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1. Introduction

The main aim of the organization’s pricing policy is im-
provement of the financial results of its activities: maximiz-
ing revenue and profits, ensuring that sales volumes match 
planned values, etc. When pricing, it becomes necessary to 
analyze factors such as consumer demand and its dependence 
on price, interchangeability and complementarity of goods, 
the number of competitors, limited resources for the pro-
duction and delivery of products. Pricing also acts as a tool 
of marketing policy, allowing to perform sales promotion, 
attracting and retaining customers.

A large number of approaches used to determine prices 
is explained by the variety of types of trade and production 
processes and factors affecting the formation of prices, the 
challenges facing enterprises, as well as the specifics of their 
activities.

One of the main factors determining price formation 
is customer demand. To predict its value depending on the 
price, models are built on the basis of statistical data. More-
over, both the volume of demand and the probability of pur-
chase can be considered as the predicted value. Among the 
most famous forecasting models, regression models [1–7], as 
well as their combinations with other methods [8], can be 
noted. At the same time, forecasting models can take into 
account the interchangeability of products [9], competition 
in the market [10], and the limited shelf space of the store [2].

When optimizing prices, depending on the statement 
of the problem, it becomes necessary to solve the problem 
of linear, nonlinear, integer, linear-fractional programming. 
Moreover, the use of classical methods for solving problems 
can be difficult due to their complexity and complexity 
in computer implementation, as well as the high cost of 
computing resources, especially when considering tasks of 
large dimension. Therefore, the development of optimization 
algorithms that are more efficient and simple in computer 
implementation (for example, that do not require performing 
multiple iterations, determining additional variables that 
increase the dimension of the problem, and forming modified 
functions) is an urgent task.

2. Literature analysis and problem statement

The solutions to the problems of price optimization are 
devoted to [6, 9, 11–15]. They present optimization models 
taking into account the specifics of the object of study. So, 
in [11], the problem of maximizing revenue by considering 
the set of prices for competing goods is considered, provid-
ed that the sum of prices of the group of goods is equal to 
a given value. In article [12], income from the sale of “fast 
fashion” class clothes consists of revenue until the last 
week of sales and revenue in the last week of sales when 
the collection is liquidated at the lowest price. In [6], when 
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Запропоновано алгоритм вирiшення задачi оптимiзацiї цiни за допомогою 
зворотних обчислень. Алгоритм включає два етапи: рiшення задачi безумовної 
оптимiзацiї i рiшення зворотної задачi з допомогою зворотних обчислень при 
мiнiмiзацiї змiни аргументiв функцiї. При цьому рiшення зворотного завдання 
може бути виконано багаторазово протягом заданого числа iтерацiй для послi-
довного наближення до встановленого значення обмеження, а для визначення 
збiльшень аргументiв використовуються значення елементiв вектора градiєн-
та/антиградiєнта функцiї обмеження. Для врахування впливу аргументiв на 
змiну цiльової функцiї використовуються її другi частнi похiднi. Розглянуто 
п'ять варiантiв завдання оптимiзацiї цiни, якi представляють собою завдан-
ня нелiнiйного програмування з одним обмеженням. У завданнях враховується 
залежнiсть попиту вiд цiни i передбачається, що вона має лiнiйний вигляд. Як 
цiльову функцiю розглянуто виручку пiдприємства, вiдхилення попиту вiд обся-
гу виробництва, вiдхилення шуканої цiни вiд її поточного значення. Показано, що 
одержуванi при цьому рiшення узгоджуються з результатом використання кла-
сичних методiв (множникiв Лагранжа, штрафiв), також виконано порiвняння 
результатiв з рiшенням задач за допомогою математичного пакету MathCad. 
Перевагою методу є бiльш проста комп'ютерна реалiзацiя, можливiсть отри-
мати рiшення за менше число iтерацiй в порiвняннi з вiдомими методами. Метод 
може бути також використаний для вирiшення iнших завдань представленого 
виду з наступними вимогами до цiльової функцiї та обмежень: 

1) частнi похiднi цiльової функцiї першого порядку – лiнiйнi одномiрнi 
функцiї; 

2) обмеження має вид рiвностi;
3) обмеження має лiнiйний вигляд або обмеження має квадратичний 

вигляд, а частнi похiднi першого порядку функцiї обмеження – лiнiйнi одно-
вимiрнi функцiї. 

Стаття може бути корисною для фахiвцiв, що здiйснюють прийняття 
рiшень в областi цiнової полiтики органiзацiй, а також розробку оптимiзацiйних 
моделей об'єктiв економiки i систем пiдтримки прийняття рiшень

Ключовi слова: зворотнi обчислення, оптимiзацiя цiни, квадратичне програ-
мування, градiєнтний метод, зворотне завдання
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maximizing profit, producer prices are taken into account. 
The authors also consider the solution to the problem of 
price optimization by modeling the user’s choice of goods 
taking into account their interchangeability [9], setting 
individual prices in each sales channel (website, mobile ap-
plication, social networks) [13]. In [14], cost accounting for 
the purchase and storage of goods is performed, in [15] two 
types of customers are investigated: loyal and disloyal, and 
the shelf space in the store is considered limited.

From the studies presented in [7–9, 12–15] it follows 
that the problem of price optimization is often presented 
as a nonlinear programming problem. Let’s consider the 
optimization problem with one constraint in the form of 
equality. A linear dependence of demand on price is as-
sumed, linear regression parameters for determining the 
forecast value of weekly demand are determined on the 
basis of available statistical data on the values of prices 
and demand for previous periods. The classic method 
for estimating regression parameters is the least squares 
method.

Let’s define the following notation:
– pj – the desired price of the product in the j-th period 

( j=1..n, n – the number of periods);
– pi – the desired price for the product of the i-th type 

(i=1..m, m – the number of types of products);
– qi – the current price of the i-th product;
– ai and bi – the linear regression parameters used to 

determine the demand vi for an i-type product:

.i i i iv a b p= + ⋅

In this case, negative elasticity of demand is assumed, 
i. e. its decrease with rising prices, therefore, the following 
restrictions are imposed on the sign of the parameters: ai≥0 
and bi≤0.

If a product of one type is considered, then the parame-
ters are indicated without indices: a and b.

– cj – the planned output of the product in the j-th pe- 
riod;

– P1, P2 – the value of the revenue to be received;
– r – the resource costs for the manufacture of a unit of 

product;
– R – the value of the available material stock of the 

enterprise;
– hi – the volume of a unit of a product of the i-th type;
S – the delivery volume.
It is possible to determine the following options for the 

problems of price optimization p (revenue is used as a finan-
cial indicator of the company’s activity):

Option 1: Minimizing the deviation of projected demand 
in the j-th period from the planned production volume with a 
restriction on the volume of the used resource: the volume of 
the used resource for the production of the product is equal 
to the available stock [16]:

( ) ( )2

1

min,
n

j j
j

f p a b p c
=

= + ⋅ − →∑

( ) ( )
1 1

,
n n

j j
j j

h p rv r a b p R
= =

= = + ⋅ ≤∑ ∑  0.jp ≥   (1)

Option 2: Maximizing the total revenue (minimization 
of the value obtained by multiplying the revenue by –1) 
obtained by summing the proceeds from the sale of the i-th 

type of product, if there is a limit on the delivery volume of 
all types of products:

( ) ( )
1

min,
m

i i i i
i

f p a b p p
=

= − + ⋅ →∑    
 

( ) ( )
1 1

,
m m

i i i i i i
i i

h p h v h a b p S
= =

= = + ≤∑ ∑  0.ip ≥   (2)

The solution to this problem while maximizing profits is 
considered in [19].

Option 3: Minimizing the deviation of the forecasted 
demand in the j-th period from the planned production 
volume of the product if there is a limit on the value of total 
revenue for n periods, the value of which should be equal to 
the established:

( ) ( )2

1

min,
n

j j
j

f p a b p c
=

= + ⋅ − →∑    
 

( ) ( ) 1
1 1

,
n n

j j j j
j j

h p p v p a b p P
= =

= = + ⋅ ≥∑ ∑  0.jp ≥   (3)

Option 4: Minimizing the deviation of the projected de-
mand for the i-th type product from the planned production 
volume of a product of this type if there is a limit on the value 
of total revenue for all types of products, the value of which 
should be equal to the established:

( ) ( )2

1

min,
m

i i i i
i

f p a b p c
=

= + ⋅ − →∑    
 

( ) ( ) 1
1 1

,
m m

i i i i i i
i i

h p p v p a b p P
= =

= = + ⋅ ≥∑ ∑  0.ip ≥  (4)

Option 5: Minimizing the deviation of the desired 
price from the current (find the value closest to the de-
sired) if there is a limit on the total revenue for all types 
of products, the value of which should be equal to the 
given value:

 

( ) ( )2

1

min,
m

i i
i

f p p q
=

= − →∑     

( ) ( ) 2
1 1

,
m m

i i i i i i
i i

h p p v p a b p P
= =

= = + ⋅ ≥∑ ∑  0.ip ≥  (5)

The solution of the presented problems can be performed 
using classical nonlinear programming methods: fines and 
Lagrange multipliers, which are based on reducing the con-
ditional optimization problem to the unconditional optimi-
zation problem.

In the penalty method, a function is formed that includes 
the objective function and the penalty function of the restric-
tion and the penalty parameter. In the case of a restriction in 
the form of inequality, a logarithmic penalty, a penalty of the 
inverse function type, a penalty of the type of a cutoff square 
are used. Let’s consider the use of a logarithmic penalty. The 
process of solving the problem involves iterative reduction of 
the penalty parameter W and unconditional optimization of 
the penalty function. The algorithm stops when the change 
in the values of the arguments and the function is less than 
the specified accuracy. So, for the third option, the penalty 
function V will have the form:
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( ) ( )

( )

2

1

1
1

,

ln .

n

j j
j

n

j j
j

V p W a b p c

W p a b p P

=

=

= + ⋅ − −

 
− ⋅ + ⋅ −  

∑

∑
 
Let’s take the following values of the initial data n=3, 

а=148.2, b=–1.15, c1=10, c2=5, c3=11, P1=3,400 rubles. Ta-
ble 1 shows the results obtained using the penalty method 
(the initial values of the arguments are 300).

Table 1

Results obtained using the penalty method

Penalty 
parameter 

W

Function arguments Target 
function 

f(p)p1 p2 p3

100 116.4 120.46 115.59 58.84

10 118.70 122.93 117.85 8.988

1 119.36 123.65 118.51 2.71

0.1 119.5 123.79 118.64 1.9

0.01 119.51 123.81 118.65 1.813

0.001 119.51 123.81 118.65 1.804

In the Lagrange multiplier method, a function L is 
formed that includes an unknown parameter – the La-
grange multiplier: the sum of the objective function and 
the constraint multiplied by the Lagrange multiplier λ are 
determined [16–18]. So, for a variant of problem (1) (r=30, 
R=600, the Lagrange function will have the form:

( ) ( )

( )

2

1

1

,

.

n

j j
j

n

j
j

L p a b p c

r a b p R

=

=
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+λ + ⋅ −  

∑

∑
 

To solve the problem, it is necessary to calculate the par-
tial derivatives of the function with respect to the variables 
p, equate them to zero and solve the system of equations:

( ) ( )
( )

1

2

3

1 2

3

2.645 34.5 317.86 0;

2.645 34.5 329.36 0;

2.645 34.5 315.56 0;

148.2 1.15 30 148.2 1.15 30
0.

148.2 1.15 30 600

p

p

p

p p

p

− λ − =
 − λ − =
 − λ − =
  − ⋅ ⋅ + − ⋅ ⋅ +λ =  + − ⋅ ⋅ − 

The considered methods are complex and time-con-
suming in computer implementation and require high com-
putational resources when considering large-dimensional 
problems. Thus, the penalty method requires the multiple 
solution of the unconditional optimization problem with var-
ious values of the penalty parameter; the Lagrange multiplier 
method involves the formation of an expression to determine 
the Lagrange multiplier. In addition, with unconditional 
optimization, a modified function is considered, including 
the objective function and the restriction, for which the use 
of local search methods can be difficult.

An option to overcome such difficulties is use of sto-
chastic methods based on direct random search [20], appli-
cation of evolutionary mechanisms [21], etc. In this case, 
the formation of an optimized modified function does not 

occur. Such methods make it possible to obtain a certain 
solution in a user-specified time, which makes it possible to 
use them in problems of large dimension, when the use of 
classical methods can lead to an unacceptably large solution 
time. However, the resulting solution will be suboptimal and 
change in different launches of software implementation. In 
addition, the implementation of the algorithms themselves 
can be difficult due to the many rules for adjusting the solu-
tions obtained at each iteration.

The option of obtaining a simpler numerical solution 
to the quadratic programming problem is considered in 
[22] and is based on the formation of the system in accor-
dance with the Kuhn-Tucker conditions. Thus, the quadratic 
problem is represented as a linear programming problem. 
However, the approach is suitable only for the case when the 
restriction has a linear form, and its application is associated 
with the formation of simplex tables and the use of the sim-
plex method.

The identified shortcomings of existing methods indicate 
the feasibility of conducting a study on the development of 
an effective algorithm for solving the presented optimization 
problems, devoid of the listed disadvantages associated with 
the formation of a modified function, requirements for the 
type of restriction. For its development, the use of the inverse 
computing apparatus is considered.

By solving problems with the help of inverse calculations 
[23] let’s mean finding the increments of the arguments of 
the function based on the following information: the initial 
values of the arguments and the function, the new value of 
the function, the coefficients of the relative importance of the 
arguments, the direction of change of the arguments. If it is 
necessary to determine the new value of the function so that 
the sum of the squares of the increments of the arguments 
is minimal, then in this case there is no need to use expert 
information. The solution to this problem is considered in 
[24], where expressions for the additive, multiplicative, and 
multiple dependencies between arguments are determined, 
including those obtained using geometric constructions.

3. The aim and objectives of the study

The aim of the study is development of a method for 
solving optimization problems of pricing, which differs from 
the existing ones using a two-stage approach, including 
unconditional optimization of the objective function and 
adjustment of the obtained values of the arguments using 
inverse calculations.

To achieve the aim, the following objectives are set:
– to build mathematical models to solve the problem of 

price optimization;
– to develop a method for solving the problem of price 

optimization based on inverse calculations;
– to perform a comparison of the solutions obtained as a 

result of the implementation of the algorithm with the solu-
tions of problems in the MathCad mathematical package.

4. An algorithm for solving the problem of  
price optimization based on inverse calculations

The optimization problems considered (1)–(5) relate to 
quadratic programming problems and differ in the form of 
the objective function and constraint.
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By type of objective function, problems can be divided 
into two groups:

1 Changing the function argument by β value (relative 
to the minimum point) will lead to the same change in the 
objective function as when changing another argument by β 
value. This means the fulfillment of the following ratio:

( ) ( )
( )
* * * * * *
1 2 1 2

* * *
1 2

, ,..., , ,...,

, ,..., ,

n n

n

f p p p f p p p

f p p p

+ β = + β =

= + β   (6)

where ( )* * *
1 2, ,..., np p p  – the minimum point; β – a certain 

number.
In this case, the second partial derivatives of the function 

will be constant and equal to each other.
This kind of function is found in options 1, 3, 5.
2. The condition for the objective function (6) is not 

satisfied. Partial derivatives of functions are linear one-di-
mensional functions (the second partial derivatives are 
constant).

This kind of function is found in options 2, 4.
Fig. 1, a, b show level lines for the first and second cases, 

respectively.
By type of constraint, problems are also divided into two 

groups:
1. The restriction has the form of linear equality.
This type of restriction is found in options 1, 2.
2. The restriction is non-linear. Partial derivatives of the 

restriction function are one-dimensional linear functions 
(the second partial derivatives are constant).

This type of restriction is found in options 3, 4, 5.

a                                             b 
Fig. 1. Outline graph:  

а – function ( ) ( ) ( )2 2

1 210 5 ;f p a b p a b p= + ⋅ − + + ⋅ −   

b – function ( ) ( ) ( )2 2

1 1 1 2 2 210 5f p a b p a b p= + ⋅ − + + ⋅ −

Let’s consider the application of this approach to solve 
the presented problems. The solution of the problem will 
include two main stages: the solution of the unconditional 
optimization problem and the subsequent correction of the 
obtained solution p* by ∆p value taking into account the 
limitations. The ∆p value is determined by the difference 
∆p=p–p*, where p is the value of the argument, which is the 
solution to the quadratic programming problem. In this case, 
it is necessary to take into account the influence of individu-
al arguments on the change in the objective function.

Let’s consider the option when the objective function 
satisfies condition (6). In the case of a nonlinear constraint, 
the expression of the argument can’t be performed, and, 
consequently, the use of the method described in [24] can’t 
be performed; therefore, the use of the gradient method for 
solving the problem of adjusting the values of arguments p* 
is proposed.

The gradient is a partial derivative vector that shows the 
direction of the greatest increase in the function. Accord-
ingly, the anti-gradient shows the direction of the greatest 
decrease in the function. The essence of the proposed meth-
od is that the ratio of the values of the increments of the 
arguments corresponds to the ratio of the elements of the 
gradient vector, i. e., the change of the arguments occurs 
in the direction of the greatest increase/decrease of the 
restriction function. Since when moving in the direction 
of the gradient/anti-gradient, the largest increase/decrease 
of the function is observed, this indicates that it is possible 
to achieve its predetermined value with smaller changes in 
the arguments. In turn, a smaller change in the arguments 
will lead to a smaller deviation of the value of the objective 
function from the value obtained by solving the problem of 
unconditional optimization. So, for example, for function (6) 
in the case of two arguments and their positive increments, 
the following relation holds: 

( ) ( )( ) ( ) ( )( )1 1 2 2* * * *
1 1 2 2 1 1 2 2, ,f p p p p f p p p p+ ∆ + ∆ < + ∆ + ∆  

at 

( ) ( ) ( ) ( )1 1 2 2
1 2 1 2 .p p p p∆ + ∆ < ∆ + ∆  

Fig. 2 shows an example of solving a problem for a func-
tion with two arguments. The starting point A is obtained 
by solving the unconstrained optimization problem, B is the 
point obtained by moving the function h(x) in the direction 
of the anti-gradient to the intersection with the curve of a  
 
given level 

2
2

1

3 0.5
.

2
x

x
 −

= 
 

 Elements of the anti-gradient  
 
vector of the function h(x) at point A are equal to (–4; –2)T.  
The use of the anti-gradient vector is due to the fact that 
the value of the constraint at point A is 4, which exceeds the 
specified value – 3, therefore, the value of the function must 
be reduced.

However, the direction of the gradient can change when 
moving to a given value of the constraint function, therefore, 
the use of the values of the vector elements calculated at the 
starting point can lead to a solution that differs significantly 
from the optimal one. In this case, the movement to the set 
limit value can be performed step by step.

Fig. 2. Gradient method for solving the problem 

( ) ( ) ( )2 2

1 21 2 ,f x x x= − + − ( ) 2 2
1 22 0.5 3h x x x= + =

Thus, the solution of the problem when using the gradi-
ent vector includes the following steps:

Step 1. Solving the problem of unconditional optimiza-
tion of the objective function f(p). The resulting solution 
includes a set of prices p*. Substitution of the obtained p* 
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values into the constraint and verification of the condition: 
if the inequality is fulfilled, then the algorithm completes, 
otherwise the transition to the next step.

Step 2. Substitution of the obtained p* values into the 
constraint U*=h(p*). Checking the direction of changing the 
arguments: if U*>U, then the value of the constraint function 
must be reduced (elements of the anti-gradient vector are 
used) and t=–1, otherwise, increase (elements of the gradient 
vector are used) and t=1.

Step 3. Determination of the step of changing the con-
straint υ based on a given number of iterations ρ:

( )*

integer ,
U U −

υ =  
ρ  

 

current iteration number α=1.
Step 4. Change of the value of the resulting indicator by 

the value of the specified step:

* * .U U= + υ

Step 5. Determination of the necessary increments of 
the arguments ∆pi to achieve the specified value of the con-
straint U* by solving the system of equations:

( )

( )

( )

*

*

* *

, 1.. , ;

.

i

i

h p
t

p p
i n i

p h p
t

p

h p p U

η η

 ∂
 ⋅

∆ ∂ = = ≠ η ∆ ∂ ⋅ ∂
 + ∆ =

As a result of solving the system, let’s obtain the values 
of the increments of the arguments ∆pi. In the case of a linear 
constraint, the resulting relation is equivalent to the system 
presented in [24], where the increments of the arguments are 
determined based on the criterion of minimizing their sum 
of squares:

( )*

, 1.. , ;

.

i i

p k
i l i

p k

h p p U

η η∆
= = ≠ η ∆

 + ∆ =

where ki – the coefficients of pi in the linear constraint 
equation.

Step 6. Changing the values of the function arguments:

* * .i i ip p p= + ∆

Step 7. Checking the completion of the algorithm: if α=ρ, 
then the operation of the algorithm ends, otherwise α=α+1, 
go to step 4.

Finally, let’s consider the case when condition (6) for 
the objective function is not satisfied. This means that 
changing arguments has a different effect on changing the 
objective function. The case when the partial derivatives of 
the objective function are linear one-dimensional functions 
is considered. To take into account the influence of the 
arguments on the change in the objective function relative 
to the minimum point, let’s use the values of the second 
partial derivatives:

( )

( )

( )

( )

( )

*2

2

2 *

2

*

, 1.. , ;

.

i

i i

h pf p
t

p p p
i l i

f pp h p
tp dp

h p p U

η η η

 ∂∂
 ⋅

∆ ∂ ∂ = = ≠ η ∂∆ ∂ ⋅ ∂

 + ∆ =

The solution to the problem can also be carried out itera-
tively in accordance with the above algorithm.

For the presented problems (1)–(5), the obtained sys-
tems for determining the increments of the arguments will 
accordingly look as follows.

The determination of the increments of the arguments for 
solving problem (1) is performed using the system of equations:
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Having completed the solution of the system, let’s obtain 
the following expression for calculating the growth of func-
tion arguments:
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The system of equations for solving problem (2) has the 
form:
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Solving the system, let’s obtain expressions for calculat-
ing the arguments:
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The calculation of the increments of the arguments for 
solving problem (3) is as follows:
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In this and subsequent versions, the restriction is non-lin-
ear, therefore, the determination of the increment of the basic 
argument can be performed using standard methods for 
solving the quadratic equation. So, for the current version, 
the equation will look like:
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The system of equations for solving problem (4) has the 
form:
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Finally, the determination of the increments of the func-
tion arguments for solving problem (5) is carried out by 
solving the system of equations:
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It can be concluded that in the case of a linear constraint, 
analytical formulas for calculating increments can be ob-
tained. In the nonlinear form of the constraint (problems 
(3)–(5)), to determine the increments of the arguments, it 
becomes necessary to solve the quadratic equation. In this 
case, classical methods for finding roots (Newton’s methods, 
dichotomies, the use of discriminant, etc.) can be used.

5. Results of solving optimization problems

To solve the inverse problem, the data presented in Ta-
ble 2 are used.

Table 2

Problem input data

Indicator
Product number i/Period number j

1 2 3

Linear regression parameter a 148.2 152.1 130.5

Linear regression parameter b –1.15 –1.21 –1.1

Resource costs per unit of 
output r, g

30 – –

Planned volume of produc-
tion, c, kg

10 5 11

Volume of a product unit, 
h, m3 0.2 0.4 0.5

The current price of prod-
ucts, q, rub.

80 75 83

Limit values: R=600 g, S=60 m3, P1=3,400 rub., P2= 
=12,700 rub.

Table 3 shows the solution to optimization problems (1)–
(5) (the number of iterations ρ is 1). The last column presents 
the difference of the obtained solution with the solution of 
the problem using a mathematical package:

( ) ( )* ,f x f xε = −

where f(x) – the value of the objective function obtained by 
solving the problem using inverse calculations; f*(x) – the 
value of the objective function obtained by solving the prob-
lem using the built-in MathCad “Minimize” function.

Table 3

Solution to the optimization problems

Option
The value of the ob-
jective function, f(x) 

Product price Differ-
ence εp1 p2 p3

1 12 121.91 126.26 121.04 127 10−− ⋅

2 –12800 71.38 76.74 76.68 65 10−− ⋅

3 1,803 119.51 123.81 118.65 51 10−− ⋅

4 4,434 119.1 120.49 107.64 66 10−⋅

5 30,245 77.18 72.68 78.89 32 10−⋅

From the Table 3 it is possible to see that the solution to 
the third problem is also consistent with the solutions ob-
tained using the penalty method (Table 1) and the Lagrange 
multipliers. The solution for the fifth option using the inverse 
calculation method has the least accuracy. Fig. 3 shows a 
graph of the change in the objective function of this problem 
depending on the number of iterations ρ. It is possible to see 
that with an increase in the number of iterations, the value 
of the objective function decreases.

Fig. 3. The dependence of the objective function on  
the number of iterations

As an example, consider option (3). Substituting the 
initial numerical values, let’s obtain the following problem:
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The solution to the problem of unconditional optimization: 

*
1 120.17�rubles,p =  *

2 124.52 rubles,p =  *
3 119.3 rubles.p =  

Substituting the values in the constraint, let’s obain:

 

30.243

30.2435

30.244

30.2445

30.245

30.2455

1 2 3 4 5 6 7 8 9 10

f(
x)

the number of iterations



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 5/4 ( 101 ) 2019

24

( ) ( ) ( )
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148.2 1.15 120.17 148.2 1.15 124.52

148.2 1.15 119.3 3,137.

h p = − ⋅ + − ⋅ +

+ − ⋅ =

Since the values need to be increased, gradient values 
are used. Thus, the system of equations has the form (with a 
step ρ equal to 1):
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The solution to the system of equations will be the values 
of the increments of the arguments: ∆p1=–0.66, ∆p2=–0.71, 
∆p3=–0.65. Then the following values of the arguments will 
be the solution of the problem: * :i i ip p p= + ∆ : p1=119.51, 
p2=123.81, p3=118.65.

6. Discussion of the results of the development of an 
algorithm for solving the problem of price optimization

An algorithm based on the inverse calculations of the 
solution to the problem of price optimization is proposed, 
five options of quadratic programming problems with one 
constraint are considered, which differ in the form of the 
objective function and constraints. The results of the appli-
cation of the algorithm are consistent with the solutions ob-
tained using the mathematical package (Table 3). Moreover, 
the greatest degree of correspondence is achieved with linear 
restriction and equality of all second-order partial deriva-
tives of the objective function (in this case, the inverse prob-
lem is solved in one iteration). With nonlinear constraint, 
the smallest degree of correspondence is achieved (option 5), 
in this case an iterative multi-step procedure was applied, 
which ensured that a lower value of the objective function is 
obtained compared to a single-step one.

The following advantages of the proposed algorithm 
can be noted. Unlike the penalty method, the presented 
algorithm does not require multiple solutions to the uncondi-
tional optimization problem (the unconditional optimization 
task objective problem is solved once, after which the inverse 
problem is solved). In addition, the penalty method uses 
a modified function that combines the objective function 
and restriction, and finding its minimum is a more difficult 

task compared to determining the minimum of the objective 
function. The advantage of the proposed algorithm com-
pared to the method of Lagrange multipliers is that there 
is no need to compose a relation to determine the Lagrange 
multiplier.

The disadvantage of the algorithm is its limited appli-
cation, in particular, the number of constraints is equal to 
unity, and the objective function and constraint must satisfy 
the following requirements. Partial derivatives of the first 
order of the objective function are linear one-dimensional 
functions, the restriction has a linear form or partial deriv-
atives of the first order of the restriction function are linear 
one-dimensional functions.

The directions of further research are related to the 
modification of the developed algorithm for solving optimi-
zation problems in the presence of several limitations and its 
application in other subject areas (for example, in inventory 
management).

7. Conclusions

1. An algorithm is proposed for solving the problem 
of price optimization, which is a quadratic programming 
problem with one restriction. Application of the algorithm 
allows one to obtain results that are consistent with the 
results of using classical nonlinear optimization methods. 
Confirmation of this is given in the results of the numerical 
solution of five problems of price optimization. A feature of 
the proposed approach is the absence of the need to form 
a modified function and repeatedly solve the problem of 
unconditional optimization, which simplifies the procedure 
for its computer implementation and accelerates the time 
of solving the problem. This is possible due to the use of the 
inverse computation apparatus in the proposed algorithm, 
which allows one to go from the values of the arguments 
obtained as a result of unconditional optimization of the 
objective function to the values of the arguments satisfying 
the constraint of the problem.

2. The presented algorithm and optimization models 
can be implemented in decision support systems, provid-
ing the organization’s specialists with the opportunity to 
form a set of prices that maximizes revenue or ensures its 
predetermined value. An option may also be considered to 
ensure maximum compliance of demand with the planned 
value of the volume of production. The above algorithm can 
be applied to create optimization systems for other objects, 
provided that the objective function and the restrictions 
to the requirements are satisfied. The two-stage approach 
used, including a one-time solution to the problem of un-
conditional optimization, will ensure the speed of such 
software systems.
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