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When are correlations quantum? — Verification and quantificaion of entanglement by simple
measurements.
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The verification and quantification of experimentally cegaentanglement by simple measurements, espe-
cially between distant particles, is an important basik fasquantum processing. When composite systems
are subjected to local measurements the measurement diagahibit correlations, whether these systems are
classical or quantum. Therefore, the observation of catigis in the classical measurement record does not
automatically imply the presence of quantum correlationthe system under investigation. In this work we
explore the question of when correlations, or other measene data, are sufficient to guarantee the existence
of a certain amount of quantum correlations in the systemwareh additional information, such as the degree
of purity of the system, is needed to do so. Various measuresgdtings are discussed, both numerically and
analytically. Exact results and lower bounds on the leatrglement consistent with the observations are
presented. The approach is suitable both for the bi-pamtitethe multi-partite setting.

PACS numbers: 03.67.Hk,03.65.Ud

I. INTRODUCTION fectly anti-correlated and are thus exhibiting very stroalg
beit negative, correlations. Do such correlations imply th

The theoretical and experimental exploration of entangle€Xistence of quantum correlations in the underlying quantu
ment and in particular its characterization, verificatiorg- ~ State? To decide this we must address the following
nipulation and quantification are key concerns of quantumin Fundamental Question: What is the entanglement content
formation sciencel[1]. The resource character of entanglelf the least entangled quantum state that is compatible with
ment is most clearly revealed when dealing with situations i the available measurement data? o
which a locality constraint is imposed, i.e. when distribgt ~Mathematically, this question is formulated as a minimiza-
the state in such a way that subsequent quantum operatioH§" Problem in which the amount of entanglement in the un-
can only act on individual constituents supported by ctassi derlying quantum state must be minimized subject to the con-
communication. This does not only impose constraints on th&traints imposed by the measurement data as well as by the
manipulation and exploitation of entanglement but alsoten i POSitivity and normalization of the state [6]. The measure-
verification. ment data will be the expectation values of some observables

In any experiment we will aim to verify the presence of A; or some _npn-lmear functio;(p) of the density matrix.
entanglement by taking measurements. These measuremehtin the minimal amount of entanglemefit,;, under the
may either serve to reconstruct the entire state or may onl§iVen constraints is given by
collect partial information that is sufficient to reveal the- .
sired entanglement propertiés [2 3/ 4, 5]. Given that a fun- ~ Fmin = m,}n{E(p) Te[pAi] = ai, Fi(p) = fi} - (2)
damental goal in quantum information science is the creatio
of entanglement between spatially separate locations one where the minimisation domain is the set of statesid £'(p)
often forced to assume that these verification measuremenigthe entanglement measure of choice [1]. Note that this for
are local as well. Generically in such verification experinse mulation applies equally to the bi-partite as to the mudrtjie
we will observe correlations in the measurement record. Isetting. Note that the importance of the minimization of en-
is then a natural question whether these correlationsiaigi  tanglement in quantum state reconstruction in quantunt-info
from quantum correlations in the underlying state or can bénation theory was also pointed out in the context of Jaynes’
explained by a classically correlated separable staten,Tihe principle [9].
there are quantum correlations, one can ask how much quan- The mathematical minimization problem formulated by eq.
tum correlations are guaranteed to be there, given the me§2) may be addressed by techniques from optimization the-
surement data. ory (see e.g.l[10]). If the constraint are all linear and the

Consider as an example a two-qubit system and the me&ntanglement quantifier is convex then methods from convex
surement of correlations between Pauli-operators alomg-th Optimization theory may be applied. More complicated con-
axis, i.e. the quantity straints that are not linear in the density operator (e.gtyu

measures) can complicate matters considerably. Gendrally
C..(paB) = Tr[pap(c. ® 0.)] — Tr[pac.] Tr[ppo.], (1)  will not be possible to obtain analytic solutions to the epti
mization problem and techniques to obtain lower bounds or
where pa(pgp) are the reduced density operators resultingnumerical approaches must be used. The analytical and nu-
from tracing out party B (A) in the original statesp. If merical exploration of these issues will be the main purpose
C..(pap) = —1 then the measurement outcomes are perof this work.
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If the optimal state in eq[]2) is separable, i®,;, = 0, additional information will make it less and less likely thiae
then in reply to our fundamental question we must concludeneasurement data is compatible with a separable state.
that the available correlations in the measurement record d Our fundamental question is of particular relevance in ex-
not imply quantum correlations in the underlying quantumperimental settings in which it is difficult to perform measu
state. It might be, but need not be entangled. Indeed, in thments for an arbitrarily large number of measurement ggttin
example given in eq[{1), the least entangled state compatibas is required for doing full state tomography. This may lee th

with the observatioG..(pap) = —1is given by case for example in solid state physics, where it is not adway
) straightforward to perform arbitrary measurements. Aapth
p = = (|01)(01] + [10)(10]) 3) reason may S|mp_ly be the existence of COﬂStraIr?t_S on the mea-
2 surementtime, dictated for example by the stability timarof

experiment (e.g. in interferometric setups in optics) othmy
decoherence time (in solid state or other implementations)
The present work shares some relations with [11], [12] and

which is clearly a separable state. Therefore, the observat
of classical correlations for the measurement along onefset

directions alone is not sufficient for the verification of amt - X
X S . [12] where similar questions are developed but where empha-

glement. This well-known observation in quantum informa-_. - .

4 : . : . . . sis is placed on observables that are obtained from theytheor
tion science is particularly relevant in experimentalaiins : :
where only a very restricted set of measurement settings i%fentanglement witnesses [13]. Other approaches aredonsi
available y y 95 Bredin [14, 15, 16, 17, 18]. While these, as well as the ptesen

L . . work, consider the analysis of a specific state, a somewhat di
One way forward consists in measuring additional observz

ables. For example. one mav consider the measurement of ferent approach is taken in_[20]. Here the dynamics of the
' pie, y gate used to produce entanglement is considered while mea-

surements are restricted to a single measurement basis. The
approach is to make repeated measurements during the gate’s
time evolution. This contrasts with our approach which only
requires to make measurements on the final state, irregpecti

of the process that created it.

. . . In this paper we will address our fundamental question for
state compatible with all such measurements. This state Caéystems consisting only of qubits, as this is by far the most

r|e|s ont(; ebit of e_ntangtlelm_(:nt.t_ i b ible t relevant system from an experimental viewpoint. | should be
n other experimental situations 1t may be possIble 10 aSy,,iqq powever that the approach remains valid unchanged for
sert that the state possesses a certain minimal degreeiyf pur

B3], e.g. when decoherence rates, or at least upperboondsquditS or even infinite dimensional systems. We begin with

it K Let us f | that K n illustration of the general approach in which correlatio
It ?n':\h ?gwn. e ES cl)rbe>t<a||”np fha;sun;e flw.e ?r?\’\{ N%hnd purity are quantified by quantum mutual information and
only thatC..(p4p) = —1 butalso thaflr[pj 5] = 1, i.e. that global entropy, respectively. While these quantities ave n
the underlying quantum state is pure. Then again it is gitaig

) . directly experimentally measurable, they allow for thedan
forward to co_nclude that the only states compatible witiséhe mental question to be most easily answered. Then we consider
two assumptions are of the form

the question for correlations between measurements oi-Paul

Ciii(paB) = Tr[papos ® 053] — Tr[paocy] Trlppos]  (4)

for all spatial directionsi. Observation of perfect anti-
correlations in all of these measurement records then ehiqu
identifies the singlet state)) = %(|Ol> —|10)) as the only

1 _ operators along a single axis, e.g. the z-axis. In the psoces
) = %(IOU + €'?]10)), (5)  we prove an inequality between correlations and purityithat
valid exactly if a two-qubit state is separable and use itrte p

that is, quantum states with one ebit of entanglement vide necessary and sufficient conditions for entanglenent t

These simple examples serve to make two points. Firstl)}?_e inferred. Subsequently, we considercorrellations along
the simple observation of correlations in measurementwgalo d"‘fefem measurement axes, e.g. x-X co_rrel'c_1t|ons_ andar-z ¢
a single fixed orientation is not enough to guarantee engangl "¢lations. Finally we consider the situation in which weetak
ment in the underlying quantum state. Secondly, additionaf’t® account the local expectation va_ll_Jes_that are obiamed
information, be it correlation measurements along diffiere MOst experiments to sharpenthe verification of entanglemen
directions or information about the purity of the statesyia V€ finish with some conclusions.
sufficient to ensure that the correlations found in the atass
measurement record indeed prove entanglement in the under-
lying quantum state. Needless to say, in general the Situati Il.  MUTUAL INFORMATION, ENTROPY AND
is quite involved as the measurement data may be more varied ENTANGLEMENT
than those in the above examples. It should also be noted that
the local measurement of the correlation functions meetion  To illustrate the general approach that we are advocating,
above often implies that we possess more information thame begin by considering a situation in which the known sys-
just these correlations. Indeed, we will often possessl locaem properties are the entropy of the state (determining the
statistics as well, which in turn can be taken into accourgnvh state’s purity) and the quantum mutual information (deter-
answering our fundamental question concerning the minimathining the state’s correlation), and in which the entangle
entanglement compatible with the measurement data. Genaneasure of choice is the relative entropy of entanglemédit [2
ally, when we are provided with an entangled state, then anyhe reason for this choice is that there exists a very single r



lationship between these quantities, and the solution @f thExample 3 ofl[24] shows that these states satisfy
minimization problem eq[{2) is immediate.

The quantum mutual information is given by Er(pap) = S(pa) — S(pas) = S(ps) — S(pap). (11)
I(pa) = S(pa) + S(ps) — S(pa). (6)  Forany given value of s andS 45 in region Il we can find
a state of the form ed_(1L0) realizing these values. By[éq. (9)
and the relative entropy of entanglementis [1,[23, 24] and eq.[(Il) this state realizes the smallest possible fatue
the Er givenlap andSap.
Er(p) = min{S(p||0) : o separable. (1) The upshot of the results obtained here is that knowledge

of the two quantitiess 45 andl4p allows one to have much
For a 2-qubit state, the physically possible values of the pa better bounds on the entangleméhy than with just knowl-
(IaB,Sap) are located in a triangle spanned by the pointsedge of the correlations,z alone. Indeed, without know-
(0,0), (2,0) and(0,2) (see Figuréll). Thatisl4g > 0, ing the purityS4p, one has to assume the worst case, being
Sap > 0andlap+Sap < 2;equalityinthe latter inequality S,z = 2 — I45, in which case the lower bound dfy is
is obtained when both reductiops, andpp are maximally  given by
mixed.

07 IABSl
ERZ{IAB_L Iap > 1.

If, on the other hand, the state is known to be pure, say,
(Sap = 0) then the much sharper bound

Er > 14p/2

can be obtained.

In the rest of the paper we will apply the approach illus-
trated here for studying the main question €4. (2) in the con-
text of experimentally accessible quantities. In the ned-S
tion the measure of correlation will be based on measuresnent
along the z-axis. It will turn out that without knowledge of
the purity one cannot find any lower bound on entanglement
other than the trivial bound’ > 0. Thus, while in the present
Section one can get some information about the entanglement
from the quantum mutual information without knowledge of
the purity, in the next Section knowledge of the purity is ab-
solutely essential.

FIG. 1: State space in th84p-Iap plane, depicting the minimal
possible entanglemeriir for every point. In region | there is no
guaranteed entanglement, while in region Il one has at [Bast-

Tag — 2.
(Lag = Sap)/ . PURITY AND CORRELATIONS

The solution to eq[{2) is obtained by applying an inequality
lower bounding the relative entropy of entanglement [2%] an
showing that equality can be achieved for every pair of \&@lue
of (I4p,Sap). The inequality is

In a number of experimental settings it is not straightfor-
ward to carry out measurements along arbitrary directidas.
obtain a measure of correlation in those settings, one aan fo
example consider the quantity
Er(pap) 2 max{S(pa)—S(pas), S(pp)—S(pan)}, (8) C..(pap) = Trlpap(o. ® 0.)] — Tr[pac.] Tr[ppo.], (12)
which directly impliesi[26] which only requires measurements along the particlestes.
1 However, in the previous Section we already alluded to the
Er(pap) = max(0, E(I(PAB) — S(paB)))- (9)  fact that knowledge of this correlation measure alone is not
sufficient to prove the presence of quantum entanglement. We
The bound is zero in region IS4z > I4p) and non-zero will establish that fact in the present Section. Moreoves, w
in region Il (Sap < Iap). Equality in region | is obtained will show that if in addition the purity of the state is known,
by diagonal states; they cover region | completely, and gs anas quantified by
diagonal state is separable, they havg = 0. Equality in
region Il is obtained by so-called maximally correlatedesta 4 9 1
Wr?ich are of the formy g Plpan) = 3 (Tr[pAB] B Z) ’ (13)

pap = a|00)(00| + b]00)(11] + b|11)(00| + (1 —a)|11){(11].  and provided this purity is large enough, then and only then
(10)  can one infer entanglement from the z-correlation measure.



Now the question is: how pure does the underlying quar 1 \
tum state have to be so tHét .| > 0 indeed implies quantum “lla
entanglement? Or, more precisely: 09

When are all states consistent with given value§.gfand
‘P non-separable, and what is the least entanglement compe
ible with these values?

It turns out that the rigorous analytical answer is surpris
ingly involved, largely due to the non-linearity of the con-
straints involved in the minimization problem, especiafly
one is also interested in the actual amount of entanglemec 5
that can be guaranteed from such measurements.

As measure of entanglement we have used the logarithn ¢4}
negativity Fy, because this is the measure that is most easi

08t RN
07f \ 8

0.6 : 4

calculated|[28]. The log-negativity is defined as 03} SO
En(pap) :=1logTr|p"], 02 ]
wherel denotes partial transposition w.r.t. subsystem B. 01 b

In Figurel2, we present our numerical results on the smal
est amount of entanglement compatible with given values ¢ O o1 o2 o3 o2 o5 o8 o7 os o5 1
purity (see eq.[(13)) and of correlations in the measureme P
record (see eg[_(12)). This numerical evaluation sugghksts t
following: FIG. 2: This plot show the numerical results on the smallestuant

) . of entanglement that is compatible with given values of (puigee
e Region | does not allow for any physical states. eq. [I3)) and correlations in the measurement record (se@2)).

. . . The logarithmic negativity” x is shown as a contour plot in function
e There is a well-defined central regidhthat does not ¢ ihe parameter® andc... Four regions can be distinguished. In
allow to Infgr the presence of entanglement as the valregion | no state exists that is compatible with the specifides of
ues for purity and correlations can be reproduced by & andc... A large central region, denoted I8 does not allow to
separable state. conclude the presence of entanglement. Regions lla anddlthe

only ones where all compatible states have non-zero ergaregit

e Only inregions llaand IIb is entanglement guaranteed . For these regions, the minimély is given by eqns[{14) and
The minimal value o'y in those regions is given by  (I5), respectively.

EN > 10g2(1 + 2(Q - 1) + sz)a (14)
_ ) region, the region where be separable states. They are given
in Region lla, and by
E > 10 sz + 2 -1 15 2
N > logy( V2@ —1) (15) %gpg—%;z. (17)

in Region lIb. Here@ = Tr[p?] = (3P + 1) /4.
Here, the first inequality defines the boundary with Region |
Mwhile the second one defines the boundary with Region lla.
To proceed, we treat boundary | and Il separately. For
9 boundary | we can simplify the form @fthat needs to be con-
1— Ce <Q< 1 1+ (1 _ sz) ’ (16)  sidered quite significantly. To this end note that corretai
2 - 772 2 C..(p) are unaffected by the transformation

One may either calculate both bounds and take the minimu
or infer which region one is in via the limits

which hold for Region lla. 1
We stress that we do not have a complete proof of thes€ 7 = 1 (p+@®0)p(l®0:) + (0 ®D)p(o: ® 1)

statements. They were derived — in a rather laborious way +(o, ®0.)p(0, ®0.))

— starting from an Ansatz concerning the form of the states

achieving the bounds. This Ansatz was in turn obtained from @, C..(p) = C..(p) but at the same time the transformation

combination of Monte-Carlo calculations and inspired gues from p to p reduces purity as they correspond to pinchings

work. While a proof does not seem forthcoming, the numeri{31]. A statep that is invariant under the above maps is di-

cal evidence for correctness of the Ansatz, and of the boundsgonal. As these maps are local we find thaE{fp) = 0,

derived from them, is very convincing. The interested readethen £(5) = 0. To determine the boundary I let us now

is advised to contact the authors for further details. fix a value forC., and determine the smallest purity com-
Analytical proof of boundaries What we do have been patible with it. If we have g with a given purity then by

able to prove is the analytical form of the boundaries of$he the above transformations we can fing ith the same’.,



and no larger purity that is diagonal. Therefore it is suffi- .. CORRELATIONS ALONG DIFFERENT DIRECTIONS
cient to restrict attention from the outset to diagopal.e.

p = Diag(a,b,c,1-a—b—c). Thenwefind’.. = 1-2b—2c Let us now move away from the use of non-linear properties
and the purity is given by of the density operator such as purities or entropies ane con
4 1 sider only linear functionals, i.e. expectation values adior
P=_ ((f + 4+ (l—a—-b—c)?— _) . (18) tum mechanical operators that are directly accessible to ex
3 4 perimental detection. Consider the case when we are given

Without restriction of generality we assurig, > 0 (the case the quantities

C.. < 0 can be treated analogously) and one finds that the 0 @)
purity is minimized forb = ¢. This leaves us with the mini- Cee = Tr[(0r’ ®0:7)p]
mization of the expression Copy = Tr[(ag(ﬁl) ® 03(52))P]

P é A +20% + (1 —a—2b)%— 1 (19) (note thgt these are differer_lt quant?ti_es th_an the_one used i
3 the previous Section). In this case it is quite straightfmav
to determine the minimal entanglement compatible with any
for choice ofC,, andC,.. To see this we first realize thét,,
andC. . are invariant under the transformation

C..=1—4b. (20)
1
Then the minimal purity compatible with the givé€nis then p—p = 1 Z (0; ® 03)p(os ® 7). (24)
found to be i=0,z,y,2
_ C_,rfz Thus for givenC,,, andC,, we may restrict attention to states
P = (21)
3 of the form
yielding the boundary confirming ed. {17). 14C.. 0 0 Cex _p
Determining the boundary Il is more involved and is based 6 1-C.. b 2 0
on the observation that for all separable statese have([32] p= 0 ‘bl 1-C.. 0 (25)
4
- Geobo0 0 b

Let us now consider the case,, > 0 andC,, > 0. Any
We first note thatlr[p?] + %sz(p) is convex inp. Indeed, a other choice can be reduced to this one by applicatidh ®f

short calculation reveals that this expression is equal to 0. Or 1 ® o, onto the state.
The requirements for positivity gf areb < (1 — C..)/4
D pikl? + 14 2(p30 — paz + pis — psa)- andC,,/2 — b < (1 + C..)/4. From the first requirement
J#k follows that|b| < (1+C,,)/4. Thus any amount of negativity

) _ o of the partial transpose gfmust arise fromp14 = C, /2 —b.
As every term is convex ip, the total expression is. There- As we are looking for the smallest amount of entanglement
fore, the inequality only has to be checked for the extremagompatible with the choic€’,,, C,. > 0, we must minimize
points of the set of separable states, i.e. for pure protitetss ¢ /2 — b, i.e. maximizeb. This is achieved by the choice
This, however, is very easy: for product stai€s, = 0, and  , — (1 — (,,)/4; one checks that this choice satisfies the
for pure statedr[p?] = 1, whence the inequality is satisfied gecond requirement, /2 — b < (1 + C..)/4. Then we find

with equality. Erin(Cre, C..) = logg (Cry + C..). For generat’,,, C..
Now we note that the separable states a|00) (00| +(1—  we find

a)|11)(11] saturate the bound{R2). Rewriting this bound in

terms of P(p) we findP < 1 — 2C../3. This then completes Enin(Caa, Csz) = logd (|Cua| + |Csz])- (26)

the proof for boundary Il.

A lower bound for”y —As mentioned above, we have not  1hjs result may easily be generalized to the case of three
been able to prove our lower bounds](14) dnd (15) so far. Nevsgrelations

ertheless, inequality (22) suggests that

- Co. = Tr(0l) @ o)),
Eiower = logy (Tr[p?] + 5C:(p)) (23) Chn = Tr[(o) @ 0®)p),
might be a lower bound on the entanglement in all regions. Cyy = Tf[(U;(,l) ® 0’;82))0],

Here we define the functiolvog] (z) := max(0,logy(z)); _ _

that is, logZ (z) = 0 for z < 1. We will prove eq.[(ZB) in for which we find

subsectiol VI, where a general recipe for the derivation of N

such bounds is presented. Emin =1logy (1 + |Caa| + [Cyyl +|C220)/2).  (27)



V. LOCAL STATISTICS FROM CORRELATION and
MEASUREMENTS IMPROVES ENTANGLEMENT
ESTIMATION 0
0

E

ad.

IN A
IN A

€
s iven z; and zs, there are now restrictions on the values of
w2 andC

If the sub-systems for which we would like to verify en-
tanglement are distant, then any measurement strategp ha
be composed of local measurements. In this way we can,
course, still obtain averages such(as ® o, ) by measuring C
local observables (such as) and use these averages to de- == 1
termine correlations (such @s,,). While the assessment of Coo < =vV/(14C..)% = (21 + 22)2
entanglement wil primarily depend on the values of these cor 2
relations, it is important to note that these local measergm +1\/(1 —C..)% — (21 — 22)2.
will in addition yield local averages (such &s,)), which by 2
themselves are not useful to assess entanglement, but whefe negative eigenvalue of the partial transposg isfgiven
taken together with the correlation values represent ihdit by
knowledge that we can and should take account of. Note that

IN

1—|22—2’1|

the question of the verification of the presence of entangle- 1 5 5
ment in the particular setting considered in this sectios ha min = 7 M0 (14 Cez = V(21 + 22)° + (4€)?,
been addressed in_[16]. The full analytical treatment of the 1-Co — /(o1 — 222 1 (4f)2).

guantification of the least amount of entanglement comfeatib

with the measurement data in thi_s _s_e_tting is quite cor_npd'd:at The log-negativityZ y is then

due to the large number of possibilities that are availalrie.

the following we will simply present an example to illumieat En = logy(1 — 2(min(0, Amin))-

the impact that additional local information may have on the

question of assessing least entanglement compatible kéth t To minimise£y, we have to maximisg.,;, over all allowed
measurement data. values ofe, which is the range

Let us reconsider the case in which we employéd =

— < e <mi .
(o) © 62)p andCyy = Te(ot) ® oP)pl. In this max(0, Cos /2 ~ Vad) < ¢ < min(Cez/2, Vbe)

setting we found thaBiin (Cra, Czz) = logy (Cow + Cs.) As an example, in Figur@ 3, we present the difference be-
(eq. [26)). Let us now investigate what ca? be gained by takyyeen the minimal compatible entanglement for giyen, =
ing into account knowledge of; := Tr[a§ )p] andzy = 1—]z1—22] = 0.9, Cps, 21 = 0.3, 22 = 0.2) and the one when

Tr[af)p]; that is, we determine the minimal amount of entan-only (C.. = 0.9, Cz.) are given. For the given value 6f...,
glement compatible with the information given .., C.. eitherb = 0 or ¢ = 0, so that the only allowed value feris

andzy, zs. e =0, giving
We can no longer restrict ourselves to states of the form 1
(29), because; andz, are not invariant under transforma- Amin = 1(1 — Cuo — /(21 — 22)% + (2C12)?).

tions [24). The optimal states can now be assumed to possess
ao, ® o, symmetry. The diagonal elements of the optimal ~ While, of course, the parameter range for which physical
are fully determined by, ., 21, 22 andTr[p] = 1. Employing  density operators compatible with those data exist is niwre |
theo, ® o, symmetry of the system the problem can be re-ited in the former case, it is indeed apparent that the knowl-
duced to a single-parameter minimisation. The optimaéstat edge ofC,., andC,. in combination withz,, z5 allows us to
turn out to be of the form infer a larger amount of entanglement.

This example highlights the importance of including all

a 00 f available information in the entanglement verification &s i
0beO may substantially alter our conclusions. The exact detdils
r={oeecol (28)  the procedure will, of course, depend on the concrete situa-
f00d tion.
with VI. MULTI-PARTITE ENTANGLEMENT
a (I+214+204+C,.)/4 Our considerations are not restricted to bi-partite erleang
b= (1—2 +2—C..)/4 ment. .Agai.n, quite_gengral observaples may be considered
¢ = (1421 —2—Co)/d but in line with the bi-partite case we illustrate this segtfor
a simple set of observables. Let us consider the expectation
d=(1-21—22+C.)/4 valuesC .y = (0, Q® 0, R 02), C1,, = (Il® 0, ® 0,) and
e+ f = Cus/2, C..1 = (0, ® 0, ®1). Given the symmetries that leave these
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We note that states of the form eq.[(2B) are Tri-PPT if and
only if A = max{|e|,|f], 9], ||} —min{a,b, c,d} < 0. Due
to unitary invariance of the relative entropy we can apptalo
unitaries to bothp ando; one can therefore restrict to non-
negative reat, f, g andh. Definingm := min{a, b, ¢, d} we
obtain the restrictions, f, g, h < m.

The expectation values for such states are given by

R | Cuove = 2e+f+g+h)
o4r Cizz = 2(a—b—c+d)
03f C:z1 = 2(a+b—c—d)
02} 1 =2a+b+c+d).

0.1r Note that these expectation values lie in the rajpge 1].

The minimisation ovep reduces to a three-parameter min-
imisation. Let the matrix elements of and p (in the form
(29)) be denoted,, a,, etc. The three parameters arg b,
andc,. The other matrix elements of the optimahre given

by

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIG. 3: For givenz; = Tr[o{"”p] andz, = Tr[e'”p] we plot
the difference between the minimal entanglement (quadtifiethe

logarithmic negativity) compatible with the observatioh@®@.. = d, = 1—(a,+b,+c,)
Tr[(cf" ® 0)p] andC, = Tr[(0lM ® o{?)p] and the minimal h, = min(m,, (he/as)a,)
entanglement without the constraints imposed:byand z2. In this p pr ARl
exampleC.. = 0.9. The lower curve is the minimal entanglement gp = min(my, (ga/ba)bp)
without knowledge ot andz; (hence the worst case was assumed); fo = min(m,, (f5/co)cp)
the upper curve is the minimal entanglement with = 0.3 and .

29 = 0.2. ep = min(my, (e5/ds)d,),

wherem,, := min{a,, b,, ¢,,d,}. The expression for the rel-
ative entropy in this optimal state is

S(UHP) = H((ad + hdv A — hd)”(ap + hp’ ap — hP)) "‘(32)
with three additional terms of obvious form. Hei#,is the
classical (Kullback-Leibler) relative entropy betweemtun-
normalised) two-dimensional probability vectors.

Because of joint convexity of the relative entropy, and con-
vexity of the feasible set fop, the remaining minimisation
(overp ando) is a convex one, which means that there can
only be one local minimum. It can therefore be efficiently
calculated numerically using, e.g. conjugate gradienthmet
ods. We have performed numerical calculations based on this
In the tripartite setting it is considerably more difficdttin in ~ method, and plotted the results in Figlte 4 for the example of
the bi-partite setting to define entanglement measures\fgé]. Ciz. = 1.
consider two entanglement measures, the relative entrbpy o Another possible entanglement quantifier is the random ro-
entanglement and the robustness of enanglement. bustnessk(o) [34]. The random robustness is defined as the

We begin with the relative entropy of entanglement with minimal amount of the maximally mixed stale/d that needs
respect to Tri-PPT states, i.e. states that are PPT witkecesp to be mixed witho to make the resulting state Tri-PPT. For-
to any of the three possible bi-partite cuts mally,

R(o) = Ingn{p :pl/ Tr[1] + (1 — p)o is Tri-PPT}.  (33)

expectation values invariant, we may restrict attentioteto-
sity operators of the form [35]

(29)

STO OO OO OoOR
S OO oo T o
OO+ O OO0 OO
SO O QL0 OO
SO OQAUDD OO0
OO0 OO+ O O
O TT OO OO O
QR oOocoococo =

Es(o) = inf{S(ol|p) : pis Tri-PPT}. (30)
p
We find that
It is helpful to note that it is always sufficient to restritiet A
minimization overp to those states that possess the same local R(0) = max <0, 7> .
symmetries ag [23,124]. Thus only states of the form eq. 1/8+A
(29) need to be considered. These states all commuteowith Therefore, the minimal robustness under the constraints
Thus we are looking for a two-fold minimization Cozz = (02 ® 02 ® 02), C12. = (L ® 0, ® 0,) and
C..1 = (0, ® 0, ® 1) is given by

(34)

Enin = min{min{S(cl|p) : pis Tri-PPT} :  (31)
o b

Amin
0 Amin) , (35)

TrloA;] = a;}. Ryin = max (
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the Lagrangiamin, Tr[(M" — >~ v;4;)p] + >, via; over
all positive semidefinitep > 0, where they; are the La-
grange multipliers. IfMT — > 1; A; has negative eigenval-
ues, the minimum of the Lagrangian will beco (by let-
ting p become arbitrarily large), and will not contribute to
the outer maximization ove¥/. Thus we can safely require
MT — > v;A; > 0, in which case the minimum is obtained
for p = 0 and equal$ _, v;a;. Inserting this we find

Enin 2> 10g2 m]\f}X { IT}/B;X{Z v;a; : ZViAi < MF}

| M]|oe = 1} (39)

Because the inner minimization is an SDP, if the problem is
0 122 strictly feasible, i.e. if all inequality constraints caa batis-
fied with strict inequalities, then we have strong dualit@][1
FIG. 4: For the given value of .. = 1, we plot the minimal  and the above step does not weaken the lower bounds.
amount of entanglement, as measured by the relative entrfogry- Any choice of M andv; such thatMT > Zi v; A; and
tanglementE’s w.r.t. Tri-PPT states, consistent with the observation ||M||oo = 1 now yields a lower bound oB,;,. Indeed, this
of C1.. andC..1. could have been read offimmediately from éqJ (38). However,
as the optimization problem e. {39) shows this may be overly
restrictive. See [11, 12] for lower bounds on other entangle

where ment measures.
Coval =1 |Cont] + [Cros | Applications -n the case of giveliC,, C..) with Cy, +
Amin = max{—— + 1 0}, (36) (., > 1 asdiscussed in SectionllV, we hadg = 1, A; =

0 ® 0, and Ay = 0, ® 0., andag = 1, a; = C,, and
as = C,. Inthis case we find as optimaf :

VIl. A GENERAL STRATEGY FOR LOWER BOUNDS ON
THE NEGATIVITY

M =

SO O
o= OO
oo~ O
— o OO

In this Section, we readdress some of the issues of Section
[M It is worth noting that the last result obtained therg, e
(232), could have been obtained from a general strategy to o
tain lower bounds for the minimization problem €g. (2).

This can be achieved by using the fact that'||; =
MaX|| M||e=1 TI‘[MpF] = MaX||M||oe=1 TI‘[MFp], where the
maximization is over Hermitiad/ [31]. Thus we consider
the problem

kiwhich indeed has operator norm 1) and as optimalb, =
0,11 = vy = 1. One checks that/" > A; + A,. From this
we recover again ed. (26).
For the case of giveriC,.,Cy,,C..) we chooseyy, =
VvV, = V3 = 1/2,V2 = —1/2, SO thatzl I/Z'Ai = (1+ Or X
Op — 0y R0y +0,RQ0,)/2. TakingM = (L + 0, @ 0 +
Emin = log, min { max{Tr[M%p] : || M||s = 1} oy ® oy + 0, ® 0,)/2 (Which has operator norm 1) yi_elds
p M MT = >, viA;, and we recover the exact value found in eq.
: Tr[pA] = ai, Fy(p) < fi}, 37) D).
Proof of eq.[(2B) -A similar approach may suggest itself
where the outer minimization is over positive semidefinilem for the case concerning purity and correlations discussed i
tricesp (the trace condition for states is included by puttingsection 11l and will be used to prove the lower bound &gl (23).
Ao = 1, a9 = 1), and the inner maximisation is over all Her- The constraints are however non-linear. To proceed, we will
mitian matrices\/. WhenF; is a convex function its level sets use a kind of linearization procedure. We begin by rewriting
{p: F;(p) < f:} are convex sets, and we can use the minimaxhe quantitie€. . (p) andTr[p?] in terms of expressiorimear
equality (see e.g. [10]) to interchange inner and outemnuipti  in the tensor product := p ® p. Taking into accourTr|p] =
sations, obtaining 1 we find

Ein = logymax {min{Tr[M"p] : Tr[pAi] = a;, Fi(p) < fi} C..(p) = Tr[rZ] and Tr[p*] = Tx[rF]  (40)
p
[M|loe =1}, (38) whereZ is the operator

Let us now consider the case that there are no non-linear con- 7=0,00,011-1R0¢, Q0,1
straintsF;, then the inner minimization is a semidefinite pro-

gram (SDP). We now apply Lagrange duality to this mini- and F' is the flip operator that interchanges partie of the
mization, i.e. we consider the unconstrained minimizatibn first copy with parties3, 4 of the second. The’ presented



here is the simplest one that represafits However, it is  where the minimisation domain is the set of states
beneficial to use the symmetrised fotth= (Z + FZF)/2.

Let us now address the minimizationbfog, ||p" ® p*x
given constraints o6, (p) andTr[p?]. This problem is lin-
ear inoc = p ® p and is therefore an SDP. Consequen-
tially, we can apply the above approach. Indeed, let us
chooseM = Diag(1111 1101 1011 1111). Then, clearly,

MY — 7'/2 — F > 0 and we obtain eq[(23) as a lower
bound on the entanglement. This bound is certainly not tight
however. Indeed, we could not have expected much more, as
the extension of the problem to two copies allowed for much
greater freedom in the matrix/ and, therefore, led us to un-
derestimate the true value 6f,;,,.

In this more general framework the minimization of entan-
glement is merely a special case of a general approach to the
verification of physical properties in experiments.

IX. SUMMARY AND CONCLUSIONS

In this work we have addressed the question of when cor-
relations or other measurement data that have been observed
in the classical measurement record of a quantum system im-
ply the existence of quantum correlations in the underlying
state. Theundamental questioim this area may be formu-
lated as:What is the entanglement content of the least en-

In this work we have pointed out that in an experimentaltangled quantum state that is compatible with the available
verification of entanglement we need to search for the leagneasurement data®/e have formulated this question mathe-
entangled state compatible with the measured data. If#te st matically as an optimization problem, discussed it for vasi
so identified is entangled then the experimental data provexamples and provided some techniques for obtaining non-
the presence of entanglement. This approach is not restrict trivial lower bounds on the minimal entanglement compatibl
to the verification of entanglement. In fact, it applies ty an With the measurement data. The approach is equally valid in
physical property that we cannot or chose not to measure dthe bi-partite and the multi-partite setting and for subteyns
rectly. of arbitrary dimensionality. We hope that these invesiayet

Consider the propertyI of a quantum system which is Will be helpful in experimental efforts that aim at the cieat
quantified bylI(p). If we are obtaining experimental data, for and subsequent unequivocal verification and quantification
example quantum mechanical averages of some observablés generated entanglement. This should, in particulgtyap
A;, then we need to answer the to experimental set-ups where for various reasons onlya lim

Fundamental Question: What is the least value di for  ited number of measurement settings is available.
which there is a state that is compatible with the available Acknowledgements We thank Alvaro Feito for careful
meas_urementdata’? . , reading of the manuscript and helpful suggestions. We are
_ This smallest value dfl is the value to which we have ver- g atef)| to Pawel Horodecki for bringing ref! [9] to our atte
ified the presence dil. Mathematically this may again be ¢, “\we also thank an anonymous referee for pointing out a

formulated as a minimization problem in which the propertygimsjer proof of eq.[{22) than the one contained in an earlier
ITin the underlying quantum state must be minimized subjec}q gion.

to the positivity, Hermiticity and normalization and megssu
ment data obtained as expectation values of observables

some non-linear functio; (p) of the density matrix. Then
the minimal amount of entanglemeft,,;, under the given
constraints is given by

VIll. VERIFICATION OF OTHER PHYSICAL
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