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Abstract

The subjet multiplicity has been measured in neutral current e+p interactions

at Q2 > 125 GeV 2 with the ZEUS detector at HERA using an integrated lu-

minosity of 38.6 pb−1. Jets were identified in the laboratory frame using the

longitudinally invariant kT cluster algorithm. The number of jet-like substruc-

tures within jets, known as the subjet multiplicity, is defined as the number of

clusters resolved in a jet by reapplying the jet algorithm at a smaller resolution

scale ycut. Measurements of the mean subjet multiplicity,
〈

nsbj

〉

, for jets with

transverse energies ET,jet > 15 GeV are presented. Next-to-leading-order pertur-

bative QCD calculations describe the measurements well. The value of αs(MZ),

determined from
〈

nsbj

〉

at ycut = 10−2 for jets with 25 < ET,jet < 71 GeV, is

αs(MZ) = 0.1187 ± 0.0017 (stat.)+0.0024
−0.0009 (syst.)+0.0093

−0.0076 (th.).
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T. Kowalski, M. Przybycień, L. Suszycki, D. Szuba, J. Szuba8

Faculty of Physics and Nuclear Techniques, University of Mining and Metallurgy, Cracow,

Poland p
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1 Introduction

Jet production in e+p neutral current (NC) deep inelastic scattering (DIS) provides a rich

testing ground for perturbative QCD (pQCD) and allows a precise determination of the

strong coupling constant, αs [1,2,3,4,5]. In the analysis described here, a new method is

used to extract αs in DIS, which exploits the pQCD description of the internal structure

of jets. The investigation of such structure also gives information on the transition from

a parton produced in a hard subprocess to the experimentally observed jet of hadrons.

The method uses measurements of the mean subjet multiplicity for an inclusive sample

of jets, where the subjet multiplicity is defined as the number of clusters resolved in a jet

by reapplying the jet algorithm at a smaller resolution scale ycut [6,7]. At high transverse

energy, ET,jet, and for values of ycut not too low, fragmentation effects become small

and the subjet multiplicity is calculable in pQCD. Furthermore, the pQCD calculations

depend only weakly on the knowledge of the parton distribution functions (PDFs) of

the proton, since the subjet multiplicity is determined by QCD radiation processes in

the final state. In zeroth order QCD a jet consists of only one parton and the subjet

multiplicity is trivially equal to unity. The first non-trivial contribution to the subjet

multiplicity is given by O(αs) processes in which, e.g., a quark radiates a gluon at a small

angle. The deviation of the subjet multiplicity from unity is proportional to the rate of

parton emission and thus to αs. The next-to-leading-order (NLO) QCD corrections are

available, enabling αs to be determined reliably. Measurements of subjet production have

been made in e+e− interactions [8], pp̄ collisions [9] and NC DIS [10] and have been used

to test the QCD predictions on coherence effects, differences between quarks and gluons

and splitting of jets.

This paper presents measurements of the mean subjet multiplicity in NC DIS at Q2 >

125 GeV2, where Q2 is the virtuality of the exchanged boson, for an inclusive sample

of jets identified in the laboratory frame with the longitudinally invariant kT cluster

algorithm [11, 12]. The measurements are compared to NLO QCD predictions [13] and

are used to extract αs(MZ).

2 Experimental conditions

The data sample was collected with the ZEUS detector at HERA and corresponds to an

integrated luminosity of 38.6 ± 0.6 pb−1. During 1996-97, HERA operated with protons

of energy Ep = 820 GeV and positrons of energy Ee = 27.5 GeV. The ZEUS detector is

described in detail elsewhere [14, 15]. The main components used in the present analysis

are the central tracking detector (CTD) [16], positioned in a 1.43 T solenoidal magnetic
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field, and the uranium-scintillator sampling calorimeter (CAL) [17]. The CTD was used

to establish an interaction vertex with a typical resolution along (transverse to) the beam

direction of 0.4 (0.1) cm.

The CAL covers 99.7% of the total solid angle. It is divided into three parts with a

corresponding division in the polar angle1, θ, as viewed from the nominal interaction

point: forward (FCAL, 2.6◦ < θ < 36.7◦), barrel (BCAL, 36.7◦ < θ < 129.1◦), and rear

(RCAL, 129.1◦ < θ < 176.2◦). For normal incidence, the depth of the CAL is seven

interaction lengths in FCAL, five in BCAL and four in RCAL. Each of the calorimeter

parts is subdivided into towers which in turn are segmented longitudinally into one elec-

tromagnetic (EMC) and one (RCAL) or two (FCAL, BCAL) hadronic (HAC) sections.

The FCAL and RCAL sections are further subdivided into cells with inner-face sizes of

5 × 20 cm2 (10 × 20 cm2 in the RCAL) for the EMC and 20 × 20 cm2 for the HAC

sections. The BCAL EMC cells have a projective geometry as viewed from the nominal

interaction point; each is 23.3 cm long in the azimuthal direction and has a width of

4.9 cm along the beam direction at its inner face, at a radius 123.2 cm from the beam

line. The BCAL HAC cells have a projective geometry in the azimuthal direction only;

the inner-face size of the inner (outer) HAC section is 24.4 × 27.1 cm2 (24.4 × 35.2 cm2).

Each cell is viewed by two photomultipliers. At θ = 90◦, the size of an EMC (HAC) cell

in the pseudorapidity-azimuth (η − φ) plane is approximately 0.04 × 11◦ (0.16 × 11◦).

Under test-beam conditions, the CAL energy resolution is σ(E)/E = 18%/
√

E(GeV) for

electrons and σ(E)/E = 35%/
√

E(GeV) for hadrons.

3 Data selection and jet reconstruction

A three-level trigger was used to select events online [15, 18]. The NC DIS events were

selected offline using criteria similar to those reported previously [3]. The main steps are

outlined below.

The scattered-positron candidate was identified from the pattern of energy deposits in

the CAL [19]. The energy (E ′

e) and polar angle (θe) of the positron candidate were also

determined from the CAL measurements. The double angle method [20], which uses θe

and an angle (γ) that corresponds, in the quark-parton model, to the direction of the

scattered quark, was used to reconstruct Q2 (Q2
DA). The angle γ was reconstructed using

1 The ZEUS coordinate system is a right-handed Cartesian system, with the Z axis pointing in the

proton beam direction, referred to as the “forward direction”, and the X axis pointing left towards

the centre of HERA. The coordinate origin is at the nominal interaction point. The pseudorapidity is

defined as η = − ln(tan θ

2
).
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the CAL measurements of the hadronic final state [20]. The following requirements were

imposed on the data sample:

• a positron candidate of energy E ′

e > 10 GeV. This cut ensured a high and well under-

stood positron-finding efficiency and suppressed background from photoproduction, in

which the scattered positron escapes in the rear beampipe;

• ye < 0.95, where ye = 1 − E ′

e(1 − cos θe)/(2Ee). This condition removed events in

which fake positron candidates from photoproduction background were found in the

FCAL;

• the energy not associated with the positron candidate within a cone of radius 0.7 units

in the η−φ plane around the positron direction was required to be less than 10% of the

positron energy. This condition removed photoproduction and DIS events in which

part of a jet was incorrectly identified as the scattered positron;

• for positrons in the polar-angle range 30◦ < θe < 140◦, the fraction of the positron

energy within a cone of radius 0.3 units in the η−φ plane around the positron direction

was required to be larger than 0.9; for θe < 30◦, the cut was raised to 0.98. These

requirements removed events in which a jet was incorrectly identified as the scattered

positron;

• the vertex position along the beam axis, determined from the CTD tracks, was required

to be in the range −38 < Z < 32 cm, symmetrical around the mean interaction point

for this running period;

• 38 < (E−pZ) < 65 GeV, where E is the total energy measured in the CAL, E =
∑

i Ei,

and pZ is the Z component of the vector p =
∑

i Eiri ; in both cases the sum runs

over all CAL cells, Ei is the energy of the CAL cell i and ri is a unit vector along the

line joining the reconstructed vertex to the geometric centre of the cell i. This cut

removed events with large initial-state radiation and further reduced the background

from photoproduction;

• pT/ /
√

ET < 2.5 GeV1/2, where pT/ is the missing transverse momentum as measured

with the CAL (pT/ ≡
√

p2
X + p2

Y ) and ET is the total transverse energy in the CAL.

This cut removed cosmic rays and beam-related background;

• events were rejected if a second positron candidate with energy above 10 GeV was

found and the total energy in the CAL after subtracting that of the two positron

candidates was below 4 GeV. This requirement removed elastic Compton-scattering

events (ep → eγp);

• Q2
DA > 125 GeV2.

The longitudinally invariant kT cluster algorithm [11] was used in the inclusive mode [12]

to reconstruct jets in the hadronic final state both in data and in Monte Carlo (MC)
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simulated events (see Section 4). In data, the algorithm was applied in the laboratory

frame to the energy deposits measured in the CAL cells after excluding those associated

with the scattered-positron candidate. The jet search was performed in the η − φ plane.

In the following discussion, ET,i denotes the transverse energy, ηi the pseudorapidity and

φi the azimuthal angle of object i. For each pair of objects (where the initial objects are

the energy deposits in the CAL cells), the quantity

dij = [(ηi − ηj)
2 + (φi − φj)

2] · min(ET,i, ET,j)
2 (1)

was calculated. For each object, the quantity di = (ET,i)
2 was also calculated. If, of all

the values {dij, di}, dkl was the smallest, then objects k and l were combined into a single

new object. If, however, dk was the smallest, then object k was considered a jet and was

removed from the sample. The procedure was repeated until all objects were assigned to

jets. The jet variables were defined according to the Snowmass convention [21]:

ET,jet =
∑

i

ET,i ; ηjet =

∑

i ET,iηi

ET,jet
; φjet =

∑

i ET,iφi

ET,jet
.

This prescription was also used to determine the variables of the intermediate objects.

Jet energies were corrected for all energy-loss effects, principally in inactive material,

typically about one radiation length, in front of the CAL. The corrected jet variables

were then used in applying additional cuts on the selected sample:

• events with at least one jet satisfying ET,jet > 15 GeV and −1 < ηjet < 2 were selected;

• events were removed from the sample if the distance of any of the jets to the positron

candidate in the η − φ plane,

d =
√

(ηjet − ηe)2 + (φjet − φe)2,

was smaller than one unit. This requirement removed photoproduction background.

With the above criteria, 37 933 one-jet, 821 two-jet and 25 three-jet events were identified.

3.1 Definition of the subjet multiplicity

Subjets were resolved within a jet using all CAL cells associated with the jet and repeating

the application of the kT cluster algorithm described above, until, for every pair of objects

i and j, the quantity dij was greater than dcut = ycut ·
(

ET,jet

)2
[7]. All remaining objects

were called subjets. The reconstruction of subjets within a jet was performed using

the uncorrected cell and jet energies, since systematic effects largely cancel in the ratio

dij/
(

ET,jet

)2
as seen in Eq. (1). The subjet structure depends upon the value chosen
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for the resolution parameter ycut. The mean subjet multiplicity,
〈

nsbj

〉

, is defined as the

average number of subjets contained in a jet at a given value of ycut:

〈

nsbj(ycut)
〉

=
1

Njets

Njets
∑

i=1

ni
sbj(ycut) ,

where ni
sbj(ycut) is the number of subjets in jet i and Njets is the total number of jets in

the sample. By definition,
〈

nsbj

〉

> 1. The mean subjet multiplicity was measured for

ycut values in the range 5 · 10−4 − 0.1.

4 Monte Carlo simulation

Samples of events were generated to determine the response of the detector to jets of

hadrons and the correction factors necessary to obtain the hadron-level mean subjet mul-

tiplicities. The generated events were passed through the GEANT 3.13-based [22] ZEUS

detector- and trigger-simulation programs [15]. They were reconstructed and analysed by

the same program chain as the data.

Neutral current DIS events were generated using the LEPTO 6.5 program [23] interfaced

to HERACLES 4.6.1 [24] via DJANGOH 1.1 [25]. The HERACLES program includes

photon and Z exchanges and first-order electroweak radiative corrections. The QCD

cascade was modelled with the colour-dipole model [26] by using the ARIADNE 4.08

program [27] and including the boson-gluon-fusion process. The colour-dipole model

treats gluons emitted from quark-antiquark (diquark) pairs as radiation from a colour

dipole between two partons. This results in partons that are not ordered in their transverse

momenta. Samples of events were also generated using the model of LEPTO based on

first-order QCD matrix elements plus parton showers (MEPS). For the generation of the

samples with MEPS, the option for soft-colour interactions was switched off [28]. In both

cases, fragmentation into hadrons was performed using the Lund [29] string model as

implemented in JETSET 7.4 [30]. Events were also generated using the HERWIG 6.3 [31]

program, in which the fragmentation into hadrons is simulated by a cluster model [32].

The CTEQ4D [33] proton PDFs were used for all simulations.

The MC events were analysed with the same selection cuts and jet-search methods as were

used for the data. A good description of the measured distributions for the kinematic and

jet variables was given by both ARIADNE and LEPTO-MEPS. The simulations based

on HERWIG provided a poor description of the data at low values of ycut (ycut . 5 · 10−3)

and, for this reason, it was not used to correct the data. At relatively large values of

ycut (ycut & 3 · 10−2), HERWIG gave a good description of the data. The identical jet

algorithm was also applied to the hadrons (partons) to obtain predictions at the hadron
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(parton) level. The MC programs were used to estimate QED radiative effects, which

were negligible for the measurements of
〈

nsbj

〉

.

5 NLO QCD calculations

Experimental studies of QCD using jet production in NC DIS at HERA are often per-

formed in the Breit frame [34]. The analysis of the subjet multiplicity presented here was

instead performed in the laboratory frame, since calculations of the mean subjet multi-

plicity for jets defined in the Breit frame can, at present, only be performed to O(αs),

precluding a reliable determination of αs. However, calculations of the mean subjet mul-

tiplicity can be performed up to O(α2
s) for jets defined in the laboratory frame.

The perturbative QCD prediction for
〈

nsbj

〉

was calculated as the ratio of the cross section

for subjet production to that for inclusive jet production (σjet):

〈

nsbj(ycut)
〉

= 1 +
1

σjet

∞
∑

j=2

(j − 1) · σsbj,j(ycut) , (2)

where σsbj,j(ycut) is the cross section for producing jets with j subjets at a resolution scale

of ycut. The NLO QCD predictions for the mean subjet multiplicity were derived from

Eq. (2) by computing the subjet cross section to O(α2
s) and the inclusive jet cross section

to O(αs). As a result, the αs-dependence of the mean subjet multiplicity up to O(α2
s) is

given by
〈

nsbj

〉

= 1 +C1 αs + C2 α2
s, where C1 and C2 are quantities whose values depend

on ycut and the jet and kinematic variables.

The measurements of the mean subjet multiplicity were performed in the kinematic region

defined by Q2 > 125 GeV2 since, at lower values of Q2, the sample of events with at least

one jet with ET,jet > 15 GeV is dominated by dijet events. The calculation of the mean

subjet multiplicity for dijet events can be performed only up to O(αs), which would

severely restrict the accuracy of the predictions.

The measurements were compared with NLO QCD calculations using the program DIS-

ENT [13]. The calculations were performed in the MS renormalisation and factorisation

schemes using a generalised version [13] of the subtraction method [35]. The number of

flavours was set to five and the renormalisation (µR) and factorisation (µF ) scales were

chosen to be µR = µF = Q. The strong coupling constant, αs, was calculated at two loops

with Λ
(5)

MS
= 202 MeV, corresponding to αs(MZ) = 0.116. The calculations were performed

using the CTEQ4M parameterisations of the proton PDFs. The jet algorithm described

in Section 3 was also applied to the partons in the events generated by DISENT in order

to compute the parton-level predictions for the mean subjet multiplicity. The results ob-

tained with DISENT were cross-checked by using the program DISASTER++ [36]. The
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differences were smaller than 1% [37]. Although DISENT does not include Z exchange,

its effect in this analysis was negligible.

Since the measurements involve jets of hadrons, whereas the NLO QCD calculations refer

to partons, the predictions were corrected to the hadron level using ARIADNE. The

multiplicative correction factor, Chad, was defined as the ratio of
〈

nsbj

〉

for jets of hadrons

over that for jets of partons. The value of Chad increases as ycut decreases due to the

increasing importance of non-perturbative effects. The hadron-level prediction for
〈

nsbj

〉

approaches
〈

njet
hadrons

〉

as ycut approaches 0, where
〈

njet
hadrons

〉

is the mean multiplicity of

hadrons in a jet. However, the maximum number of partons that can be assigned to a jet

in the NLO calculation is three, so the parton-level prediction for
〈

nsbj

〉

is restricted to
〈

nsbj

〉

6 3. This fundamental problem was avoided by selecting high ET,jet and a relatively

high ycut value, i.e. ET,jet > 25 GeV and ycut > 10−2. In this region, the hadronisation

correction is small and the measured
〈

nsbj

〉

is much smaller than three, so that a reliable

comparison of data and NLO QCD can be made and αs extracted.

The procedure for applying hadronisation corrections to the NLO QCD calculations was

validated by verifying that the predicted dependence of the mean subjet multiplicity on

ycut and ET,jet predicted by NLO QCD was well reproduced by both ARIADNE and

LEPTO-MEPS. The predictions based on HERWIG exhibited a different dependence

both at low values of ycut and at high ET,jet; for this reason, the HERWIG model was not

used in the evaluation of the uncertainty on the hadronisation correction.

The following sources were considered in the evaluation of the uncertainty affecting the

theoretical prediction of
〈

nsbj

〉

:

• the uncertainty in the NLO QCD calculations due to terms beyond NLO, estimated

by varying µR between Q/2 and 2Q, was ∼ 3% at ycut = 10−2;

• the uncertainty in the NLO QCD calculations due to that in the hadronisation cor-

rection was estimated as half of the difference between the values of Chad obtained

with LEPTO-MEPS and with ARIADNE. It was smaller than 1.5% at ycut = 10−2 for

ET,jet > 25 GeV;

• the uncertainty in the NLO QCD calculations due to the uncertainties in the proton

PDFs was estimated by repeating the calculations using three additional sets of proton

PDFs, MRST99, MRST99-g↑ and MRST99-g↓ [38]. The differences were negligible;

• the NLO QCD calculations were carried out using µR = ET,jet and µF = Q. The

differences were smaller than 0.3% at ycut = 10−2.
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6 Data corrections and systematic uncertainties

The raw distribution of nsbj in the data is compared to the prediction of the ARIADNE

simulation for several values of ycut in Fig. 1. The simulation provides a satisfactory

description of the data, thus validating the use of these MC samples to correct the mea-

sured mean subjet multiplicity to the hadron level. Figure 1 also shows that the fraction

of jets in the data with more than three subjets at ycut = 10−2 is small; this fraction

becomes negligible for ET,jet > 25 GeV, thus allowing a meaningful comparison with the

NLO QCD calculations. The mean subjet multiplicity corrected for detector effects was

determined bin-by-bin as
〈

nsbj

〉

= K
〈

nsbj

〉

CAL
, where the correction factor was defined

as K =
〈

nsbj

〉MC

had
/
〈

nsbj

〉MC

CAL
and was evaluated separately for each value of ycut in each

region of ET,jet; the subscript CAL (had) indicates that the mean subjet multiplicity was

determined using the CAL cells (hadrons). The deviation of the correction factor K from

unity was less than 10% for ycut > 10−2 and decreased as ycut increased.

The following sources of systematic uncertainty on the measurement of
〈

nsbj

〉

were con-

sidered [37]:

• the differences in the results obtained by using either ARIADNE or LEPTO-MEPS to

correct the data for detector effects. This uncertainty was typically smaller than 1%;

• the scattered-positron candidate identification. The analysis was repeated by using

an alternate technique [39] to select the scattered-positron candidate resulting in an

uncertainty smaller than 0.5%;

• the 1% uncertainty in the absolute energy scale of the jets [40] resulted in an uncer-

tainty smaller than 0.5%;

• the 1% uncertainty in the absolute energy scale of the positron candidate [41] resulted

in a negligible uncertainty;

• the uncertainty in the simulation of the trigger and in the cuts used to select the data

also resulted in a negligible uncertainty.

7 Measurement of the mean subjet multiplicity

The mean subjet multiplicity was measured for events with Q2 > 125 GeV2, including

every jet of hadrons in the event with ET,jet > 15 GeV and −1 < ηjet < 2, after correction

for detector effects. It is shown as a function of ycut in Fig. 2a) and in Fig. 2b) as a function

of ET,jet at ycut = 10−2 and presented in Tables 1 and 2, respectively. The measured mean

subjet multiplicity decreases as ET,jet increases. This result is in agreement with that of

a previous publication [42], in which the internal structure of jets in NC DIS was studied
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using the jet shape and it was observed that the jets become narrower as ET,jet increases.

This tendency is also consistent with the transverse-energy dependence of the mean subjet

multiplicity for jets identified in the Breit frame [10].

The measurements in Fig. 2 are compared with the predictions of the ARIADNE and

LEPTO-MEPS. The LEPTO-MEPS predictions overestimate the observed mean subjet

multiplicity; ARIADNE overestimates the data at low ET,jet and approaches the data at

high ET,jet.

Calculations of
〈

nsbj

〉

in NLO QCD, corrected for hadronisation effects, using the sets of

proton PDFs of the CTEQ4 “A-series” are compared to the data in Figs. 3 and 4. The

hadronisation correction is small in the unshaded regions: as a function of ycut and for

jets with ET,jet > 15 GeV, Chad differs from unity by less than 25% for ycut > 10−2 (see

Fig. 3); as a function of ET,jet at ycut = 10−2, Chad differs from unity by less than 17% for

ET,jet > 25 GeV (see Fig. 4). The measured
〈

nsbj

〉

as a function of ycut is well described by

the NLO QCD predictions. For very small ycut values, the agreement is also good. In that

region, fixed-order QCD calculations are affected by large uncertainties and a resummation

of terms enhanced by ln ycut [7] would be required for a precise comparison with the data.

At relatively large values of ycut, an NLO fixed-order calculation is expected [7] to be a

good approximation to such a resummed calculation.

The sensitivity of the measurements to the value of αs(MZ) is illustrated in Fig. 4 by

the comparison of the measured
〈

nsbj

〉

at ycut = 10−2 as a function of ET,jet with NLO

QCD calculations for different values of αs(MZ). The overall description of the data by

the NLO QCD calculations is good, so that the measurements can be used to make a

determination of αs.

8 Determination of αs

The measurements of
〈

nsbj

〉

for 25 < ET,jet < 71 GeV at ycut = 10−2 were used to

determine αs(MZ). The ycut value and the lower ET,jet limit were justified in Section 5;

the value of Chad differs from unity by less than 17% and approaches unity as ET,jet

increases. The mean value of Q2 was
〈

Q2
〉

= 1580 GeV2. The following procedure was

used:

• NLO QCD calculations of
〈

nsbj

〉

were performed for the five sets of the CTEQ4 “A-

series”. The value of αs(MZ) used in each partonic cross-section calculation was that

associated with the corresponding set of PDFs;

• for each bin, i, in ET,jet, the NLO QCD calculations, corrected for hadronisation effects,
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were used to parameterise the αs(MZ) dependence of
〈

nsbj

〉

according to
[〈

nsbj

〉

(αs(MZ))
]

i
= 1 + Ci

1 αs(MZ) + Ci
2 α2

s(MZ) . (3)

The coefficients Ci
1 and Ci

2 were determined by performing a χ2-fit of this form to the

NLO QCD predictions. The NLO QCD calculations were performed with an accuracy

such that the statistical uncertainties of these coefficients were negligible compared to

any other uncertainty. This simple parameterisation gives a good description of the

αs(MZ) dependence of
〈

nsbj

〉

over the entire range spanned by the CTEQ4 “A-series”;

• the value of αs(MZ) was then determined by a χ2-fit of Eq. (3) to the measurements

of
〈

nsbj

〉

. The resulting fit described the data well, giving χ2 = 2.7 for four degrees of

freedom.

This procedure correctly handles the complete αs-dependence of the NLO calculations

(the explicit dependence coming from the partonic cross sections and the implicit one

coming from the PDFs) in the fit, while preserving the correlation between αs and the

PDFs.

The uncertainty on the extracted value of αs(MZ) due to the experimental systematic

uncertainties was evaluated by repeating the analysis above for each systematic check.

The largest contribution to the experimental uncertainty was that due to the simulation of

the hadronic final state. A total systematic uncertainty on αs(MZ) of ∆αs(MZ) = +0.0024
−0.0009

was obtained by adding in quadrature the individual contributions.

The theoretical uncertainties on αs(MZ) arising from terms beyond NLO and uncertain-

ties in the hadronisation correction, evaluated as described in Section 5, were found to be

∆αs(MZ) =+0.0089
−0.0071 and ∆αs(MZ) = ±0.0028, respectively. The total theoretical uncer-

tainty was obtained by adding these uncertainties in quadrature. The results are presented

in Table 3. In addition, as a cross check, the measurement was repeated using three of

the MRST99 sets of proton PDFs: central, αs ↑↑ and αs ↓↓. The result agreed with that

obtained by using CTEQ4 to better than 0.3%. The value of αs is in agreement with the

central result for variations in the choice of ycut in the range 5 · 10−3 to 3 · 10−2.

The value of αs(MZ) as determined from the measurements of
〈

nsbj

〉

for 25 < ET,jet <

71 GeV at ycut = 10−2 is

αs(MZ) = 0.1187 ± 0.0017 (stat.)+0.0024
−0.0009 (syst.)+0.0093

−0.0076 (th.) .

This result is consistent with recent determinations by the H1 [5, 43] and ZEUS [2, 3, 44]

Collaborations and with the PDG value, αs(MZ) = 0.1172±0.0020 [45]. This determina-

tion of αs has experimental uncertainties as small as those based on the measurements of

jet cross sections in DIS. However, the theoretical uncertainty is larger and dominated by

terms beyond NLO. Further theoretical work on higher-order contributions would allow

an improved measurement.
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9 Summary

Measurements of the mean subjet multiplicity for jets produced in neutral current deep

inelastic e+p scattering at a centre-of-mass energy of 300 GeV have been made using every

jet of hadrons with ET,jet > 15 GeV and −1 < ηjet < 2 identified with the longitudinally

invariant kT cluster algorithm in the laboratory frame. The average number of subjets

within a jet decreases as ET,jet increases.

Next-to-leading-order QCD calculations reproduce the measured values well, demonstrat-

ing a good description of the internal structure of jets by QCD radiation. The mean subjet

multiplicity of an inclusive sample of jets produced in NC DIS has the advantage of being

mostly sensitive to final-state parton-radiation processes and of allowing an extraction of

αs with very little dependence on the proton parton distribution functions.

A QCD fit of the measurements of the mean subjet multiplicity for 25 < ET,jet < 71 GeV

at ycut = 10−2 yields

αs(MZ) = 0.1187 ± 0.0017 (stat.)+0.0024
−0.0009 (syst.)+0.0093

−0.0076 (th.) .
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physics, B.A. Kniehl, G. Krämer and A. Wagner (eds.), World Scientific, Singapore

(1998). Also in hep-ph/9708362 (1997);

D. Graudenz, Preprint hep-ph/9710244 (1997).
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ycut value
〈

nsbj

〉

∆stat ∆syst
PAR to HAD

correction

0.0005 4.3013 ±0.0068 +0.0363
−0.0031 1.981 ± 0.090

0.001 3.4975 ±0.0057 +0.0306
−0.0037 1.744 ± 0.073

0.003 2.4457 ±0.0043 +0.0260
−0.0039 1.487 ± 0.056

0.005 2.0630 ±0.0038 +0.0175
−0.0040 1.387 ± 0.047

0.01 1.6347 ±0.0033 +0.0111
−0.0034 1.246 ± 0.029

0.03 1.2015 ±0.0024 +0.0024
−0.0061 1.0651 ± 0.0057

0.05 1.1019 ±0.0018 +0.0014
−0.0040 1.0224 ± 0.0018

0.1 1.0326 ±0.0010 +0.0003
−0.0009 1.0015 ± 0.0001

Table 1: Measurement of the mean subjet multiplicity as a function of ycut. The
statistical and systematic uncertainties are shown separately. The multiplicative
correction applied to correct for hadronisation effects is shown in the last column.

ET,jet interval

(GeV)

〈

nsbj

〉

∆stat ∆syst
PAR to HAD

correction

15 − 17 1.7792 ±0.0060 +0.0122
−0.0052 1.332 ± 0.043

17 − 21 1.6712 ±0.0056 +0.0085
−0.0034 1.272 ± 0.032

21 − 25 1.5654 ±0.0079 +0.0186
−0.0050 1.198 ± 0.020

25 − 29 1.481 ±0.011 +0.022
−0.004 1.145 ± 0.014

29 − 35 1.395 ±0.012 +0.005
−0.003 1.0945 ± 0.0055

35 − 41 1.333 ±0.017 +0.007
−0.009 1.0536 ± 0.0028

41 − 55 1.286 ±0.019 +0.005
−0.011 1.0248 ± 0.0022

55 − 71 1.293 ±0.038 +0.004
−0.032 1.0049 ± 0.0019

Table 2: Measurement of the mean subjet multiplicity at ycut = 10−2 as a function
of ET,jet. The statistical and systematic uncertainties are shown separately. The
multiplicative correction applied to correct for hadronisation effects is shown in the
last column.

15



ET,jet region

(GeV) αs(MZ) ∆stat ∆syst ∆th

25 − 29 0.1180 ±0.0024 +0.0049
−0.0010

+0.0098
−0.0080

29 − 35 0.1181 +0.0031
−0.0032

+0.0014
−0.0007

+0.0088
−0.0071

35 − 41 0.1191 +0.0050
−0.0051

+0.0021
−0.0025

+0.0088
−0.0072

41 − 55 0.1207 +0.0060
−0.0062

+0.0017
−0.0036

+0.0087
−0.0072

55 − 71 0.140 +0.013
−0.014

+0.001
−0.012

+0.012
−0.010

25 − 71 0.1187 ±0.0017 +0.0024
−0.0009

+0.0093
−0.0076

Table 3: The αs(MZ) values as determined from the QCD fit to the measured
〈

nsbj

〉

at ycut = 10−2 as a function of ET,jet, as well as that obtained by combin-
ing all regions. The statistical, systematic and theoretical uncertainties are shown
separately.
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Figure 1: Distribution of the number of subjets within a jet at different values
of ycut for the inclusive sample of jets with ET,jet > 15 GeV and −1 < ηjet < 2 in
NC DIS at Q2 > 125 GeV 2 (dots). The error bars show the statistical uncertainty.
For comparison, the predictions of the ARIADNE simulation, area normalised to
the data, are also shown as the histograms.
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Figure 2: The mean subjet multiplicity corrected to the hadron level,
〈

nsbj

〉

,
as a function of a) ycut and b) ET,jet at ycut = 10−2 for inclusive jet production
in NC DIS with Q2 > 125 GeV 2, −1 < ηjet < 2 and ET,jet > 15 GeV (dots).
The inner error bars show the statistical uncertainty. The outer error bars show
the statistical and systematic uncertainties added in quadrature. For most of the
points, the experimental uncertainties are smaller than the size of the symbols. For
comparison, the predictions at the hadron level of the ARIADNE (solid line) and
LEPTO-MEPS (dashed line) models are shown.
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Figure 3: a) The mean subjet multiplicity corrected to the hadron level,
〈

nsbj

〉

,
as a function of ycut for inclusive jet production in NC DIS with Q2 > 125 GeV 2,
−1 < ηjet < 2 and ET,jet > 15 GeV (dots). The experimental uncertainties are
smaller than the size of the symbols. The NLO QCD calculations, corrected for
hadronisation effects and using µR = µF = Q, are shown for the CTEQ4 sets of
proton PDFs (CTEQ4A1, lower solid line; CTEQ4M, central solid line; CTEQ4A5,
upper solid line). The LO QCD calculations, corrected for hadronisation effects and
using µR = µF = Q and the CTEQ4L set of proton PDFs, are also shown (dashed
line). b) The parton-to-hadron correction, Chad, used to correct the QCD pre-
dictions and determined using ARIADNE (solid line) and LEPTO-MEPS (dashed
line). c) The relative uncertainty on the NLO QCD calculation due to the variation
of the renormalisation scale.
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Figure 4: a) The mean subjet multiplicity corrected to the hadron level,
〈

nsbj

〉

,
at ycut = 10−2 as a function of ET,jet for inclusive jet production in NC DIS with
Q2 > 125 GeV 2 and −1 < ηjet < 2 (dots). The inner error bars show the statistical
uncertainty. The outer error bars show the statistical and systematic uncertainties
added in quadrature. b) The parton-to-hadron correction, Chad, used to correct the
QCD predictions and determined using ARIADNE (solid line) and LEPTO-MEPS
(dashed line). c) The relative uncertainty on the NLO QCD calculation due to the
variation of the renormalisation scale. Other details are as described in the caption
to Fig. 3.
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