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When are correlations quantum? – Verification and quantification of entanglement by simple
measurements.
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The verification and quantification of experimentally created entanglement by simple measurements, espe-
cially between distant particles, is an important basic task in quantum processing. When composite systems
are subjected to local measurements the measurement data will exhibit correlations, whether these systems are
classical or quantum. Therefore, the observation of correlations in the classical measurement record does not
automatically imply the presence of quantum correlations in the system under investigation. In this work we
explore the question of when correlations, or other measurement data, are sufficient to guarantee the existence
of a certain amount of quantum correlations in the system andwhen additional information, such as the degree
of purity of the system, is needed to do so. Various measurement settings are discussed, both numerically and
analytically. Exact results and lower bounds on the least entanglement consistent with the observations are
presented. The approach is suitable both for the bi-partiteand the multi-partite setting.

PACS numbers: 03.67.Hk,03.65.Ud

I. INTRODUCTION

The theoretical and experimental exploration of entangle-
ment and in particular its characterization, verification,ma-
nipulation and quantification are key concerns of quantum in-
formation science [1]. The resource character of entangle-
ment is most clearly revealed when dealing with situations in
which a locality constraint is imposed, i.e. when distributing
the state in such a way that subsequent quantum operations
can only act on individual constituents supported by classical
communication. This does not only impose constraints on the
manipulation and exploitation of entanglement but also on its
verification.

In any experiment we will aim to verify the presence of
entanglement by taking measurements. These measurements
may either serve to reconstruct the entire state or may only
collect partial information that is sufficient to reveal thede-
sired entanglement properties [2, 3, 4, 5]. Given that a fun-
damental goal in quantum information science is the creation
of entanglement between spatially separate locations one is
often forced to assume that these verification measurements
are local as well. Generically in such verification experiments
we will observe correlations in the measurement record. It
is then a natural question whether these correlations originate
from quantum correlations in the underlying state or can be
explained by a classically correlated separable state. Then, if
there are quantum correlations, one can ask how much quan-
tum correlations are guaranteed to be there, given the mea-
surement data.

Consider as an example a two-qubit system and the mea-
surement of correlations between Pauli-operators along the z-
axis, i.e. the quantity

Czz(ρAB) = Tr[ρAB(σz ⊗ σz)] − Tr[ρAσz ] Tr[ρBσz ], (1)

where ρA(ρB) are the reduced density operators resulting
from tracing out party B (A) in the original stateρAB. If
Czz(ρAB) = −1 then the measurement outcomes are per-

fectly anti-correlated and are thus exhibiting very strong, al-
beit negative, correlations. Do such correlations imply the
existence of quantum correlations in the underlying quantum
state? To decide this we must address the following

Fundamental Question: What is the entanglement content
of the least entangled quantum state that is compatible with
the available measurement data?

Mathematically, this question is formulated as a minimiza-
tion problem in which the amount of entanglement in the un-
derlying quantum state must be minimized subject to the con-
straints imposed by the measurement data as well as by the
positivity and normalization of the state [6]. The measure-
ment data will be the expectation values of some observables
Ai or some non-linear functionFi(ρ) of the density matrix.
Then the minimal amount of entanglementEmin under the
given constraints is given by

Emin = min
ρ

{E(ρ) : Tr[ρAi] = ai, Fi(ρ) = fi} (2)

where the minimisation domain is the set of statesρ andE(ρ)
is the entanglement measure of choice [1]. Note that this for-
mulation applies equally to the bi-partite as to the multi-partite
setting. Note that the importance of the minimization of en-
tanglement in quantum state reconstruction in quantum infor-
mation theory was also pointed out in the context of Jaynes’
principle [9].

The mathematical minimization problem formulated by eq.
(2) may be addressed by techniques from optimization the-
ory (see e.g. [10]). If the constraint are all linear and the
entanglement quantifier is convex then methods from convex
optimization theory may be applied. More complicated con-
straints that are not linear in the density operator (e.g. purity
measures) can complicate matters considerably. Generallyit
will not be possible to obtain analytic solutions to the opti-
mization problem and techniques to obtain lower bounds or
numerical approaches must be used. The analytical and nu-
merical exploration of these issues will be the main purpose
of this work.
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If the optimal state in eq. (2) is separable, i.e.Emin = 0,
then in reply to our fundamental question we must conclude
that the available correlations in the measurement record do
not imply quantum correlations in the underlying quantum
state. It might be, but need not be entangled. Indeed, in the
example given in eq. (1), the least entangled state compatible
with the observationCzz(ρAB) = −1 is given by

ρ =
1

2
(|01〉〈01|+ |10〉〈10|) (3)

which is clearly a separable state. Therefore, the observation
of classical correlations for the measurement along one setof
directions alone is not sufficient for the verification of entan-
glement. This well-known observation in quantum informa-
tion science is particularly relevant in experimental situations
where only a very restricted set of measurement settings is
available.

One way forward consists in measuring additional observ-
ables. For example, one may consider the measurement of

C~n~n(ρAB) = Tr[ρABσ~n ⊗ σ~n] − Tr[ρAσ~n] Tr[ρBσ~n] (4)

for all spatial directions~n. Observation of perfect anti-
correlations in all of these measurement records then uniquely
identifies the singlet state|ψ〉 = 1√

2
(|01〉 − |10〉) as the only

state compatible with all such measurements. This state car-
ries one ebit of entanglement.

In other experimental situations it may be possible to as-
sert that the state possesses a certain minimal degree of purity
[33], e.g. when decoherence rates, or at least upper bounds for
it, are known. Let us for example assume that we know not
only thatCzz(ρAB) = −1 but also thatTr[ρ2

AB] = 1, i.e. that
the underlying quantum state is pure. Then again it is straight-
forward to conclude that the only states compatible with these
two assumptions are of the form

|ψ〉 =
1√
2
(|01〉 + eiφ|10〉), (5)

that is, quantum states with one ebit of entanglement.
These simple examples serve to make two points. Firstly,

the simple observation of correlations in measurements along
a single fixed orientation is not enough to guarantee entangle-
ment in the underlying quantum state. Secondly, additional
information, be it correlation measurements along different
directions or information about the purity of the states, may be
sufficient to ensure that the correlations found in the classical
measurement record indeed prove entanglement in the under-
lying quantum state. Needless to say, in general the situation
is quite involved as the measurement data may be more varied
than those in the above examples. It should also be noted that
the local measurement of the correlation functions mentioned
above often implies that we possess more information than
just these correlations. Indeed, we will often possess local
statistics as well, which in turn can be taken into account when
answering our fundamental question concerning the minimal
entanglement compatible with the measurement data. Gener-
ally, when we are provided with an entangled state, then any

additional information will make it less and less likely that the
measurement data is compatible with a separable state.

Our fundamental question is of particular relevance in ex-
perimental settings in which it is difficult to perform measure-
ments for an arbitrarily large number of measurement settings,
as is required for doing full state tomography. This may be the
case for example in solid state physics, where it is not always
straightforward to perform arbitrary measurements. Another
reason may simply be the existence of constraints on the mea-
surement time, dictated for example by the stability time ofan
experiment (e.g. in interferometric setups in optics) or bythe
decoherence time (in solid state or other implementations).

The present work shares some relations with [11], [12] and
[19] where similar questions are developed but where empha-
sis is placed on observables that are obtained from the theory
of entanglement witnesses [13]. Other approaches are consid-
ered in [14, 15, 16, 17, 18]. While these, as well as the present
work, consider the analysis of a specific state, a somewhat dif-
ferent approach is taken in [20]. Here the dynamics of the
gate used to produce entanglement is considered while mea-
surements are restricted to a single measurement basis. The
approach is to make repeated measurements during the gate’s
time evolution. This contrasts with our approach which only
requires to make measurements on the final state, irrespective
of the process that created it.

In this paper we will address our fundamental question for
systems consisting only of qubits, as this is by far the most
relevant system from an experimental viewpoint. I should be
noted however that the approach remains valid unchanged for
qudits or even infinite dimensional systems. We begin with
an illustration of the general approach in which correlations
and purity are quantified by quantum mutual information and
global entropy, respectively. While these quantities are not
directly experimentally measurable, they allow for the funda-
mental question to be most easily answered. Then we consider
the question for correlations between measurements of Pauli-
operators along a single axis, e.g. the z-axis. In the process
we prove an inequality between correlations and purity thatis
valid exactly if a two-qubit state is separable and use it to pro-
vide necessary and sufficient conditions for entanglement to
be inferred. Subsequently, we consider correlations alongtwo
different measurement axes, e.g. x-x correlations and z-z cor-
relations. Finally we consider the situation in which we take
into account the local expectation values that are obtainedin
most experiments to sharpen the verification of entanglement.
We finish with some conclusions.

II. MUTUAL INFORMATION, ENTROPY AND
ENTANGLEMENT

To illustrate the general approach that we are advocating,
we begin by considering a situation in which the known sys-
tem properties are the entropy of the state (determining the
state’s purity) and the quantum mutual information (deter-
mining the state’s correlation), and in which the entanglement
measure of choice is the relative entropy of entanglement [21].
The reason for this choice is that there exists a very simple re-
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lationship between these quantities, and the solution of the
minimization problem eq. (2) is immediate.

The quantum mutual information is given by

I(ρAB) = S(ρA) + S(ρB) − S(ρAB), (6)

and the relative entropy of entanglement is [1, 23, 24]

ER(ρ) = min
σ

{S(ρ||σ) : σ separable}. (7)

For a 2-qubit state, the physically possible values of the pair
(IAB , SAB) are located in a triangle spanned by the points
(0, 0), (2, 0) and (0, 2) (see Figure 1). That is,IAB ≥ 0,
SAB ≥ 0 andIAB +SAB ≤ 2; equality in the latter inequality
is obtained when both reductionsρA andρB are maximally
mixed.

0

0.5

1

1.5

2

0

0.5

1

1.5

2
0

0.25

0.5

0.75

1

S
AB

I

II

I
AB

E
R

FIG. 1: State space in theSAB-IAB plane, depicting the minimal
possible entanglementER for every point. In region I there is no
guaranteed entanglement, while in region II one has at leastER ≥
(IAB − SAB)/2.

The solution to eq. (2) is obtained by applying an inequality
lower bounding the relative entropy of entanglement [25] and
showing that equality can be achieved for every pair of values
of (IAB , SAB). The inequality is

ER(ρAB) ≥ max{S(ρA)−S(ρAB), S(ρB)−S(ρAB)}, (8)

which directly implies [26]

ER(ρAB) ≥ max(0,
1

2
(I(ρAB) − S(ρAB))). (9)

The bound is zero in region I (SAB ≥ IAB) and non-zero
in region II (SAB < IAB). Equality in region I is obtained
by diagonal states; they cover region I completely, and as any
diagonal state is separable, they haveER = 0. Equality in
region II is obtained by so-called maximally correlated states,
which are of the form

ρAB = a|00〉〈00|+ b|00〉〈11|+ b|11〉〈00|+ (1− a)|11〉〈11|.
(10)

Example 3 of [24] shows that these states satisfy

ER(ρAB) = S(ρA) − S(ρAB) = S(ρB) − S(ρAB). (11)

For any given value ofIAB andSAB in region II we can find
a state of the form eq. (10) realizing these values. By eq. (9)
and eq. (11) this state realizes the smallest possible valuefor
theER givenIAB andSAB.

The upshot of the results obtained here is that knowledge
of the two quantitiesSAB andIAB allows one to have much
better bounds on the entanglementER than with just knowl-
edge of the correlationsIAB alone. Indeed, without know-
ing the puritySAB, one has to assume the worst case, being
SAB = 2 − IAB , in which case the lower bound onER is
given by

ER ≥
{

0, IAB ≤ 1
IAB − 1, IAB ≥ 1.

If, on the other hand, the state is known to be pure, say,
(SAB = 0) then the much sharper bound

ER ≥ IAB/2

can be obtained.
In the rest of the paper we will apply the approach illus-

trated here for studying the main question eq. (2) in the con-
text of experimentally accessible quantities. In the next Sec-
tion the measure of correlation will be based on measurements
along the z-axis. It will turn out that without knowledge of
the purity one cannot find any lower bound on entanglement
other than the trivial boundE ≥ 0. Thus, while in the present
Section one can get some information about the entanglement
from the quantum mutual information without knowledge of
the purity, in the next Section knowledge of the purity is ab-
solutely essential.

III. PURITY AND CORRELATIONS

In a number of experimental settings it is not straightfor-
ward to carry out measurements along arbitrary directions.To
obtain a measure of correlation in those settings, one can for
example consider the quantity

Czz(ρAB) = Tr[ρAB(σz ⊗ σz)]−Tr[ρAσz ] Tr[ρBσz ], (12)

which only requires measurements along the particles’z-axes.
However, in the previous Section we already alluded to the
fact that knowledge of this correlation measure alone is not
sufficient to prove the presence of quantum entanglement. We
will establish that fact in the present Section. Moreover, we
will show that if in addition the purity of the state is known,
as quantified by

P(ρAB) =
4

3

(

Tr[ρ2
AB] − 1

4

)

, (13)

and provided this purity is large enough, then and only then
can one infer entanglement from the z-correlation measure.
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Now the question is: how pure does the underlying quan-
tum state have to be so that|Czz| > 0 indeed implies quantum
entanglement? Or, more precisely:

When are all states consistent with given values ofCzz and
P non-separable, and what is the least entanglement compat-
ible with these values?

It turns out that the rigorous analytical answer is surpris-
ingly involved, largely due to the non-linearity of the con-
straints involved in the minimization problem, especiallyif
one is also interested in the actual amount of entanglement
that can be guaranteed from such measurements.

As measure of entanglement we have used the logarithmic
negativityEN , because this is the measure that is most easily
calculated [28]. The log-negativity is defined as

EN (ρAB) := log Tr |ρΓ|,

whereΓ denotes partial transposition w.r.t. subsystem B.
In Figure 2, we present our numerical results on the small-

est amount of entanglement compatible with given values of
purity (see eq. (13)) and of correlations in the measurement
record (see eq. (12)). This numerical evaluation suggests the
following:

• Region I does not allow for any physical states.

• There is a well-defined central regionS that does not
allow to infer the presence of entanglement as the val-
ues for purity and correlations can be reproduced by a
separable state.

• Only in regions IIa and IIb is entanglement guaranteed.
The minimal value ofEN in those regions is given by

EN ≥ log2(1 +
√

2(Q− 1) + Czz), (14)

in Region IIa, and

EN ≥ log2(Czz +
√

2Q− 1) (15)

in Region IIb. Here,Q = Tr[ρ2] = (3P + 1)/4.

One may either calculate both bounds and take the minimum,
or infer which region one is in via the limits

1 − Czz

2
≤ Q ≤ 1

2

(

1 +

(

1 − Czz

2

)2
)

, (16)

which hold for Region IIa.
We stress that we do not have a complete proof of these

statements. They were derived – in a rather laborious way
– starting from an Ansatz concerning the form of the states
achieving the bounds. This Ansatz was in turn obtained from a
combination of Monte-Carlo calculations and inspired guess-
work. While a proof does not seem forthcoming, the numeri-
cal evidence for correctness of the Ansatz, and of the bounds
derived from them, is very convincing. The interested reader
is advised to contact the authors for further details.

Analytical proof of boundaries –What we do have been
able to prove is the analytical form of the boundaries of theS
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FIG. 2: This plot show the numerical results on the smallest amount
of entanglement that is compatible with given values of purity (see
eq. (13)) and correlations in the measurement record (see eq. (12)).
The logarithmic negativityEN is shown as a contour plot in function
of the parametersP andCzz. Four regions can be distinguished. In
region I no state exists that is compatible with the specifiedvalues of
P andCzz. A large central region, denoted byS, does not allow to
conclude the presence of entanglement. Regions IIa and IIb are the
only ones where all compatible states have non-zero entanglement
EN . For these regions, the minimalEN is given by eqns. (14) and
(15), respectively.

region, the region where be separable states. They are given
by

C2
zz

3
≤ P ≤ 1 − 2Czz

3
. (17)

Here, the first inequality defines the boundary with Region I
while the second one defines the boundary with Region IIa.

To proceed, we treat boundary I and II separately. For
boundary I we can simplify the form ofρ that needs to be con-
sidered quite significantly. To this end note that correlations
Czz(ρ) are unaffected by the transformation

ρ 7→ ρ̄ =
1

4
(ρ+ (11⊗ σz)ρ(11⊗ σz) + (σz ⊗ 11)ρ(σz ⊗ 11)

+(σz ⊗ σz)ρ(σz ⊗ σz))

ie, Czz(ρ) = Czz(ρ̄) but at the same time the transformation
from ρ to ρ̄ reduces purity as they correspond to pinchings
[31]. A stateρ̄ that is invariant under the above maps is di-
agonal. As these maps are local we find that ifE(ρ) = 0,
thenE(ρ̄) = 0. To determine the boundary I let us now
fix a value forCzz and determine the smallest purity com-
patible with it. If we have aρ with a given purity then by
the above transformations we can find aρ̄ with the sameCzz
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and no larger purity that is diagonal. Therefore it is suffi-
cient to restrict attention from the outset to diagonalρ, i.e.
ρ = Diag(a, b, c, 1−a−b−c). Then we findCzz = 1−2b−2c
and the purity is given by

P =
4

3

(

a2 + b2 + c2 + (1 − a− b− c)2 − 1

4

)

. (18)

Without restriction of generality we assumeCzz ≥ 0 (the case
Czz ≤ 0 can be treated analogously) and one finds that the
purity is minimized forb = c. This leaves us with the mini-
mization of the expression

P =
4

3

(

a2 + 2b2 + (1 − a− 2b)2 − 1

4

)

(19)

for

Czz = 1 − 4b. (20)

Then the minimal purity compatible with the givenC is then
found to be

P =
C2

zz

3
(21)

yielding the boundary confirming eq. (17).
Determining the boundary II is more involved and is based

on the observation that for all separable statesρ we have [32]

Tr[ρ2] +
1

2
Czz(ρ) ≤ 1. (22)

We first note thatTr[ρ2] + 1
2Czz(ρ) is convex inρ. Indeed, a

short calculation reveals that this expression is equal to

∑

j 6=k

|ρjk|2 + 1 + 2(ρ2
22 − ρ22 + ρ2

33 − ρ33).

As every term is convex inρ, the total expression is. There-
fore, the inequality only has to be checked for the extremal
points of the set of separable states, i.e. for pure product states.
This, however, is very easy: for product states,Czz = 0, and
for pure statesTr[ρ2] = 1, whence the inequality is satisfied
with equality.

Now we note that the separable statesρ = a|00〉〈00|+(1−
a)|11〉〈11| saturate the bound (22). Rewriting this bound in
terms ofP(ρ) we findP ≤ 1 − 2Czz/3. This then completes
the proof for boundary II.

A lower bound forEN – As mentioned above, we have not
been able to prove our lower bounds (14) and (15) so far. Nev-
ertheless, inequality (22) suggests that

Elower = log+
2 (Tr[ρ2] +

1

2
Czz(ρ)) (23)

might be a lower bound on the entanglement in all regions.
Here we define the functionlog+

2 (x) := max(0, log2(x));
that is, log+

2 (x) = 0 for x ≤ 1. We will prove eq. (23) in
subsection VII, where a general recipe for the derivation of
such bounds is presented.

IV. CORRELATIONS ALONG DIFFERENT DIRECTIONS

Let us now move away from the use of non-linear properties
of the density operator such as purities or entropies and con-
sider only linear functionals, i.e. expectation values of quan-
tum mechanical operators that are directly accessible to ex-
perimental detection. Consider the case when we are given
the quantities

Czz = Tr[(σ(1)
z ⊗ σ(2)

z )ρ]

Cxx = Tr[(σ(1)
x ⊗ σ(2)

x )ρ]

(note that these are different quantities than the one used in
the previous Section). In this case it is quite straightforward
to determine the minimal entanglement compatible with any
choice ofCxx andCzz . To see this we first realize thatCxx

andCzz are invariant under the transformation

ρ→ ρ′ =
1

4

∑

i=0,x,y,z

(σi ⊗ σi)ρ(σi ⊗ σi) . (24)

Thus for givenCxx andCzz we may restrict attention to states
of the form

ρ =









1+Czz

4 0 0 Cxx

2 − b
0 1−Czz

4 b 0
0 b 1−Czz

4 0
Cxx

2 − b 0 0 1+Czz

4









(25)

Let us now consider the caseCxx ≥ 0 andCzz ≥ 0. Any
other choice can be reduced to this one by application of11⊗
σx or 11⊗ σz onto the state.

The requirements for positivity ofρ areb ≤ (1 − Czz)/4
andCxx/2 − b ≤ (1 + Czz)/4. From the first requirement
follows that|b| ≤ (1+Czz)/4. Thus any amount of negativity
of the partial transpose ofρmust arise fromρ14 = Cxx/2−b.
As we are looking for the smallest amount of entanglement
compatible with the choiceCxx, Czz ≥ 0, we must minimize
Cxx/2 − b, i.e. maximizeb. This is achieved by the choice
b = (1 − Czz)/4; one checks that this choice satisfies the
second requirementCxx/2− b ≤ (1 +Czz)/4. Then we find
Emin(Cxx, Czz) = log+

2 (Cxx + Czz). For generalCxx, Czz

we find

Emin(Cxx, Czz) = log+
2 (|Cxx| + |Czz |). (26)

This result may easily be generalized to the case of three
correlations

Czz = Tr[(σ(1)
z ⊗ σ(2)

z )ρ],

Cxx = Tr[(σ(1)
x ⊗ σ(2)

x )ρ],

Cyy = Tr[(σ(1)
y ⊗ σ(2)

y )ρ],

for which we find

Emin = log+
2 ((1 + |Cxx| + |Cyy | + |Czz |)/2). (27)
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V. LOCAL STATISTICS FROM CORRELATION
MEASUREMENTS IMPROVES ENTANGLEMENT

ESTIMATION

If the sub-systems for which we would like to verify en-
tanglement are distant, then any measurement strategy has to
be composed of local measurements. In this way we can, of
course, still obtain averages such as〈σx ⊗ σx〉 by measuring
local observables (such asσx) and use these averages to de-
termine correlations (such asCxx). While the assessment of
entanglement wil primarily depend on the values of these cor-
relations, it is important to note that these local measurements
will in addition yield local averages (such as〈σx〉), which by
themselves are not useful to assess entanglement, but when
taken together with the correlation values represent additional
knowledge that we can and should take account of. Note that
the question of the verification of the presence of entangle-
ment in the particular setting considered in this section has
been addressed in [16]. The full analytical treatment of the
quantification of the least amount of entanglement compatible
with the measurement data in this setting is quite complicated
due to the large number of possibilities that are available.In
the following we will simply present an example to illuminate
the impact that additional local information may have on the
question of assessing least entanglement compatible with the
measurement data.

Let us reconsider the case in which we employedCzz =

Tr[(σ
(1)
z ⊗ σ

(2)
z )ρ] andCxx = Tr[(σ

(1)
x ⊗ σ

(2)
x )ρ]. In this

setting we found thatEmin(Cxx, Czz) = log+
2 (Cxx + Czz)

(eq. (26)). Let us now investigate what can be gained by tak-
ing into account knowledge ofz1 := Tr[σ

(1)
z ρ] and z2 :=

Tr[σ
(2)
z ρ]; that is, we determine the minimal amount of entan-

glement compatible with the information given inCxx, Czz

andz1, z2.

We can no longer restrict ourselves to states of the form
(25), becausez1 andz2 are not invariant under transforma-
tions (24). The optimal states can now be assumed to possess
aσz ⊗ σz symmetry. The diagonal elements of the optimalρ
are fully determined byCzz , z1, z2 andTr[ρ] = 1. Employing
theσz ⊗ σz symmetry of the system the problem can be re-
duced to a single-parameter minimisation. The optimal states
turn out to be of the form

ρ =







a 0 0 f
0 b e 0
0 e c 0
f 0 0 d






, (28)

with

a = (1 + z1 + z2 + Czz)/4

b = (1 − z1 + z2 − Czz)/4

c = (1 + z1 − z2 − Czz)/4

d = (1 − z1 − z2 + Czz)/4

e+ f = Cxx/2,

and

0 ≤ e ≤
√
bc

0 ≤ f ≤
√
ad.

Given z1 andz2, there are now restrictions on the values of
Cxx andCzz :

Czz ≤ 1 − |z2 − z1|

Cxx ≤ 1

2

√

(1 + Czz)2 − (z1 + z2)2

+
1

2

√

(1 − Czz)2 − (z1 − z2)2.

The negative eigenvalue of the partial transpose ofρ is given
by

λmin =
1

4
min

(

1 + Czz −
√

(z1 + z2)2 + (4e)2,

1 − Czz −
√

(z1 − z2)2 + (4f)2
)

.

The log-negativityEN is then

EN = log2(1 − 2(min(0, λmin)).

To minimiseEN , we have to maximiseλmin over all allowed
values ofe, which is the range

max(0, Cxx/2 −
√
ad) ≤ e ≤ min(Cxx/2,

√
bc).

As an example, in Figure 3, we present the difference be-
tween the minimal compatible entanglement for given(Czz =
1−|z1−z2| = 0.9, Cxx, z1 = 0.3, z2 = 0.2) and the one when
only (Czz = 0.9, Cxx) are given. For the given value ofCzz,
eitherb = 0 or c = 0, so that the only allowed value fore is
e = 0, giving

λmin =
1

4
(1 − Czz −

√

(z1 − z2)2 + (2Cxx)2).

While, of course, the parameter range for which physical
density operators compatible with those data exist is more lim-
ited in the former case, it is indeed apparent that the knowl-
edge ofCxx andCzz in combination withz1, z2 allows us to
infer a larger amount of entanglement.

This example highlights the importance of including all
available information in the entanglement verification as it
may substantially alter our conclusions. The exact detailsof
the procedure will, of course, depend on the concrete situa-
tion.

VI. MULTI-PARTITE ENTANGLEMENT

Our considerations are not restricted to bi-partite entangle-
ment. Again, quite general observables may be considered
but in line with the bi-partite case we illustrate this setting for
a simple set of observables. Let us consider the expectation
valuesCxxx = 〈σx ⊗ σx ⊗ σx〉, C1zz = 〈11⊗ σz ⊗ σz〉 and
Czz1 = 〈σz ⊗ σz ⊗ 11〉. Given the symmetries that leave these
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FIG. 3: For givenz1 := Tr[σ
(1)
z ρ] and z2 = Tr[σ

(2)
z ρ] we plot

the difference between the minimal entanglement (quantified by the
logarithmic negativity) compatible with the observation of Czz =

Tr[(σ
(1)
z ⊗ σ

(2)
z )ρ] andCxx = Tr[(σ

(1)
x ⊗ σ

(2)
x )ρ] and the minimal

entanglement without the constraints imposed byz1 andz2. In this
example,Czz = 0.9. The lower curve is the minimal entanglement
without knowledge ofz1 andz2 (hence the worst case was assumed);
the upper curve is the minimal entanglement withz1 = 0.3 and
z2 = 0.2.

expectation values invariant, we may restrict attention toden-
sity operators of the form [35]

σ =























a 0 0 0 0 0 0 h
0 b 0 0 0 0 g 0
0 0 c 0 0 f 0 0
0 0 0 d e 0 0 0
0 0 0 e d 0 0 0
0 0 f 0 0 c 0 0
0 g 0 0 0 0 b 0
h 0 0 0 0 0 0 a























. (29)

In the tripartite setting it is considerably more difficult than in
the bi-partite setting to define entanglement measures [1].We
consider two entanglement measures, the relative entropy of
entanglement and the robustness of enanglement.

We begin with the relative entropy of entanglement with
respect to Tri-PPT states, i.e. states that are PPT with respect
to any of the three possible bi-partite cuts

E3(σ) = inf
ρ
{S(σ||ρ) : ρ is Tri-PPT}. (30)

It is helpful to note that it is always sufficient to restrict the
minimization overρ to those states that possess the same local
symmetries asσ [23, 24]. Thus only statesρ of the form eq.
(29) need to be considered. These states all commute withσ.
Thus we are looking for a two-fold minimization

Emin = min
σ

{min
ρ

{S(σ||ρ) : ρ is Tri-PPT} : (31)

Tr[σAi] = ai}.

We note that statesσ of the form eq. (29) are Tri-PPT if and
only if ∆ = max{|e|, |f |, |g|, |h|}−min{a, b, c, d} ≤ 0. Due
to unitary invariance of the relative entropy we can apply local
unitaries to bothρ andσ; one can therefore restrict to non-
negative reale, f , g andh. Definingm := min{a, b, c, d} we
obtain the restrictionse, f, g, h ≤ m.

The expectation values for such states are given by

Cxxx = 2(e+ f + g + h)

C1zz = 2(a− b− c+ d)

Czz1 = 2(a+ b− c− d)

1 = 2(a+ b+ c+ d).

Note that these expectation values lie in the range[−1, 1].
The minimisation overρ reduces to a three-parameter min-

imisation. Let the matrix elements ofσ andρ (in the form
(29)) be denotedaσ, aρ, etc. The three parameters areaρ, bρ
andcρ. The other matrix elements of the optimalρ are given
by

dρ = 1 − (aρ + bρ + cρ)

hρ = min(mρ, (hσ/aσ)aρ)

gρ = min(mρ, (gσ/bσ)bρ)

fρ = min(mρ, (fσ/cσ)cρ)

eρ = min(mρ, (eσ/dσ)dρ),

wheremρ := min{aρ, bρ, cρ, dρ}. The expression for the rel-
ative entropy in this optimal state is

S(σ||ρ) = H((aσ + hσ, aσ − hσ)||(aρ + hρ, aρ − hρ)) + . . .
(32)

with three additional terms of obvious form. Here,H is the
classical (Kullback-Leibler) relative entropy between two (un-
normalised) two-dimensional probability vectors.

Because of joint convexity of the relative entropy, and con-
vexity of the feasible set forρ, the remaining minimisation
(overρ andσ) is a convex one, which means that there can
only be one local minimum. It can therefore be efficiently
calculated numerically using, e.g. conjugate gradient meth-
ods. We have performed numerical calculations based on this
method, and plotted the results in Figure 4 for the example of
Cxxx = 1.

Another possible entanglement quantifier is the random ro-
bustnessR(σ) [34]. The random robustness is defined as the
minimal amount of the maximally mixed state11/d that needs
to be mixed withσ to make the resulting state Tri-PPT. For-
mally,

R(σ) = min
p

{p : p11/Tr[11] + (1 − p)σ is Tri-PPT}. (33)

We find that

R(σ) = max

(

0,
∆

1/8 + ∆

)

. (34)

Therefore, the minimal robustness under the constraints
Cxxx = 〈σx ⊗ σx ⊗ σx〉, C1zz = 〈11 ⊗ σz ⊗ σz〉 and
Czz1 = 〈σz ⊗ σz ⊗ 11〉 is given by

Rmin = max

(

0,
∆min

1/8 + ∆min

)

, (35)
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FIG. 4: For the given value ofCxxx = 1, we plot the minimal
amount of entanglement, as measured by the relative entropyof en-
tanglementE3 w.r.t. Tri-PPT states, consistent with the observation
of C1zz andCzz1.

where

∆min = max{ |Cxxx| − 1

2
+

|Czz1| + |C1zz |
4

, 0}. (36)

VII. A GENERAL STRATEGY FOR LOWER BOUNDS ON
THE NEGATIVITY

In this Section, we readdress some of the issues of Section
III. It is worth noting that the last result obtained there, eq.
(27), could have been obtained from a general strategy to ob-
tain lower bounds for the minimization problem eq. (2).

This can be achieved by using the fact that||ρΓ||1 =
max||M||∞=1 Tr[MρΓ] = max||M||∞=1 Tr[MΓρ], where the
maximization is over HermitianM [31]. Thus we consider
the problem

Emin = log2 min
ρ

{

max
M

{Tr[MΓρ] : ||M ||∞ = 1}

: Tr[ρAi] = ai, Fi(ρ) ≤ fi

}

, (37)

where the outer minimization is over positive semidefinite ma-
tricesρ (the trace condition for states is included by putting
A0 = 11, a0 = 1), and the inner maximisation is over all Her-
mitian matricesM . WhenFi is a convex function its level sets
{ρ : Fi(ρ) ≤ fi} are convex sets, and we can use the minimax
equality (see e.g. [10]) to interchange inner and outer optimi-
sations, obtaining

Emin = log2max
M

{

min
ρ

{Tr[MΓρ] : Tr[ρAi] = ai, Fi(ρ) ≤ fi}

: ||M ||∞ = 1
}

, (38)

Let us now consider the case that there are no non-linear con-
straintsFi, then the inner minimization is a semidefinite pro-
gram (SDP). We now apply Lagrange duality to this mini-
mization, i.e. we consider the unconstrained minimizationof

the Lagrangianminρ Tr[(MΓ −∑ νiAi)ρ] +
∑

i νiai over
all positive semidefiniteρ ≥ 0, where theνi are the La-
grange multipliers. IfMΓ −∑ νiAi has negative eigenval-
ues, the minimum of the Lagrangian will be−∞ (by let-
ting ρ become arbitrarily large), and will not contribute to
the outer maximization overM . Thus we can safely require
MΓ −∑ νiAi ≥ 0, in which case the minimum is obtained
for ρ = 0 and equals

∑

i νiai. Inserting this we find

Emin ≥ log2 max
M

{

max
νi

{
∑

i

νiai :
∑

νiAi ≤MΓ}

: ||M ||∞ = 1
}

. (39)

Because the inner minimization is an SDP, if the problem is
strictly feasible, i.e. if all inequality constraints can be satis-
fied with strict inequalities, then we have strong duality [10]
and the above step does not weaken the lower bounds.

Any choice ofM and νi such thatMΓ ≥
∑

i νiAi and
||M ||∞ = 1 now yields a lower bound onEmin. Indeed, this
could have been read off immediately from eq. (38). However,
as the optimization problem eq. (39) shows this may be overly
restrictive. See [11, 12] for lower bounds on other entangle-
ment measures.

Applications –In the case of given(Cxx, Czz) with Cxx +
Czz ≥ 1 as discussed in Section IV, we haveA0 = 11,A1 =
σx ⊗ σx andA2 = σz ⊗ σz , anda0 = 1, a1 = Cxx and
a2 = Czz. In this case we find as optimalM :

M =







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1






,

(which indeed has operator norm 1) and as optimalνi: ν0 =
0, ν1 = ν2 = 1. One checks thatMΓ ≥ A1 + A2. From this
we recover again eq. (26).

For the case of given(Cxx, Cyy, Czz) we chooseν0 =
ν1 = ν3 = 1/2, ν2 = −1/2, so that

∑

i νiAi = (11 + σx ⊗
σx − σy ⊗ σy + σz ⊗ σz)/2. TakingM = (11 + σx ⊗ σx +
σy ⊗ σy + σz ⊗ σz)/2 (which has operator norm 1) yields
MΓ =

∑

i νiAi, and we recover the exact value found in eq.
(27).

Proof of eq. (23) –A similar approach may suggest itself
for the case concerning purity and correlations discussed in
section III and will be used to prove the lower bound eq. (23).
The constraints are however non-linear. To proceed, we will
use a kind of linearization procedure. We begin by rewriting
the quantitiesCzz(ρ) andTr[ρ2] in terms of expressionslinear
in the tensor productτ := ρ⊗ ρ. Taking into accountTr[ρ] =
1 we find

Czz(ρ) = Tr[τZ] and Tr[ρ2] = Tr[τF ] (40)

whereZ is the operator

Z = σz ⊗ σz ⊗ 11⊗ 11− 11⊗ σz ⊗ σz ⊗ 11

andF is the flip operator that interchanges parties1, 2 of the
first copy with parties3, 4 of the second. TheZ presented
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here is the simplest one that representsCzz. However, it is
beneficial to use the symmetrised formZ ′ = (Z + FZF )/2.

Let us now address the minimization of1
2 log2 ||ρΓ ⊗ ρΓ||1

given constraints onCzz(ρ) andTr[ρ2]. This problem is lin-
ear in σ = ρ ⊗ ρ and is therefore an SDP. Consequen-
tially, we can apply the above approach. Indeed, let us
chooseM = Diag(1111 1101 1011 1111). Then, clearly,
MΓ − Z ′/2 − F ≥ 0 and we obtain eq. (23) as a lower
bound on the entanglement. This bound is certainly not tight,
however. Indeed, we could not have expected much more, as
the extension of the problem to two copies allowed for much
greater freedom in the matrixM and, therefore, led us to un-
derestimate the true value ofEmin.

VIII. VERIFICATION OF OTHER PHYSICAL
PROPERTIES

In this work we have pointed out that in an experimental
verification of entanglement we need to search for the least
entangled state compatible with the measured data. If the state
so identified is entangled then the experimental data prove
the presence of entanglement. This approach is not restricted
to the verification of entanglement. In fact, it applies to any
physical property that we cannot or chose not to measure di-
rectly.

Consider the propertyΠ of a quantum system which is
quantified byΠ(ρ). If we are obtaining experimental data, for
example quantum mechanical averages of some observables
Ai, then we need to answer the

Fundamental Question: What is the least value ofΠ for
which there is a state that is compatible with the available
measurement data?

This smallest value ofΠ is the value to which we have ver-
ified the presence ofΠ. Mathematically this may again be
formulated as a minimization problem in which the property
Π in the underlying quantum state must be minimized subject
to the positivity, Hermiticity and normalization and measure-
ment data obtained as expectation values of observablesAi or
some non-linear functionFi(ρ) of the density matrix. Then
the minimal amount of entanglementEmin under the given
constraints is given by

Πmin = min
ρ

{Π(ρ) : Tr[ρAi] = ai, Fi(ρ) = fi} (41)

where the minimisation domain is the set of statesρ.

In this more general framework the minimization of entan-
glement is merely a special case of a general approach to the
verification of physical properties in experiments.

IX. SUMMARY AND CONCLUSIONS

In this work we have addressed the question of when cor-
relations or other measurement data that have been observed
in the classical measurement record of a quantum system im-
ply the existence of quantum correlations in the underlying
state. Thefundamental questionin this area may be formu-
lated as: What is the entanglement content of the least en-
tangled quantum state that is compatible with the available
measurement data?We have formulated this question mathe-
matically as an optimization problem, discussed it for various
examples and provided some techniques for obtaining non-
trivial lower bounds on the minimal entanglement compatible
with the measurement data. The approach is equally valid in
the bi-partite and the multi-partite setting and for sub-systems
of arbitrary dimensionality. We hope that these investigations
will be helpful in experimental efforts that aim at the creation
and subsequent unequivocal verification and quantificationof
the generated entanglement. This should, in particular, apply
to experimental set-ups where for various reasons only a lim-
ited number of measurement settings is available.
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