without resulting in an effect, the last of these
can be ignored, so we have two classes of “incomplete func-
tions” that can be used in a hierarchical functional decompo-
sition. These have been named consistently with the alter-
native approaches to function in[Chittaro and Kumar, 1998]
as “operational incomplete function” (abbreviated to OIF)for
one that pairs trigger and effect (so relates input and output)
and “purposive incomplete function” (PIF) for those that re-
late effect and purpose.

Neither of these classes of incomplete function should be
used other than as subsidiary functions of a top level (com-
plete) function. Their use allows a function to be decom-
posed in four ways, as illustrated in Figure 1. Introducing a
description of purpose lower in the hierarchy (by using sub-
sidiary functions or purposive incomplete functions) allows a
more precise identification of the failure. Purposive incom-
plete functions allow effects that share a trigger to be asso-
ciated with their own purposes, perhaps mitigating failureof
the top level function. For example, where a warning system
gives both an audible and visual signal, the presence of one
of these signals means some warning is given. In this case,
purposive incomplete functions can be used as the two sig-
nal child functions will share a trigger (the failure that isthe
subject of the warning).

Operational incomplete functions allow the grouping of
triggers and effects that provide alternative means of achiev-
ing a function and where the effects of the subsidiary func-
tions fulfil the same purpose. A simple example is where
a room has two lamp circuits, each with its own switch and

Child 1 Child 2 AND OR XOR
inoperative inoperative inoperative inoperative inoperative
inoperative achieved inoperative achieved achieved
inoperative failed (inoperative) failed failed
inoperative unexpected (inoperative) unexpected unexpected
achieved achieved achieved achieved inoperative
achieved failed failed (achieved) (inoperative)
achieved unexpected unexpected (achieved) failed

failed failed failed failed (inoperative)
failed unexpected (inoperative) (achieved) (achieved)

unexpected unexpected unexpected unexpected (inoperative)

Table 2: States of functions and sub-functions.

FUNCTION ACHIEVES

PURPOSE

effect

TRIGGERS

trigger

operator

OIF OIF

TRIGGERS

trigger operator

PIF PIF ACHIEVES

PURPOSE

FUNCTION FUNCTION ACHIEVES

PURPOSE

effect

TRIGGERS

trigger effect

operator

BY

Figure 1: Four ways of decomposing a system function

lamp and either of which will serve to light an occupant’s way
around the room. Notice that

FUNCTION room_light
ACHIEVES light_way_around_room
BY
OIF ceiling_light
OR
OIF wall_light

where each operational incomplete function associates a
switch with its lamp, differs from

FUNCTION room_light
ACHIEVES light_way_around_room
BY
wall_lamp_switch_on

OR ceiling_lamp_switch_on
TRIGGERS
wall_lamp_on OR ceiling_lamp_on

as in this case, either switch could switch on either (or both!)
lamps and any fault that caused the wrong switch to trigger
the wrong lamp would go undetected. This could be avoided
by having each switch and lamp in its own clause, but this
loses the idea that a function has a trigger and an effect. An-
other benefit from the use of operational incomplete functions
is the possibility that as the design is refined, they can readily
have a purpose added, promoting them to complete functions.

For example, the walllight function might later have the pur-
pose “light desk” added as the design of the room proceeds,
so promoting it to a complete (if subsidiary) function.

As will be seen in the example above, where a function is
composed of subsidiary functions (whether complete or in-
complete), an expression relating these subfunctions replaces
the trigger and effect as the recognizer of the main function.

Having introduced the idea that using subsidiary functions
can be used to generate more precise reports, its use can now
be discussed. This follows the approach in[Snooke and Price,
1998], but the area is developed more fully than was the case
in that paper. The basis of the approach is that subsidiary
functions that have their own reference to purpose are used
to represent cases where achievement of one of the top level
function’s effects mitigate the failure of the function. This
contrasts with cases where this does not apply. Using Boolean
AND and Boolean OR with either subsidiary functions or
with effects gives four possible outputs when describing fail-
ure of a function. Each will be briefly described in turn.

Commonly, of course, a function might depend on two (or
more) effects, the failure of either of which is regarded as
tantamount to failure of the function. In this case, subsidiary
functions are not used, as in Figure 2. In all these figures, a
thick lined box indicates a function and a thin one a descrip-
tion of purpose. In this case there is no distinction between

IF EFFECT E2 IS ABSENT, OUTPUT IS
Function TOP failed
 because expected effect E2 absent.
Severity = x
Consequences are those of failure of P

AND

E1 E2

TOP

TRIGGERS

T

ACHIEVES

P
Severity = x

Figure 2: The result of combining effects using AND

failure of one of the effects or both, as either amounts to fail-
ure of the function itself, although the textual output willindi-
cate which effect was missing. In this case, then, the failure of
one effect has the same severity as the failure of both, and the
consequences are also identical. A simple example might be
a car’s stop lights, if only because failure of either stop light
renders the car legally unroadworthy. In this case, the fail-
ure of either or both of the stop lights to light in response to
the brake pedal being pressed might be “Function brake light
not achieved, because expected effect right lamp lit was ab-
sent. Consequences are no warning given to following driver.
Severity 8”.

This contrasts with the case where the failure of a top level
function is mitigated by achievement of one of the required
child functions (which might be either a complete function
with its own trigger or one of a set of purposive incomplete
functions that share a trigger). This is illustrated in Figure 3.
This allows the effects of the failure of one of the child func-

IF EFFECT E2 IS ABSENT, OUTPUT IS
Function TOP failed
 because function SUB 2 failed.
Severity = y
Consequences are those of failure of P(SUB 2)

AND

TOP

ACHIEVES

P(SUB 2)
Severity = y

SUB 1 SUB 2

ACHIEVES

P(TOP)
Severity = x

TRIGGERS

T2 E2

TRIGGERS

T1 E1

Figure 3: Using subfunctions to mitigate AND

tions to be distinguished from the effects of the failure of
both. In the warning system mentioned earlier, failure of the
visual warning will result in the output in the report using

the consequences and severity value associated with the vi-
sual warning child function, but it will include a referenceto
the failure of the top level function, “Function warning failed
because of failure of function visual warning. Consequences
are no lasting visual indication of system failure. Severity
7”. If both effects (subfunctions) fail the report will use the
consequences and (greater) severity value associated withthe
top level function. The report will still include a reference to
missing effects. This is particularly valuable where the child
functions themselves depend on more than one effect. Ar-
guably the reporting of the consequences and severity of the
subsidiary failure is not entirely consistent with AND, butit
does seem useful to be able to distinguish between this case
and the earlier case, and this does provide a simple approach
to drawing this distinction. The report does still include the
reference to the failure of the top level function. Notice that
if the consequences of failure of the top level function are
reported, there is no distinction between this case and the ear-
lier one, and nothing gained by using subsidiary functions
as their failures will not be reported. An alternative would
be to include addition operators, but this merely adds com-
plexity without appearing to result in any useful increase in
the expressiveness of the language compared to the approach
adopted.

Another possible decomposition is where a function is sat-
isfied by any one of its subsidiary functions being achieved,
as illustrated in Figure 4. In this case, the failure of one

IF EFFECT E2 IS ABSENT, OUTPUT IS
Function SUB 2 failed.
Severity = y
Consequences are those of failure of P(SUB 2)

OR

TOP

ACHIEVES

P(SUB 2)
Severity = y

SUB 1 SUB 2

ACHIEVES

P(TOP)
Severity = x

TRIGGERS

T2 E2

TRIGGERS

T1 E1

Figure 4: Combining subfunctions using OR

subsidiary function does not prevent achievement of the top
level function, so the report need not refer to that function
but only to the failed subsidiary function. A possible exam-
ple is the hob functional model, where a top level “cook on
hob” function is achieved by any of the four rings’ identical
“cook on ring” functions. Suppose the left front ring fails,
then the “cook on hob” function is achieved by using another
ring (subject to possible limitations on the sophistication of
the cuisine!). This case might be reported as “Function cook
on ring failed for left front ring because expected effect of
ring heating was absent. Consequences are left front ring not
available for cooking. Severity 4.” This captures the differ-

ence in severity between failures that cause any one ring to
fail and failures that cause all the rings to fail, which willbe
missed if the rings’ outputs are simply treated as effects ofthe
“cook on hob” function.

It is possible (though perhaps unlikely) that there are sev-
eral ways of achieving some function each of which does not
itself really have its own distinct purpose. The room light ex-
ample mentioned above is a possible case, as the alternative
lights’ functions might be felt to be too imprecise for useful
modeling, and for safety analysis all that is felt to matter is
that an occupant can find his or her way around after dark. In
this case, there is no call for a description of purpose below
the top level function, as in Figure 5. Here once both lamps

IF EFFECT E2 IS ABSENT, OUTPUT IS
Effect E2 not present.
Severity = 0
No consequences, no funciton has failied.

OR

E1 E2

TOP

TRIGGERS

T

ACHIEVES

P
Severity = x

Figure 5: Combining alternative effects using OR

are switched on the report need, strictly speaking, include
nothing as the function is achieved. This is clearly unhelp-
ful, so a reference to the absence of the missing effect will be
included, but will have no consequences or value for sever-
ity. If the wall lamp fails, the report might read, “Expected
effect wall lamp lit absent”. At some point in the testing, of
course, only the failed part of the system will be active (only
the wall lamp switched on) and this will, of course result in
the function.

It will seldom (if ever) be the case that OR will be used
to combine effects or purposive incomplete functions, as itis
extremely unlikely that a trigger can result in one or other (or
both) of two different effects being achieved. In cases where
such a non-deterministic model applies, it will often be the
case that the trigger needs to be more closely specified. For
example, in a software system it might be the case than an
input can result in one of two alternative paths of execution
(so effects) but this will almost invariably depend on the value
of the input and will not actually be non-deterministic. It will
be necessary to model the trigger in such a way that both paths
are tested, of course, in this case.

Exclusive OR can be used in much the same way as OR,
but its use will, it is suggested, be extremely rare. There can
be few top level functions that can be correctly achieved by
either one, but not both, of two subsidiary functions (or ef-
fects). In general, where XOR might be used the subsidiary
functions are generally better viewed as separate functions.
A case in point might be a car’s direction indicators, where

“indicate turn” might (carelessly!) be modelled as “indicate
left XOR indicate right”. This is clearly incorrect, as in any
given situation substituting one subfunction for the otheris
simply misleading. Those two functions are better modelled
as separate functions.

In addition to the use of these conventional logical opera-
tors, the sequential operators described in[Bell and Snooke,
2004] can readily be used either to combine expected ef-
fects or subsidiary function so, for example, a washing ma-
chine’s wash function might decomposed as a sequence of
wash, rinse and spin functions, each of which can be consid-
ered to have its own associated purpose and the consequences
of failure of each function are different.

5 Using the functional language
With the increasing sophistication of many systems, the func-
tional models required for design analysis are increasingly
complex, not only individually, but in their relationships. For
example a modern domestic washing machine will have indi-
cation and warning functions to inform the user of the current
state of the wash cycle and more specifically to indicate that
the wash is complete and the machine can be unloaded or that
a problem has arisen. A simple model of a function to indi-
cate that the wash is complete might look like this.

FUNCTION wash_completed_indicator
ACHIEVES show_wash_completed
BY
FUNCTION wash ACHIEVED
TRIGGERS

PIF telltale_lamp
AND
PIF chimer

PURPOSE show_wash_completed
DESCRIPTION
"Indicate wash cycle is complete"
FAILURE_CONSEQUENCE
"User not told machine can be unloaded."

PIF telltale_lamp
ACHIEVES visual_indication
BY lamp_on

PURPOSE visual_indication
DESCRIPTION
"Show user wash cycle is complete"

FAILURE_CONSEQUENCE
"No lasting indication that wash is complete"

Each section of the example is taken to be a separate model.
In addition to referring to a separate description of purpose, a
functional decomposition might involve subsidiary functions
that might themselves be separate models, with the advantage
of encouraging reuse of these subsidiary functions. As in the
example above, a function might also refer to some other re-
lated system function. Here, the functional model and both
the subsidiary purposive incomplete functions, as well as the
three related purpose descriptions can all be separate files.
An alternative approach would be to use a database for stor-
ing these models, using the database keys as the references,
instead of the filenames.

This is an example of subsidiary functions combined using
AND. The achievement of either subfunction mitigates the
failure of the washcompletedindicator function, as some in-
dication is given. The chimer purposive incomplete function
has been omitted to save space. It will contain a series of
buzzes as the required effect. This can be described using the
‘sequence’ operator discussed in[Bell and Snooke, 2004]

Another interesting point that has not been discussed is the
relationships between unexpected achievement of the effects.
In this and many other cases, this is cumulative. Here, if the
lamp output is achieved unexpectedly (so the telltale lamp is
on continuously) then the user will still know that the wash
cycle is complete if the buzzer gives the correct indication
(and the user hears it!) while if both outputs occur continu-
ously, no indication is given. This means that while in most
cases the consequences of unexpected achievement of an ef-
fect are best attached to the link between the effect label and
the system property that implements the effect, it might be
necessary to attach descriptions of unexpected consequences
at other, higher, levels of the functional hierarchy.

The specification of the trigger as the wash function be-
ing ACHIEVED does, of course, have the specific meaning
that the trigger and effect of that function are both true. This
distinguishes the indication function from a warning function
that is triggered by failure of the triggering function. In prac-
tice it is likely that specific triggers and effects of the trigger-
ing function will be used, rather than the state of the function
itself, so as to specify the trigger of the dependent (warning)
function more precisely. As the trigger can be specified to
whatever degree of precision the model builder thinks fit, and
the use of labels for the trigger and effect allow the functional
model to be built without reference to the target system, the
language can be used to support functional refinement of the
system design, following the model of the design process in
[Gero, 1990]. These features also allow the language to be
used to clarify the requirement of the system’s functionality.

The approach to functional decomposition described
herein differs from the earlier approach in[Snooke and Price,
1998] by using the difference between decomposing a func-
tion into subsidiary functions and into expected effects toin-
crease the expressive power of the language. It also differs
from that paper (and the functional reasoning approach) by
not relating the system’s functional hierarchy and its struc-
tural hierarchy. There is no explicit modeling of component
functions, though it will typically be the case that subsidiary
functions will be related to at least one possible structural de-
composition of the system.

6 Conclusion
The functional language described herein increases the ex-
pressive power of descriptions of system function over earlier
approaches. This increases the range of design analyses that
can be automated using the functional labeling approach, to
include both design verification and failure analysis, and also
increases the range of systems to which functional descrip-
tions can be applied. The distinction between decomposition
using subfunctions and using effects allows cases where par-
tial achievement of a function is better than nothing to be dif-

ferentiated. The explicit inclusion of the trigger of a function
allows system functions whose trigger is the achievement or
failure of some other function to be unambiguously described
as well as enabling the use of the approach for design verifi-
cation. The modeling of the and use of labels for triggers
and effects also allows for the functional models to be built
independently of the target system. This allows the use of
the language for functional refinement of a design and also
for the related task of specifying the behavioral requirements
of the system (from an external viewpoint), so increasing the
use of the language beyond its rôle in interpretation of model
based simulation of engineered systems.

References
[Bell and Snooke, 2004] Jonathan Bell and Neal A. Snooke.

Describing system functions that depend on intermittent
and sequential behavior. InProceedings 18th International
Workshop on Qualitative Reasoning, QR2004, 2004.

[Chandrasekaran and Josephson, 1996] B. Chandrasekaran
and John R. Josephson. Representing function as effect:
Assigning functions to objects in context and out. In
Proceedings of American Association for Artificial Intel-
ligence, 1996.

[Chittaro and Kumar, 1998] Luca Chittaro and Amruth N.
Kumar. Reasoning about function and its applications
to engineering. Artificial Intelligence in Engineering,
12(4):331, 1998.

[Gero, 1990] John Gero. Design prototypes: A knowledge
representation schema for design.AI Magazine, 11(4):26–
36, 1990.

[Hawkins and Woollons, 1998] P. G. Hawkins and D. J.
Woollons. Failure modes and effects analysis of complex
engineering systems using functional models.Artificial
Intelligence in Engineering, 12(4):375–397, 1998.

[Iwasakiet al., 1993] Yumi Iwasaki, R. Fikes, M. Vescovi,
and B. Chandrasekaran. How things are intended to work:
Capturing functional knowledge in device design. InPro-
ceedings of 13th International Joint Conference on Artifi-
cial Intelligence, pages 1516–1522, 1993.

[Price, 1998] Christopher J. Price. Function-directed electri-
cal design analysis.Artificial Intelligence in Engineering,
12(4):445–456, 1998.

[Sembugamoorthy and Chandrasekaran, 1986] V Sem-
bugamoorthy and B Chandrasekaran. Functional
representation of devices and compilation of diagnostic
problem-solving systems. In Janet L. Kolodner and
Christopher K. Riesbeck, editors,Experience, Memory
and Reasoning, pages 47–73. Erlbaum, 1986.

[Snooke and Price, 1998] Neal A. Snooke and Christopher J.
Price. Hierarchical functional reasoning.Knowledge-
Based Systems, 11(5–6):301–309, 1998.

[Sticklenet al., 1989] Jon Sticklen, A. Goel, B. Chan-
drasekaran, and W. E. Bond. Functional reasoning for
design and diagnosis. InProceedings Model Based Di-
agnosis International Workshop (DX-89), 1989.

