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Abstract: We consider the problem of discriminating between two different states of
a finite quantum system in the setting of large numbers of copies, and find a closed
form expression for the asymptotic exponential rate at which the specified error proba-
bility tends to zero. This leads to the identification of the quantum generalisation of the
classical Chernoff distance, which is the corresponding quantity in classical symmetric
hypothesis testing, thereby solving a long standing open problem.

The proof relies on a new trace inequality for pairs of positive operators as well
as on a special mapping from pairs of density operators to pairs of probability distri-
butions. These two new techniques have been introduced in [quant-ph/0610027] and
[quant-ph/0607216], respectively. They are also well suited to prove the quantum gen-
eralisation of the Hoeffding bound, which is a modification of the Chernoff distance
and specifies the optimal achievable asymptotic error rate in the context of asymmetric
hypothesis testing. This has been done subsequently by Hayashi [quant-ph/0611013]
and Nagaoka [quant-ph/0611289] for the special case where both hypotheses have full
support.

Moreover, quantum Stein’s Lemma and quantum Sanov’s theorem may be derived
directly from quantum Hoeffding bound combining it with a result obtained recently in
[math/0703772].

The goal of this paper is to present the proofs of the above mentioned results in a
unified way and in full generality (allowing hypothetic states with different supports)
using mainly the techniques from [quant-ph/0607216] and [quant-ph/0610027].

Additionally, we give an in-depth treatment of the properties of the quantum Cher-
noff distance. We argue that, although it is not a metric, it is a natural distance measure
on the set of density operators, due to its clear operationalmeaning.
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1. Introduction

One of the basic tasks in information theory is discriminating between two different
information sources, modelled by (time-discrete) stochastic processes. Given a source
that generates independent, identically distributed (i.i.d.) random variables, according
to one out of two possible probability distributions, the task is to determine which dis-
tribution is the true one, and to do so with minimal error, whatever error criterion one
chooses.

This basic decision problem has an equally basic quantum-informational incarna-
tion. Given an information source that emits quantum systems (particles) independently
and identically prepared in one out of two possible quantum states, figure out which
state is the true one, with minimal error probability.

In both settings, we’re dealing with two hypotheses, each one pertaining to one law
represented by a probability distribution or a quantum state, respectively, and the dis-
crimination problem is thus a particular instance of a hypothesis testing problem.

In hypothesis testing, one considers a null hypothesis and an alternative hypothesis.
The alternative hypothesis is the one of interest and statesthat “something significant is
happening”, for example, a cell culture under investigation is coming from a malignant
tumor, or some case of flu is the avian one, or an e-mail attachment is a computer
virus. In contrast, the null hypothesis corresponds to thisnot being the case; the cells
are normal ones, the flu can be treated with an aspirin, and theattachment is just a nice
picture. This is inherently an asymmetric situation, and Neyman and Pearson introduced
the idea of similarly making a distinction between type I andtype II errors.

– The type I error or “false positive”, denoted byα, is the error of accepting the al-
ternative hypothesis when in reality the null hypothesis holds and the results can be
attributed merely to chance.

– The type II error or “false negative”, denoted byβ, is the error of accepting the null
hypothesis when the alternative hypothesis is the true state of nature.

The costs associated to the two types of error can be widely different, or even incom-
mensurate. For example, in medical diagnosis, the type I error corresponds to diag-
nosing a healthy patient with a certain affliction, which canbe an expensive mistake,
causing a lot of grievance. On the other hand, the type II error may correspond to declar-
ing a patient healthy while in reality (s)he has a life-threatening condition, which can
be a fatal mistake.

To treat the state discrimination problem as a hypothesis test, we assign the null hy-
pothesis to one of the two states and the alternative hypothesis to the other one. If all
we want to know is which one of the two possible states we are observing, the math-
ematical treatment is completely symmetric under the interchange of these two states.
It therefore fits most naturally in the setting ofsymmetric hypothesis testing, where no
essential distinction is made between the two kinds of errors. To wit, in symmetric hy-
pothesis testing, one considers the average, or Bayesian, error probabilityPe, defined as
the average ofα andβ weighted by the prior probabilities of the null and the alternative
hypothesis, respectively.

This paper will be concerned with symmetric as well as with asymmetric quantum
hypothesis testing. Since we have developed the main techniques in the symmetric set-
ting we will start with this case and address the asymmetric setting at the end.

The optimal solution to the symmetric classical hypothesistest is given by the
maximum-likelihood (ML) test. Starting from the outcomes of an experiment involv-
ing n independent draws from the unknown distribution, one calculates the conditional
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probabilities (likelihoods) that these outcomes can be obtained when the distribution is
the one of the null hypothesis and the one of the alternative hypothesis, respectively.
One decides then on the hypothesis for which the conditionalprobability is the highest.
I.e. if thelikelihood ratiois higher than 1, the null hypothesis is rejected, otherwiseit is
accepted.

In the quantum setting, the experiment consists of preparing n independent copies
of a quantum system in an unknown state, which is eitherρ or σ, and performing an
optimal measurement on them. We assume that the quantum systems are finite, imply-
ing that the states are associated to density operators on a finite-dimensional complex
Hilbert space. Under the null hypothesis, the combinedn copies correspond to ann-fold
tensor product density operatorρ⊗n, while under the alternative hypothesis, the associ-
ated density operator isσ⊗n. The null hypothesis is then accepted or rejected according
to the outcome of the measurement and the specified decision rule. The task of finding
this optimal measurement is so fundamental that it was one ofthe first problems con-
sidered in the field of quantum information theory; it was solved in the one-copy case
more than 30 years ago by Helstrom and Holevo [14,17]. We refer to the generalised
ML-tests as Holevo-Helstrom tests. In the special case of equal priors, the associated
minimal probability of error achieved by the optimal measurement can be calculated
from the trace norm distance between the two states:

P ∗
e,n(ρ, σ) =

1

2
(1 − ‖ρ⊗n − σ⊗n‖1/2), (1)

where‖A‖1 := Tr |A| denotes the trace norm.
Going back to the classical case again, in a seminal paper, H.Chernoff [8] investi-

gated the so-calledasymptotical efficiencyof a class of statistical tests, which includes
the likelihood ratio test mentioned before. The probability of errorPe,n in discrimi-
nating two probability distributions decreases exponentially in n, the number of draws
from the distribution:Pe,n ∼ exp(−ξn). For finiten this is a rather crude approxima-
tion. However, asn grows larger one finds better and better agreement, and the exponent
ξ becomes meaningful in the asymptotic limit. The asymptotical efficiency is exactly
the asymptotic limit of this exponent.

Chernoff was able to derive an (almost) closed expression for this asymptotic effi-
ciency, which was later named eponymously in his honour. Fortwo discrete probability
distributionsp andq, this expression is given by

ξCB(p, q) := − log

(

inf
0≤s≤1

∑

i

p(i)1−sq(i)s

)

, (2)

which is of closed form but for a single variable minimisation. This quantity goes under
the alternative names of Chernoff distance, Chernoff divergence and Chernoff informa-
tion.

While Chernoff’s main purpose was to use this asymptotic efficiency measure to
compare the power of different tests – the mathematically optimal test need not always
be the most practical one – it can also be used as a distinguishability measure between
the distributions (states) of the two hypotheses. Indeed, fixing the test, its efficiency
for a particular pair of distributions gives a meaningful indication of how well these
two distributions can be distinguished by that test. This isespecially meaningful if the
applied test is the optimal one.



4 K.M.R. Audenaert, M. Nussbaum, A. Szkoła, F. Verstraete

A quantum generalisation of Chernoff’s result is highly desirable. Given the large
amount of experimental effort in the context of quantum information processing to pre-
pare and measure quantum states, it is of fundamental importance to have a theory that
allows to discriminate different quantum states in a meaningful way. Despite consid-
erable effort, however, the quantum generalisation of the Chernoff distance has until
recently remained unsolved.

In the previous papers, [21] and [1], this issue was finaly settled and the asymptotic
error exponent was identified, when the optimal Holevo-Helstrom strategy for discrim-
inating between the two states is used, by proving that the following version of the
Chernoff distance

ξQCB(ρ, σ) := − log

(

inf
0≤s≤1

Tr[ρ1−sσs]

)

, (3)

has the same operational meaning as its classical counterpart: It specifies the asymptotic
rate exponent of the minimal error probabilityP ∗

e,n (recall definition (1)). Remarkably,
it looks like an almost naı̈ve generalisation of the classical expression (2).

We remark that in the literature different extensions of theclassical expression have
been considered. Indeed, when insisting only on the compatibility with the classi-
cal Chernoff distance, there is in principle an infinitude ofpossiblities. Among those,
three especially promising candidate expressions had beenput forward by Ogawa and
Hayashi [23], who studied their relations and found that there exists an increasing or-
dering between them. Incidentally, the second candidate coincides with (3) and thus
turns out to be the correct one.

Kargin [18] gave lower and upper bounds on the optimal error exponentξ in terms
of the fidelity between the two density operators and found that Ogawa and Hayashi’s
third candidate (in their increasing arrangement) is a lower bound on the optimal error
exponent for faithful states, i.e. it is an achievable rate.Hayashi [11] made progress
regarding (3), by showing that fors = 1/2, − logTr[ρ1−sσs] is also an achievable
error exponent.

The proof of our main result consists of two parts. In the optimality part, which was
first presented in [21], we show that for any test the (Bayesian) error rate− 1

n logPe,n
cannot be made arbitrary large but is asymptotically bounded above byξQCB . In the
achievability part, first put forward in [1], we prove that under the Holevo-Helstrom
strategy the bound is actually attained in the asymptotic limit, i.e.

lim sup
n→∞

(

− 1

n
logP ∗

e,n

)

≥ ξQCB .

It is the purpose of this paper to give a complete, detailed, and unified account of
these results. We will present the complete proof in Section3. Moreover, we give an in-
depth treatment of the properties of the quantum Chernoff distance in Section 4. More
precisely, we show that it defines a distance measure betweenquantum states.

Distinguishability measures between quantum states have been used in a wide va-
riety of applications in quantum information theory. The most popular of such mea-
sures seems to be Uhlmann’s fidelity [27], which happens to coincide with the quantum
Chernoff distance when one of the states is pure. The trace norm distance‖ρ− σ‖1 =
Tr |ρ−σ| has a more natural operational meaning than the fidelity, butlacks monotonic-
ity under taking tensor powers of its arguments. The problemis that one can easily find
statesρ, σ, ρ′, σ′ such that‖ρ−σ‖1 < ‖ρ′−σ′‖1 but‖ρ⊗2−σ⊗2‖1 > ‖ρ′⊗2−σ′⊗2‖1.
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This already happens in the classical setting: take the following 2-dimensional diagonal
states

ρ =

(

1/4 0
0 3/4

)

, σ =

(

3/4 0
0 1/4

)

, ρ′ =

(

0 0
0 1

)

, σ′ =

(

b 0
0 1 − b

)

,

where1 − 1/
√

2 < b < 1/2. Then‖ρ − σ‖1 = 1 > 2b = ‖ρ′ − σ′‖1, while
‖ρ⊗2 − σ⊗2‖1 = 1 < 2b(2 − b) = ‖ρ′⊗2 − σ′⊗2‖1. The quantum Chernoff dis-
tance characterises the exponent arising in the asymptoticbehaviour of the trace norm
distance, in the case of many identical copies, and therefore by construction does not
suffer from this problem. As such, the quantum Chernoff distance can be considered
as a kind of regularisation of the trace norm distance. For the above-mentioned states,
ξQCB(ρ, σ) = − log(

√
3/2) (optimal s = 1/2) and ξQCB(ρ′, σ′) = − log(1 − b)

(optimals = 1).
A related problem that attracted a lot of attention in the field of quantum information

theory was to identify the relative entropy between two quantum states. An information-
theoretical way of looking at the classical relative entropy between two probability
distributions, or Kullback-Leibler distance, is that it characterises the inefficiency of
compressing messages from a sourcep using an algorithm that is optimal for a source
p′ (i.e. yields the Shannon information bound for that source). Phrased differently, it
quantifies the way one could cheat by telling that the given probability distribution isp
while the real one isp′. By proving a quantum version of Stein’s lemma [15,24], it has
been shown that the quantum relative entropy, as introducedby Umegaki, has exactly
the same operational meaning.

When using the relative entropy to distinguish between states, one faces the prob-
lem that it is not continuous and is asymmetric under exchange of its arguments, and
therefore it does not represent a distance measure in mathematically strict manner. Fur-
thermore, for pure states, the quantum relative entropy is not very useful, since it is
either 0 (when the two states are identical) or infinite (whenthey are not). In contrast,
the quantum Chernoff distance seems to be much more natural in many situations.

On the other hand, (quantum) relative entropy is a crucial notion in asymmetrichy-
pothesis testing. There it obtains an operational meaning as the best achievable asymp-
totic rate of type II errors. Its properties, which are problematic for a candidate for a
distance measure, reflect the asymmetry between the null andalternative hypothesis
arising from treating the type-I and type-II errors in a different way. As exemplified by
the medical diagnosis case mentioned above, the type II error is the one that should be
avoided at all costs. Hence, one puts a constraintα < ǫ on the type I error, and min-
imises theβ-rate. One obtains that the optimalβ-rate is the relative entropy of the null
hypothesis w.r.t. the alternative, independent of the constrainedǫ. The mathematical
derivation of this statement goes under the name of Stein’s Lemma. When the con-
straint consists of a lower bound on the asymptotic exponential rate of the type II error,
one obtains what is called the Hoeffding bound.

Asymmetric hypothesis testing has been subject to a quantumtheoretical treatment
much earlier, although it is a much less natural setting for the basic state discrimination
problem. The quantum generalisation of Stein’s Lemma was first obtained by Hiai and
Petz [15]. Its optimality part was then strengthened by Ogawa and Nagaoka in [24].
In the last few years there has been a lot of progress extending the statement of the
lemma in different directions. In [4] the minimal relative entropy distance from a set of
quantum states, the null hypothesis, w.r.t. a reference quantum state, the alternative, has
been fixed as the best achievable asymptotic rate of the type II errors, see also [13]. This
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may be seen as a quantum generalisation of Sanov’s theorem. In a recent paper [5] an
extension of this result to the case where the hypotheses correspond to sources emitting
correlated (not necessarily i.i.d.) classical or quantum data has been given. Additionally,
an equivalence relation between the achievability part in (quantum) Stein’s Lemma and
(quantum) Sanov’s Theorem has been derived.

Just a few months after the appearance of [21,1], the techniques pioneered in those
two papers were used to find a quantum generalisation of the Hoeffding bound un-
der the implicit assumption of equivalent hypotheses, i.e.for states with coinciding
supports, thereby (partially) solving another long-standing open problem in quantum
hypothesis testing. Just as in the case of the Chernoff distance, the Hoeffding bound
contains

∑

i p(i)
1−sq(i)s as a sub-expression, and the quantum generalisation of the

Hoeffding bound is obtained by replacing this sub-expression byTr[ρ1−sσs]. The op-
timality of the bound (also called the “converse part”) was proven by Nagaoka [20],
while its achievability (the “direct part”) was found by Hayashi [12]. Using the same
techniques, Hayashi also gave a simple proof of the achievability part of the quan-
tum Stein’s Lemma, in that same paper. In Section 5 we first formulate and prove an
extended version of the classical Hoeffding bound, which allows nonequivalent hy-
potheses. Secondly, we present a complete proof of the quantum Hoeffding bound in a
unified way. Moreover, we derive quantum Stein’s Lemma as well as quantum Sanov’s
Theorem from the quantum Hoeffding bound combined with the mentioned equivalence
relation proved in [5].

2. Mathematical Setting and Problem Formulation

We consider the two hypothesesH0 (null) andH1 (alternative) that a device prepares
finite quantum systems either in the stateρ or in the stateσ, respectively. Everywhere
in this paper, we identify a state with a density operator, i.e. a positive trace1 linear
operator on a finite-dimensional Hilbert spaceH associated to the type of the finite
quantum system in question. Since the (quantum) Chernoff distance arises naturally
in a Bayesian setting, we supply the prior probabilitiesπ0 andπ1, which are positive
quantities summing up to 1; we exclude the degenerate casesπ0 = 0 andπ1 = 0
because these are trivial.

Physically discriminating between the two hypotheses corresponds to performing a
generalised (POVM) measurement on the quantum system. In analogy to the classical
proceeding one acceptsH0 or H1 according to a decision rule based on the outcome
of the measurement. There is no loss of generality assuming that the POVM consists
of only two elements, which we denote by{11 − Π,Π}, whereΠ may be any linear
operator onH with 0 ≤ Π ≤ 11. We will mostly make reference to this POVM by its
Π element, the one corresponding to the alternative hypothesis. The type-I and type-II
error probabilitiesα andβ are the probabilities of mistakingσ for ρ, and vice-versa,
and are given by

α := Tr[Πρ]

β := Tr[(11−Π)σ].

The average error probabilityPe is given by

Pe = π0α+ π1β = π0 Tr[Πρ] + π1 Tr[(11−Π)σ]. (4)

The Bayesian distinguishability problem consists in finding theΠ that minimisesPe.
A special case is the symmetric one where the prior probabilitiesπ0, π1 are equal.
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Before we proceed, let us first introduce some basic notations. Abusing terminology,
we will use the term ‘positive’ for ‘positive semi-definite’(denotedA ≥ 0). We employ
the positive semi-definite ordering on the linear operatorsonH throughout, i.e.A ≥ B
iff A − B ≥ 0. For each linear operatorA ∈ B(H) theabsolute value|A| is defined
as|A| := (A∗A)1/2. The Jordan decomposition of a self-adjoint operatorA is given by
A = A+ −A−, where

A+ := (|A| +A)/2, A− := (|A| −A)/2 (5)

are thepositive partandnegative partof A, respectively. Both parts are positive by
definition, andA+A− = 0.

There is a very useful variational characterisation of the trace of the positive part of
a self-adjoint operatorA:

Tr[A+] = max
X

{Tr[AX ] : 0 ≤ X ≤ 11}. (6)

In other words, the maximum is taken over all positive contractive operators. Since the
extremal points of the set of positive contractive operators are exactly the orthogonal
projectors, we also have

Tr[A+] = max
P

{Tr[AP ] : P ≥ 0, P = P 2}. (7)

The maximiser on the right-hand side is the orthogonal projector onto the range ofA+.

We can now easily prove the quantum version of the Neyman-Pearson Lemma.

Lemma 1 (Quantum Neyman-Pearson).Letρ andσ be density operators associated
to hypothesesH0 andH1, respectively. LetT be a fixed positive number. Consider
the POVM with elements{11 − Π∗, Π∗} whereΠ∗ is the projector onto the range
of (Tσ − ρ)+, and letα∗ = Tr[Π∗ρ] and β∗ = Tr[(11 − Π∗)σ] be the associated
errors. For any other POVM{11 − Π,Π}, with associated errorsα = Tr[Πρ] and
β = Tr[(11−Π)σ], we have

α+ Tβ ≥ α∗ + Tβ∗ = T − Tr[(Tσ − ρ)+].

Thus ifα ≤ α∗, thenβ ≥ β∗.

Proof.By formulae (6) and (7), for all0 ≤ Π ≤ 11 we haveTr[Π(Tσ−ρ)] ≤ Tr(Tσ−
ρ)+ = Tr[Π∗(Tσ − ρ)]. In terms ofα, β, α∗, β∗, this readsT (1 − β) − α ≤ T (1 −
β∗) − α∗, which is equivalent to the statement of the Lemma.⊓⊔

The upshot of this Lemma is that the POVM{11−Π∗, Π∗}, whereΠ∗ is the pro-
jector on the range of(Tσ − ρ)+, is the optimal one when the goal is to minimise the
quantityα+ Tβ. In symmetric hypothesis testing the positive numberT is taken to be
the ratioπ1/π0 of the prior probabilities.

We emphasize that we have started with the assumption that the physical systems
in question are finite systems with an algebra of observablesB(H), i.e. the algebra
of linear operators on a finite-dimensional Hilbert spaceH. This is a purely quan-
tum situation. In the general setting (of statistical mechanics) one associates to a finite
physical system, classical or quantum, a finite-dimensional ∗-algebraA. Such an al-
gebra has a block representation

⊕k
i=1 B(Hi), i.e. it is a subalgebra ofB(H), where
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H :=
⊕k

i=1 Hi. If the Hilbert spacesHi are one-dimensional for alli = 1, . . . , k, then
A is ∗-isomorphic to the commutative algebra of diagonal(k × k)-matrices. This cov-
ers the classical case. Now, in view of Lemma 1 it becomes clear that in the context of
hypothesis testing there is no restriction assuming that the algebra of observables of the
systems in question isB(H); indeed, the optimally discriminating projectorsΠ∗ are al-
ways in the∗-subalgebra generated by the two involved density operatorsρ andσ. This
implies that they are automatically elements of the algebraA characterising the physi-
cal systems. In particular, if the hypotheses correspond tomutually commuting density
operators then the problem reduces to a classical one in the sense that the best test
Π∗ commutes with the density operators as well. Hence it coincides with the classical
ML-test, although there are many more possible tests inB(H) than in the commutative
subalgebra of observables of the classical subsystem.

The basic problem we focus on in this paper is to identify how the error probabil-
ity Pe behaves in the asymptotic limit, i.e. when one has to discriminate between the
hypothesesH0 andH1 on the basis of a large numbern of copies of the quantum sys-
tems. This means that we have to distinguish between then-fold tensor product density
operatorsρ⊗n andσ⊗n by means of POVMs{11−Πn, Πn} onH⊗n.

We define the rate limitsR for any positive sequence(sn) as

sR := lim
n→∞

(

− 1

n
log sn

)

,

if the limit exists. Otherwise we have to deal with the lower and upper rate limitssR
andsR, which are the limit inferior and the limit superior of the sequence(− 1

n log sn),
respectively. In particular, we define thetype-I error rate limitand thetype-II error rate
limit for a sequenceΠ := (Πn) of quantum measurements (where, as mentioned, each
orthogonal projectionΠn corresponds to the alternative hypothesis) as

αR(Π) := lim
n→∞

(

− 1

n
logαn

)

= lim
n→∞

(

− 1

n
log Tr[ρ⊗nΠn]

)

(8)

βR(Π) := lim
n→∞

(

− 1

n
log βn

)

= lim
n→∞

(

− 1

n
log Tr[σ⊗n(11−Πn)]

)

, (9)

if the limits exist. Otherwise we consider the limit inferior and the limit superiorαR(Π)
andαR(Π), respectively. Similar definitions hold in the classical case.

3. Bayesian Quantum Hypothesis Testing: Quantum Chernoff Bound

In this section we consider the Bayesian distinguishability problem. This means the
goal is to minimise the average error probabilityPe, which is defined in (4) and can
be rewritten asPe = π1 − Tr[Π(π1σ − π0ρ)]. By the Neyman-Pearson Lemma, the
optimal test is given by the projectorΠ∗ onto the range of(π1σ − π0ρ)+, and the
obtained minimal error probability is given by

P ∗
e = π1 − Tr[(π1σ − π0ρ)+]

= π1 − (π1 − π0)/2 − Tr[|π1σ − π0ρ|/2]

=
1

2
(1 − ‖π1σ − π0ρ‖1) ,
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where‖A‖1 = Tr |A| is the trace norm. We will callΠ∗ the Holevo-Helstrom projector.
Next, note that the optimal test to discriminateρ andσ in the case ofn copies

enforces the use of joint measurements. However, the particular permutational symme-
try of n-copy states guarantees that the optimal collective measurement can be imple-
mented efficiently (with a polynomial-size circuit) [2], and hence that the minimum
probability of error is achievable with a reasonable amountof resources.

We need to consider the quantity

P ∗
e,n := (1 − ‖π1σ

⊗n − π0ρ
⊗n‖1)/2. (10)

It turns out thatP ∗
e,n vanishes exponentially fast asn tends to infinity. The theorem

below provides the asymptotic value of the exponent− 1
n logP ∗

e,n, i.e. the rate limit of
P ∗
e,n, which turns out to be given by thequantum Chernoff distance. This is our main

result.

Theorem 1.For any two statesρ andσ on a finite-dimensional Hilbert space, occur-
ring with prior probabilitiesπ0 andπ1, respectively, the rate limit ofP ∗

e,n, as defined
by (10), exists and is equal to the quantum Chernoff distanceξQCB

lim
n→∞

(

− 1

n
logP ∗

e,n

)

= ξQCB := − log

(

inf
0≤s≤1

Tr
(

ρ1−sσs
)

)

. (11)

Because the product of two positive operators always has positive spectrum, the quantity
Tr[ρ1−sσs] is well defined (in the mathematical sense) and guaranteed tobe real and
non-negative for every0 ≤ s ≤ 1. As should be, the expression forξQCB reduces to
the classical Chernoff distanceξCB defined by (2) whenρ andσ commute.

3.1. Proof of Theorem 1: Optimality Part.In this Section, we will show that the best
discrimination is specified by the quantum Chernoff distance; that is,ξQCB is an upper
bound on

lim sup
n→∞

(

− 1

n
logPe,n

)

for any sequence of tests(Πn) andPe,n := π1 − Tr [π1σ
⊗n − π0ρ

⊗n].
The proof, which first appeared in [21], is essentially basedon relating the quantum

to the classical case by using a special mapping from a pair ofd × d density matrices
(ρ, σ) to a pair of probability distributions(p, q) on a set of cardinalityd2.

Let the spectral decompositions ofρ andσ be given by

ρ =
d
∑

i=1

λi|xi〉〈xi|, σ =
d
∑

j=1

µj |yj〉〈yj |,

where(|xi〉) and(|yj〉) are two orthonormal bases of eigenvectors and(λi) and(µj)
are the corresponding sets of eigenvalues ofρ andσ, respectively. Then we map these
density operators to thed2-dimensional vectors

pi,j = λi|〈xi|yj〉|2, qi,j = µj |〈xi|yj〉|2, (12)

with 1 ≤ i, j ≤ d. This mapping preserves a number of important properties:
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Proposition 1. Withpi,j andqi,j as defined in (12), ands ∈ R,

Tr[ρ1−sσs] =
∑

i,j

p1−s
i,j q

s
i,j (13)

S(ρ‖σ) = H(p‖q). (14)

Here,S(ρ‖σ) is the quantum relative entropy defined as

S(ρ‖σ) :=

{

Tr[ρ(log ρ− log σ)], if Supp ρ ≤ Suppσ

+∞, otherwise,
(15)

whereSupp ρ denotes the support projection of an operatorρ, andH(p‖q) is the clas-
sical relative entropy, or Kullback-Leibler distance,

H(p‖q) :=

{
∑

i,j pi,j(log pi,j − log qi,j), if p≪ q

+∞, otherwise.
(16)

Proof.The proof proceeds by direct calculation. For example:

Tr[ρ1−sσs] =
∑

i,j

λ1−s
i µsj |〈xi|yj〉|2

=
∑

i,j

λ1−s
i µsj |〈xi|yj〉|2(1−s)|〈xi|yj〉|2s

=
∑

i,j

p1−s
i,j q

s
i,j .

⊓⊔

A direct consequence of identity (13) is thatp andq are normalised ifρ andσ are.
Furthermore, tensor powers are preserved by the mapping; that is, ifρ andσ are mapped
to p andq, thenρ⊗n is mapped top⊗n andσ⊗n to q⊗n.

Now define the classical and quantum average (Bayesian) error probabilitiesPe,c
andPe,q as

Pe,c(φ, p, π0, q, π1) :=
∑

i

[π0φ(i)pi + π1(1 − φ(i))qi] (17)

Pe,q(Π, ρ, π0, σ, π1) := Tr[π0Πρ+ π1(11−Π)σ], (18)

wherep, q are probability distributions,ρ, σ are density matrices, andπ0, π1 are the
respective prior probabilities of the two hypotheses. Furthermore,φ is a non-negative
test function0 ≤ φ ≤ 1, andΠ is a positive semi-definite contraction,0 ≤ Π ≤ 11, so
that{11−Π,Π} forms a POVM.

The main property of the mapping that allows to establish optimality of the quantum
Chernoff distance is presented in the following Proposition.

Proposition 2. For all orthogonal projectorsΠ and all positive scalarsη0, η1 (not nec-
essarily adding up to 1), and forp andq associated toρ andσ by the mapping (12),

Pe,q(Π, ρ, η0, σ, η1) ≥
1

2
inf
φ
Pe,c(φ, p, η0, q, η1),

where the infimum is taken over all test functions0 ≤ φ ≤ 1.
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Note that we have replaced the priors by general positive scalars; this will be useful
later on, in proving the optimality of the Hoeffding bound.

Proof.SinceΠ is a projector, one hasΠ = ΠΠ =
∑

j Π |yj〉〈yj |Π , where the second
equality is obtained by inserting a resolution of the identity 11 =

∑

j |yj〉〈yj |. Likewise,
11−Π is also a projector, and using another resolution of the identity, 11 =

∑

i |xi〉〈xi|,
we similarly get11−Π =

∑

i(11−Π)|xi〉〈xi|(11−Π). This yields

Tr[Πρ] =
∑

i

λi Tr[Π |xi〉〈xi|]

=
∑

i,j

λi Tr[Π |yj〉〈yj |Π |xi〉〈xi|]

=
∑

i,j

λi|〈xi|Π |yj〉|2,

and, similarly,

Tr[(11−Π)σ] =
∑

i,j

µj |〈xi|11−Π |yj〉|2.

Then the quantum error probability is given by

Pe,q = η0 Tr[Πρ] + η1 Tr[(11−Π)σ]

=
∑

i,j

η0λi|〈xi|Π |yj〉|2 + η1µj |〈xi|11−Π |yj〉|2.

The infimum of the classical error probabilityPe,c is obtained when the test functionφ
equals the indicator functionφ = χ{η1q>η0p} (corresponding to the maximum likeli-
hood decision rule); hence, the value of this infimum is givenby

inf
φ
Pe,c =

∑

i,j

min(η0pi,j , η1qi,j)

=
∑

i,j

min(η0λi, η1µj)|〈xi|yj〉|2.

For a fixed choice ofi, j, leta be the2 × 2 non-negative diagonal matrix

a :=

(

η0λi 0
0 η1µj

)

,

and letb be the 2-vector

b := (〈xi|Π |yj〉, 〈xi|11−Π |yj〉).
Thei, j-term in the sum forPe,q can then be written as the inner product〈b|a|b〉. Sim-
ilarly, the factor|〈xi|yj〉|2 occurring in thei, j-term in the sum forPe,c can then be
written as|b1 + b2|2.

Now we note that〈b|b〉 = ‖b‖2
2, while |b1 + b2|2 ≤ ‖b‖2

1. Ford-dimensional vectors,
the inequality‖b‖2 ≥ ‖b‖1/

√
d holds; in our case,d = 2. Together with the inequality

a ≥ min(η0λi, η1µj)112 this yields

〈b|a|b〉 ≥ min(η0λi, η1µj)〈b|b〉 ≥ min(η0λi, η1µj)
1

2
|b1 + b2|2. (19)
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Therefore, we obtain, for anyi, j,

η0λi|〈xi|Π |yj〉|2 + η1µj |〈xi|11−Π |yj〉|2 ≥ 1

2
min(η0λi, η1µj)|〈xi|yj〉|2.

As this holds for anyi, j, it holds for the sum overi, j, so that a lower bound for the
quantum error probability is given by

Pe,q ≥
1

2

∑

i,j

min(η0pi,j , η1qi,j) =
1

2
inf
φ
Pe,c,

which proves the Proposition.⊓⊔

Using these properties of the mapping, the proof of optimality of the quantum Cher-
noff bound is easy.

Proof of optimality of the quantum Chernoff bound.Let hypothesesH0 andH1, with
priorsπ0 andπ1, correspond to the product statesρ⊗n andσ⊗n. Using the mapping
(12), these states are mapped to the probability distributionsp⊗n andq⊗n. By Proposi-
tion 2, the quantum error probability is bounded from below as

Pe,q(Πn, ρ
⊗n, π0, σ

⊗n, π1) ≥
1

2
inf
φn

Pe,c(φn, p
⊗n, π0, q

⊗n, π1). (20)

By the classical Chernoff bound, the rate limit of the right-hand side is given by

− log inf
0≤s≤1

∑

i,j

p1−s
i,j q

s
i,j

(provided the priorsπ0, π1 are non-zero) and this is, therefore, an upper bound on the
rate limit of the optimal quantum error probability. By Proposition 1 the latter expres-
sion is equal to− log inf0≤s≤1 Tr[ρ1−sσs], which is what we set out to prove.⊓⊔

In a similar way one can prove the converse part of the quantumHoeffding bound
by relating it to the classical problem in the sense of (12), as already noted by Nagaoka
in [20]. This will be discussed in Section 5.4.

3.2. Proof of Theorem 1: Achievability Part.In this Section, we prove the achievabil-
ity of the quantum Chernoff bound, which is the statement that the error rate limit
limn→∞

(

− 1
n logP ∗

e,n

)

is not only bounded above by, but is actually equal to the quan-
tum Chernoff distanceξQCB . This can directly be inferred from the following matrix
inequality, which first made its appearance in [1]:

Theorem 2.Leta andb be positive semi-definite operators, then for all0 ≤ s ≤ 1,

Tr[asb1−s] ≥ Tr[a+ b− |a− b|]/2. (21)
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Note that inequality (21) is also interesting from a purely matrix analytic point of view,
as it relates the trace norm to a multiplicative quantity in ahighly nontrivial and very
useful way.

If we specialise this Theorem to states,a = σ andb = ρ, with Tr ρ = Tr σ = 1, we
obtain

Qs + T ≥ 1, 0 ≤ s ≤ 1,

whereQs := Qs(ρ, σ) := Tr[ρ1−sσs] andT := T (ρ, σ) := ‖ρ − σ‖1/2 is the trace
norm distance.

As an aside it is interesting to note that the inequalityQs +T ≥ 1 is strongly sharp,
which means that for any allowed value ofT one can findρ andσ that achieve equality.
Indeed, take the commuting density operatorsρ = |0〉〈0| andσ = (1 − T )|0〉〈0| +
T |1〉〈1|, then their trace norm distance isT , andQs = 1 − T .

Proof of achievability of the quantum Chernoff bound from Theorem 2.
We will prove the inequality

lim inf
n→∞

(

− 1

n
logP ∗

e,n

)

≥ ξQCB. (22)

Puta = π1σ
⊗n andb = π0ρ

⊗n, so that the right-hand side of (21) turns into

(1 − ‖π1σ
⊗n − π0ρ

⊗n‖1)/2 = P ∗
e,n.

The logarithm of the left-hand side of inequality (21) simplifies to

log(π1−s
0 πs1) + n log

(

Tr[ρ1−sσs]
)

.

Upon dividing byn and taking the limitn → ∞, we obtainlogQs, independently of
the priorsπ0, π1 (as long as the priors are not degenerate, i.e. are differentfrom 0 or 1).
Then (22) follows from the fact that the inequality

lim inf
n→∞

(

− 1

n
logP ∗

e,n

)

≥ − logQs

holds for alls ∈ [0, 1] and we can replace the right-hand side byξQCB. ⊓⊔

Proof of Theorem 2.
The left-hand and right-hand sides of (21) look very disparate, but they can nevertheless
be brought closer together by expressinga + b − |a − b| in terms of the positive part
(a− b)+. The inequality (21) is indeed equivalent to

Tr[a− asb1−s] ≤ Tr[a− (a+ b− |a− b|)/2]

= Tr[(a− b+ |a− b|)/2]

= Tr[(a− b)+]. (23)

At this point we mention another equivalent formulation of this inequality, which
will be used later in the proof of the achievability of the quantum Hoeffding bound.
With Π the projector on the range of(a− b)+, we can write:

Tr[asb1−s] ≥ Tr[Πb+ (11−Π)a]. (24)
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What we do next is strengthening the inequality (23) by replacing its left-hand side
by an upper bound, and its right-hand side by a lower bound. Since, for any self-adjoint
operatorH , we haveH ≤ H+, we can write

Tr[a− asb1−s] = Tr[as(a1−s − b1−s)] ≤ Tr[as(a1−s − b1−s)+]

= Tr[asΠ(s)(a1−s − b1−s)]

= Tr[Π(s)(a− b1−sas)],

whereΠ(s) is the projector on the range of(a1−s − b1−s)+. Likewise,

Tr[Π(s)(a− b)] ≤ Tr[(a− b)+],

becauseTr[(a− b)+] is the maximum ofTr[Π(a− b)] over all orthogonal projections
Π . Inequality (21) would thus follow if, for that particularΠ(s),

Tr[Π(s)(a− b1−sas)] ≤ TrΠ(s)(a− b).

The benefit of this reduction is obvious, as after simplification we get the much nicer
statement

Tr[Π(s)b1−s(as − bs)] ≥ 0.

Equally obvious, though, is the risk of this strengthening;it could very well be a false
statement. Nevertheless, we show its correctness below.

It is interesting to note the meaning here of this strengthening in the context of the
optimal hypothesis test, i.e. whena = σ⊗n andb = ρ⊗n. While the Holevo-Helstrom
projectorsΠ∗

n are optimal for every finite value ofn, we can use other projectors that
are suboptimal but reach optimality in the asymptotic sense. Here we are indeed us-
ingΠ(s∗), the projector on the range of(a1−s∗ − b1−s

∗

)+, wheres∗ is the minimiser
of Tr[ρ1−sσs] over [0, 1], if it exists. Otherwise we have to use the Holevo-Helstrom
projector.

In the next few steps we will further reduce the statement by reformulating the matrix
powers in terms of simpler expressions. One can immediatelyabsorb one of them into
a andb via appropriate substitutions. As we certainly don’t want apower appearing in
the definition of the projectorΠ(s), we are led to apply the substitutions

A = a1−s, B = b1−s, t = s/(1 − s).

This yields a value oft between 0 and 1 only when0 ≤ s ≤ 1/2. However, this is no
restriction since the case1/2 ≤ s ≤ 1 can be treated in a completely similar way after
applying an additional substitutions→ 1 − s.

Inequality (21) is thus implied by the Lemma below, which ends the proof of Theo-
rem 2. ⊓⊔

Lemma 2. For matricesA,B ≥ 0, a scalar0 ≤ t ≤ 1, and denoting byP the projector
on the range of(A−B)+, the following inequality holds:

Tr[PB(At −Bt)] ≥ 0. (25)
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Proof. To deal with thet-th matrix power, we use an integral representation (see, for
example [3] (V.56)). For scalarsa ≥ 0 and0 ≤ t ≤ 1,

at =
sin(tπ)

π

∫ +∞

0

dx xt−1 a

a+ x
.

For other values oft this integral does not converge. This integral can be extended to
positive operators in the usual way:

At =
sin(tπ)

π

∫ +∞

0

dx xt−1 A(A+ x11)−1.

To deal with non-invertibleA (arising when the statesρ andσ are not faithful), we
definelimx→0A(A+ x11)−1 = 11.

The potential benefit of this integral representation is that statements about the inte-
gral might follow from statements about the integrand, which is a simpler quantity.

Applying the integral representation toAt andBt, we get

Tr[PB(At −Bt)] =
sin(tπ)

π

∫ +∞

0

dx xt−1 Tr[PB(A(A + x)−1 −B(B + x)−1)].

If the integrand is positive for allx > 0 (it is zero forx = 0), then the whole integral is
positive. The Lemma follows if indeed we have

Tr[PB(A(A + x)−1 −B(B + x)−1)] ≥ 0.

As a further reduction, we note that a difference can be expressed as an integral of a
derivative:

f(a) − f(b) = f(b+ (a− b)) − f(b) =

∫ 1

0

dt
d

dt
f(b+ (a− b)t).

Here, we will apply this to the expressionA(A+x)−1−B(B+x)−1. Let∆ = A−B.
Then

A(A+ x)−1 −B(B + x)−1 =

∫ 1

0

dt
d

dt
(B + t∆)(B + t∆+ x)−1.

The potential benefit is again that the required statement might follow from a statement
about the integrand, which is a simpler quantity provided one is able to calculate the
derivative explicitly. In this case we are not dealing with astronger statement, because
the statement has to hold for the derivative anyway (whenA is close toB).

In the present case, we can indeed calculate the derivative:

d

dt
(B + t∆)(B + t∆+ x)−1 = x (B + t∆+ x)−1 ∆ (B + t∆+ x)−1.

Therefore,

Tr[PB(A(A + x)−1 −B(B + x)−1)]

= x

∫ 1

0

dt Tr[PB(B + t∆+ x)−1∆(B + t∆+ x)−1].
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Again, if the integrand is positive for0 ≤ t ≤ 1, the whole integral is positive. Absorb-
ing t in ∆ we need to show, withP the projector on∆+:

Tr[PB V ∆V ] ≥ 0, whereV := (B +∆+ x)−1 ≥ 0.

After all these reductions, the statement is now in sufficiently simple form to allow
the final attack. SinceB = V −1−x−∆, we haveBV∆V = ∆(V −V ∆V )−xV ∆V .
Positivity of B impliesV BV = V − V ∆V − xV 2 ≥ 0, thusV − V ∆V ≥ xV 2.
Furthermore, sinceP∆ = ∆+ ≥ 0,

Tr[PBV ∆V ] = Tr[P (∆(V − V ∆V ) − xV ∆V )]

= Tr[∆+(V − V ∆V )] − xTr[PV ∆V ]

≥ x(Tr[∆+V
2] − Tr[PV ∆V ]).

Because11 ≥ P ≥ 0,∆+ ≥ 0, and∆+ ≥ ∆,

Tr[∆+V
2] = Tr[V ∆+V ] ≥ Tr[P (V ∆+V )] ≥ Tr[P (V ∆V )].

The conclusion is that, indeed,Tr[PBV ∆V ] ≥ 0, which proves the Lemma.⊓⊔

4. Properties of the Quantum Chernoff Distance

In this Section, we study the non-logarithmic varietyQ of the quantum Chernoff dis-
tanceξQCB, i.e.

Q(ρ, σ) := inf
0≤s≤1

Tr[ρ1−sσs], (26)

whereρ, σ are density operators on a fixed finite-dimensional Hilbert spaceH. All
properties ofξQCB = − logQ can readily be derived fromQ. It will turn out that
ξQCB is not a metric, since it violates the triangle inequality, but it has a lot of properties
required of a distance measure on the set of density operators.

4.1. Relation to Fidelity and Trace Distance.The Uhlmann fidelityF between two
states is defined as

F (ρ, σ) := ‖ρ1/2σ1/2‖1 = Tr[(ρ1/2σρ1/2)1/2]. (27)

Here, the latter formula is best known, but the first one is easier and makes the sym-
metry under interchanging arguments readily apparent. TheUhlmann fidelity can be
regarded as the quantum generalisation of the so-called Hellinger affinity [25] defined
asB(p0, p1) :=

∑

i

√

p0(i)p1(i), wherep0 andp1 are classical distributions. It is an
upper bound onQ, which can be shown as follows. By definition, for any fixed value
of s ∈ [0, 1], Qs = Tr[ρ1−sσs] is an upper bound onQ. In particular, this is true for
s = 1/2. Furthermore, by replacing the trace with the trace norm‖ · ‖1, we get an even
higher upper bound. Indeed,

Q ≤ Tr[ρ1/2σ1/2] = ‖ρ1/4σ1/2ρ1/4‖1 ≤ ‖ρ1/2σ1/2‖1 = F. (28)

In the last inequality we have used the fact ([3], Prop. IX.1.1) that for any unitarily
invariant norm|||AB||| ≤ |||BA||| if AB is normal. In particular, consider the trace
norm, withA = ρ1/4σ1/2 andB = ρ1/4.
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For a pair of density operators the trace distanceT is defined by

T (ρ, σ) :=
1

2
‖ρ− σ‖1.

Fuchs and van de Graaf [10] proved the following relation betweenF andT :

(1 − F )2 ≤ T 2 ≤ 1 − F 2. (29)

Combining this with inequality (28) yields the upper bound

Q2 + T 2 ≤ 1. (30)

Recall the relation1− T ≤ Q, following from Theorem 2. Then combining everything
yields the chain of inequalities

1 −
√

1 − F 2 ≤ 1 − T ≤ Q ≤ F ≤
√

1 − T 2. (31)

There is a sharper lower bound onQ in terms ofF , namely

F 2 ≤ Q. (32)

This bound is strongly sharp, as it becomes an equality when one of the states is pure
[18]. Indeed, forρ = |ψ〉〈ψ|, the minimum of the expressionTr[ρ1−sσs] is obtained for
s = 1 and reduces to〈ψ|σ|ψ〉, whileF is given by the square root of this expression.

We prove (32) in Appendix A, where we also give an alternativeproof of the upper
boundQ ≤

√
1 − T 2. Both proofs go through in countably infinite dimensions.

4.2. Range ofQ. The maximum valueQ can attain is 1, and this happens if and only
if ρ = σ. This follows, for example, from the upper boundQ2 + T 2 ≤ 1. The minimal
value is 0, and this is only attained for pairs of orthogonal states, i.e. states such that
Tr ρσ = 0. Consequently the range of the Chernoff distance is[0,∞] and the infinite
value is attained on orthogonal states; this has to be contrasted with the relative entropy,
where infinite values are obtained whenever the states have adifferent support.

4.3. Triangle inequality.As already mentioned, on the set of pure states we have the
identityQ = F 2. The Uhlmann fidelityF does not obey the triangle inequality; how-
ever it can be transformed into a metric by going over toarccosF , while the Chernoff
distance on pairs of pure states is equal toξQCB = − logQ = −2 logF .

When considering the triangle inequality forξQCB, one should note first that in
the classical case, the classical expressionξCB should be expected to behave like a
squaredmetric, similarly to the relative entropy or Kullback-Leibler distance. Indeed
consider two laws from the normal shift familyN(µ, 1), µ ∈ R; then it is easy to see
that ξCB = (µ1 − µ2)

2 /8. ThusξCB defines a squared metric on the normal shift
family, which will not satisfy the triangle inequality due to the square, but

√
ξCB will.

However
√
ξCB does not satisfy the triangle inequality in the general case. To see this,

letBe(ε) be the Bernoulli law with parameterε ∈ [0, 1]. Some computations show that
ξCB (Be(1/2), Be(ε)) → log 2 andξCB (Be(ε), Be(1 − ε)) → ∞ asε → 0. As a
consequence we have, forε small enough,

ξ
1/2
CB (Be(ε), Be(1 − ε)) > ξ

1/2
CB (Be(ε), Be(1/2)) + ξ

1/2
CB (Be(1/2), Be(1 − ε))

contradicting the triangle inequality.
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4.4. Convexity ofQs as a function ofs. The target functions 7→ Qs = Tr[ρ1−sσs] in
the variational formula definingQ has the useful property to be convex ins ∈ [0, 1] in
the sense of Jensen’s inequality:Qts1+(1−t)s2 ≤ tQs1 + (1 − t)Qs2 for all t ∈ [0, 1].
This implies that a local minimum is automatically the global one, which is an important
benefit in actual calculations.

Indeed, the functions 7→ x1−sys is analytic for positive scalarsx andy, and in
this case its convexity may be easily confirmed by calculating the second derivative
x1−sys(log y− log x)2, which is non-negative. If one of the parameters, sayx, happens
to be0, thens 7→ x1−sys is a constant function equal to0 for s ∈ [0, 1) and equal to
1 at s = 1. Hence, it is still convex, albeit discontinuous. Considerthen a basis with
respect to which the matrix representation ofρ is diagonal

ρ = Diag(λ1, λ2, . . .).

Let the matrix representation ofσ (in that basis) be given by

σ = U Diag(µ1, µ2, . . .)U
∗,

whereU is a unitary matrix. Then

Tr[ρ1−sσs] =
∑

i,j

λ1−s
i µsj |Uij |2.

As this is a sum with positive weights of convex termsλ1−s
i µsj , the sum itself is also

convex ins.

4.5. Joint concavity ofQ in (ρ, σ). By Lieb’s theorem [19],Tr[ρ1−sσs] is jointly con-
cave on pairs of density operators(ρ, σ) for each fixeds ∈ R. SinceQ is the point-wise
minimum ofTr[ρ1−sσs] overs ∈ [0, 1], it is itself jointly concave as well. Hence the
related quantum Chernoff distance is jointly convex, just like the relative entropy.

4.6. Monotonicity under CPT maps.From the joint concavity one easily derives the
following monotonicity property: for any completely positive trace preserving (CPT)
mapΦ on theC∗-algebraB(H) of linear operators, one has

Q(Φ(ρ), Φ(σ)) ≥ Q(ρ, σ). (33)

To prove this, one first notes thatQ is invariant under unitary conjugations, i.e.

Q(UρU∗, UσU∗) = Q(ρ, σ).

Secondly,Q is invariant under addition of an ancilla system: for any density operatorτ
on a finite-dimensional ancillary Hilbert space we have the identity

Q(ρ⊗ τ, σ ⊗ τ) = Q(ρ, σ).

This is becauseTr[(ρ ⊗ τ)1−s(σ ⊗ τ)s] = Tr[ρ1−sσs] Tr[τ ]. Exploiting the unitary
representation of a CPT map, which is a special case of the Stinespring form, the mono-
tonicity statement follows for general CPT maps if we can prove it for the partial trace
map. As noted by Uhlmann [26,7], the partial trace map can be written as a convex
combination of certain unitary conjugations. Monotonicity of Q under the partial trace
then follows directly from its concavity and its unitary invariance.
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4.7. Continuity.By the lower boundQ + T ≥ 1, the distance measures1 − Q and
ξQCB are continuous in the sense that states that are close in trace distance are also
close w.r.t.1 − Q and w.r.t.ξQCB. Indeed, we have0 ≤ 1 − Q ≤ T andξQCB =
− logQ ≤ − log(1 − T ) = T +O(T 2).

4.8. Relation of the Chernoff distance to the relative entropy. In the classical case there
is a striking relation between the Chernoff distanceξCB and the relative entropyH(·‖·).
It takes its simplest version if the two involved discrete probability distributionsp and
q have coinciding supports since thens 7→ log

∑

x p
1−s(x)qs(x) = logQs is analytic

over[0, 1] and its infimum, which defines the Chernoff distance, may be obtained simply
by setting

0 = (logQs)
′ = H(ps‖p) −H(ps‖q)

(the prime denotes derivation w.r.t.s). Here

ps :=
p1−sqs

∑

x p
1−s(x)qs(x)

defines a parametric family of probability distributions interpolating betweenp andq as
the parameters varies between0 and1. In the literature, this family is called Hellinger
arc. It follows that the minimisers∗ ∈ [0, 1] is uniquely determined by the identity

H(ps∗‖q) = H(ps∗‖p). (34)

Furthermore, for anys ∈ [0, 1] we have:

H(ps‖p) = s(logQs)
′ − logQs, (35)

and similarly

H(ps‖q) = −(1 − s)(logQs)
′ − logQs, (36)

This may be verified by direct calculation using essentiallythe identitylog p1−sqs =
log p1−s + log qs. For the minimisers∗ the formulas (35) and (36) reduce to

H(ps∗‖p) = H(ps∗‖q) = ξCB(p, q). (37)

In the generic case of possibly different supports ofp andq one has to modify (34) and
(37) slightly, see [22].

It turns out that in the quantum setting the minimisers∗ ∈ [0, 1] of infs∈[0,1] logQs
can be characterised by a generalized version of (34). However, the surely more remark-
able relation (37) between the Chernoff distanceξCB and the relative entropy seems to
have no quantum counterpart.

We assume again that the involved density operatorsρ andσ both have full support,
i.e. are invertible. ThenQs = Tr(ρ1−sσs) is an analytic function over[0, 1] and its
local infimum over[0, 1], which is a global minimum due to convexity, can be found by
differentiatingQs w.r.t. s:

∂

∂s
Tr[ρ1−sσs] = −Tr[(log ρ) ρ1−s σs] + Tr[ρ1−s σs log σ]

= −Tr[ρ1−s σs log ρ] + Tr[ρ1−s σs log σ]. (38)
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The infimum is therefore obtained for ans ∈ [0, 1] such that

Tr[ρ1−sσs log ρ] = Tr[ρ1−sσs log σ].

This is equivalent to the condition

S(ρs||ρ) = S(ρs||σ), (39)

whereS(ρ||σ) denotes the quantum relative entropy defined by (15) andρs is defined
as

ρs =
ρ1−sσs

Tr[ρ1−sσs]
. (40)

Note thatρs, with s ∈ (0, 1), is not a density operator, because it is not even self-
adjoint (except in the case of commutingρ andσ). Nevertheless, as it is basically the
product of two positive operators, it has positive spectrum, and its entropy and the
relative entropies used in (39) are well-defined. The value of s for which both relative
entropies coincide is the minimiser in the variational expression (26) forQ.

The family ρs, s ∈ [0, 1], can be considered as a quantum generalisation of the
Hellinger arc interpolating between the quantum statesρ andσ, albeit out of the state
space, in contrast to the classical case.

When attempting to generalise relation (37) to the quantum setting one has to verify
(35) or (36) with density operatorsρ, σ replacing the probability distributionsp, q. This
would require the identityTr ρs log ρ1−sσs = Tr ρs(log ρ1−s + log σs) to be satisfied.
However, this is not the case for arbitrary non-commutativedensity operatorsρ, σ. Thus
the second identity in (37) seems to be a classical special case only.

5. Asymmetric Quantum Hypothesis Testing: Quantum Hoeffding Bound

In this Section, we consider the applications of our techniques presented in Section 3
to the case of asymmetric quantum hypothesis testing. More precisely, we consider a
quantum generalisation of the Hoeffding bound and of Stein’s Lemma.

5.1. The Classical Hoeffding Bound.The classical Hoeffding bound in information
theory is due to Blahut [6] and Csiszár and Longo [9]. The corresponding ideas in statis-
tics were first put forward in the paper [16] by W. Hoeffding, from which the bound got
its name. Some authors prefer the more complete name of Hoeffding-Blahut-Csiszár-
Longo bound. In the following paragraph we review the basic results in Blahut’s termi-
nology; at this point we have to mention that many different notational conventions are
in use throughout the literature.

Letp be the distribution associated with the null hypothesis, and q the one associated
with the alternative hypothesis.1 Following [6], and for the purposes of this discussion,
we initially assume thatp andq are equivalent (mutually absolutely continuous) on a
finite sample space. The Hoeffding bound gives the best exponential convergence rate
of the type-I error under the constraint that the rate limit of the type-II error is bounded
from below by a constantr, i.e. when the type-II error tends to 0 sufficiently fast.

1 In [6], the null hypothesis corresponds toH2, with distributionq2,
and the alternative hypothesis toH1, with distributionq1.
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Blahut defines theerror-exponent functione(r), r ≥ 0, with respect to two prob-
ability densitiesp andq with coinciding supports, as a minimisation over probability
densitiesx:

e(r) = inf
x
{H(x‖p) : H(x‖q) ≤ r}, (41)

whereH(·‖·) is again the classical relative entropy defined in (16). Thisminimisation
is a convex minimisation, since the target function is convex in x, and the feasible set,
defined by the constraintH(x‖q) ≤ r, is a convex set. Pictorially speaking, the optimal
x is the point in the feasible set that is closest (as measured by the relative entropy)
to p. If p itself is in the feasible set (i.e. ifH(p‖q) ≤ r), then the optimalx is p, and
e(r) = 0. Otherwise, the optimalx is on the boundary of the feasible set, in the sense
thatH(x‖q) = r, ande(r) > 0. Obviously, if r = 0, the feasible set is the singleton
{q}, ande(r) = H(q‖p).

The error-exponent function is thus a non-increasing, convex function ofr ≥ 0,
with the properties thate(0) = H(q‖p) ande(H(p‖q)) = 0. It can be expressed in a
computationally more convenient format as

e(r) = sup
0≤s< 1

−rs− log
∑

k q
s
kp

1−s
k

1 − s
(42)

An example is shown in Figure 1.
Letφ = (φn) be a sequence of test functions. Recall the notationsαR(φ) andβR(φ)

introduced in Section 2 for the rate limits (if they exist) ofthe corresponding type-I and
type-II errors, respectively:

αR(φ) = lim
n→∞

− 1

n
logαn(φ), βR(φ) = lim

n→∞
− 1

n
log βn(φ)

Then the classical HBCL Theorem can be stated as follows.

Theorem 3.(HBCL) Assume thatp, q are mutually absolutely continuous. Then for
eachr > 0 there exists a sequenceφ of test functionsφn such that the rate limits of
the type-II and type-I errors behave likeβR(φ) ≥ r andαR(φ) = e(r). Moreover, for
any sequenceφ such thatαR(φ) andβR(φ) both exist, the relationβR(φ) > r implies
αR(φ) ≤ e(r).

We remark that for sequencesφ of test functionsφn for which the rate limitsαR(φ)
or βR(φ) do not exist, the result still applies to subsequences(φnk

) along which both
error rate limits exist. The second part of the HBCL theorem is thus a statement about
all accumulation points of

(

− 1
n logαn(φ),− 1

n log βn(φ)
)

for an arbitrary test sequence
φ.

Referring to Figure 1, the claim of this Theorem is that for any sequence of test
functionsφ the point(βR(φ), αR(φ)) cannot be above the graph ofe(r) over r > 0
and for any point on the graph overr ≥ 0 one can find a sequenceφ. SinceβR(φ) = 0
may correspond to the case whereβ(φn) vanishes subexponentially slowly as well as
converges to a positive value, a rate limit of type-I errorαR(φ) larger thane(0) =
H(q‖p) is achievable.

The caseβR(φ) > r ≥ H(p‖q), wheree(r) = 0, can be shown to correspond
to α(φn) converging to1, rather than to0. (This is basically the content of the so-
called ‘Strong Converse’.) In the caseβR(φ) = H(p‖q) a convergence ofα(φn) to 0 is
achievable, albeit only subexponantially slowly (this is due to Stein’s Lemma.)

Note that in order to obtain a bound onβR under a constrainedαR one just has to
interchangep andq in the Theorem.
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Fig. 1. (Color online) Example plot of the error-exponent functione(r), eq. (42), for the distributionsp =
(0.95, 0.05) andq = (0.5, 0.5). The thick (red) line is the graph ofe(r), while the thin (blue) lines are
instances of the linear function(−rs − log

P

k qs
k
p1−s

k
)/(1 − s) for various values ofs, of which e(r)

is the point-wise maximum. For the chosenp and q, the value ofH(p‖q) = 0.49463 and the value of
H(q‖p) = 0.83037.

5.2. Nonequivalent hypotheses.The Chernoff and Hoeffding bounds have typically
been treated in the literature under a restrictive assumption that hypothesesp, q are
mutually absolutely continuous (equivalent), cf., e.g., Blahut [6]. As a prerequisite for
a quantum generalisation, unless one wants to limit oneselfto faithful states, one has to
understand the classical Hoeffding bound for nonequivalent hypotheses. For the Cher-
noff bound, a corresponding discussion can be found in [22] without restrictions on
the underlying sample space. Here we limit ourselves to finite sample spaces, thereby
excluding infinite relative entropies for equivalent measuresp, q.

For probability measuresp, q on a finite sample spaceΩ, letD0 be the support of
p, D1 be the support ofq andB = D0 ∩ D1. Let ψ0 = p (B), ψ1 = q (B) and note
thatψ0 > 0, ψ1 > 0 unless the measuresp, q are orthogonal (which we exclude for
triviality). Define conditional measures given the setB: p̃ (·) = p (·|B), q̃ (·) = q (·|B).
Note thatp̃, q̃ are equivalent measures; we may havep̃ = q̃. We consider hypothesis
testing for a pair of product measuresp⊗n, q⊗n.

Recall that a (nonrandomised) test is a mappingφn : Ωn 7→ {0, 1}. In our setting,
only observations in eitherDn

0 orDn
1 can occur, so we will modify the sample space to

beDn
0∪Dn

1 . We will then establish relation of testsφn in the original problemp⊗n vs.
q⊗n to tests in the ‘conditional’ problem̃p⊗n vs. q̃⊗n, i.e. to tests̃φn : Bn 7→ {0, 1}.
Call a testφn null admissible if it takes value0 onDn

0 \ Bn and value1 onDn
1 \ Bn.

These tests correspond to the notion that if a point in the sample spaceΩn is not inBn,



Asymptotic Error Rates in Quantum Hypothesis Testing 23

then it identifies the hypothesis errorfree (eitherp or q). We need only consider null
admissible tests; for any test there is a null admissible test with equal or smaller error
probabilitiesαn, βn. The restrictionφn|Bn gives a test onBn, i.e. in the conditional
problem.

Lemma 3. There is a one-to-one correspondence between null admissible testsφn in
the original problemp⊗n vs.q⊗n and tests̃φn in the conditional problem̃p⊗n vs.q̃⊗n,
given byφ̃n = φn|Bn. The errror probabilities satisfy

αn (φ) = ψn0αn

(

φ̃
)

, βn (φ) = ψn1 βn

(

φ̃
)

,

whereψ0 = p(B) andψ1 = q(B).

Proof. The first claim is obvious, if one takes into account that we took all tests in the
original problem to be mappingsφn : Dn

0∪ Dn
1 7→ {0, 1}. For the relation of error

probabilities, note thatp⊗n(A) = ψn0 p̃
⊗n(A ∩Bn), A ⊂ Dn

0∪ Dn
1 and therefore

αn (φ) =

∫

φndp
⊗n =

∫

Bn

φndp
⊗n (by null admissibility)

= ψn0

∫

φndp̃
⊗n = ψn0

∫

Bn

φ̃ndp̃
⊗n = ψn0αn

(

φ̃
)

and analogously forβn (φ) . ⊓⊔

This result already allows to state the general Hoeffding bound in terms of the error-
exponent function for the conditional problem

ẽ(r) = sup
0≤s< 1

−rs− log
∑

k q̃
s
kp̃

1−s
k

1 − s
.

Indeed, rate limitsαR(φ) andβR(φ) for a null admissible test sequenceφ exist if and
only if they exist for the corresponding test sequenceφ̃, and

αR (φ) = − logψ0 + αR

(

φ̃
)

, βR (φ) = − logψ1 + βR

(

φ̃
)

. (43)

Proposition 3. Letp, q be arbitrary probability measures on a finite sample space.
(i) (achievability) For eachr ≥ − logψ1 there exists a sequenceφ of test functionsφn
such that the rate limits of the type-II and type-I errors behave likeβR (φ) ≥ r and
αR (φ) = − logψ0 + ẽ(r+logψ1). For the case0 ≤ r ≤ − logψ1, there is a sequence
φ of test functionsφn obeying−n−1 log βn (φ) = − logψ1 andαn (φ) = 0 for every
n.
(ii) (optimality) Consider any sequenceφ such thatαR(φ) and βR(φ) both exist. If
r ≥ − logψ1 then the relationβR(φ) > r impliesαR(φ) ≤ − logψ0 + ẽ(r + logψ1).

Note that in (ii) the omission of the case0 ≤ r ≤ − logψ1 means that there is no
upper bound onαR(φ), as shown by the achievability part (αR (φ) has to be set equal
to∞ for a test of vanishing error probabilityαn).
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Proof. (i) Assumer ≥ − logψ1 and take a test sequenceφ̃n in the conditional prob-
lem p̃⊗n vs. q̃⊗n such thatβR(φ̃) ≥ r + logψ1 andαR(φ̃) = ẽ(r + logψ1), which
exists according to the HBCL theorem sincep̃, q̃ are mutually absolutely continuous.
According to Lemma 3, the corresponding null admissible test φn satisfies (43) and
henceβR (φ) ≥ r andαR (φ) = − logψ0 + ẽ(r + logψ1). Furthermore, consider
the testφ̃n ≡ 0 in p̃⊗n vs. q̃⊗n. This hasαn(φ̃n) = 0 andβn(φ̃n) = 1, hence the
corresponding null admissible testφn hasαn(φn) = 0 andβn(φn) = ψn1 .

(ii) Using a reduction to the conditional problem̃p⊗n vs. q̃⊗n similar to the one
above, the optimality part also follows immediately from the HBCL theorem. ⊓⊔
Remark:Consider the dual of the test used in the second part of (i), i.e. the null admissi-
ble extension of the test̃φn ≡ 1. This one obviously hasαn (φ) = ψn0 andβn(φ) = 0. It
can be used for achievability for larger, i.e. it hasβR(φ) = ∞ andαR(φ) = − logψ0.

It is possible to obtain a closed form expression for the Hoeffding bound, using the
error-exponent function defined forr ≥ 0 exactly as in (42), for the case of nonequiva-
lentp, q. The difference is that we now have to admit a value+∞ for certain arguments.

Lemma 4. For generalp, q, the error-exponent functione(r) satisfies

e(r) =

{

− logψ0 + ẽ(r + logψ1), for r ≤ − logψ1

∞, for 0 ≤ r < − logψ1.

Remark:For two distinctp, q it is possible that̃p = q̃. In that casẽe(r) = 0 for r ≥ 0.
It follows thate(r) = ∞ for r < −logψ1 ande(r) = − logψ0 for r ≥ − logψ1. This
case will be relevant in the quantum setting when the hypotheses will be represented by
two non-orthogonal pure quantum states.

Proof. Assumer ≥ − logψ1 and set

es(r) =
−rs− logQs

1 − s

whereQs =
∑

k p
1−s
k qsk. Let Q̃s =

∑

k p̃
1−s
k q̃sk and noteQs = ψ1−s

0 ψs1Q̃s. Hence

es(r) =
−rs− (1 − s) logψ0 − s logψ1 − log Q̃s

1 − s

= − logψ0 +
−(r + logψ1)s− log Q̃s

1 − s
= − logψ0 + ẽs(r + logψ1)

whereẽs is the analogue of the functiones(r) with Qs replaced byQ̃s. Sincee(r) =
sup0≤s< 1 es(r) and the analogue is true for̃es and ẽ, the claim follows in the case
r ≥ − logψ1.

Assume now0 ≤ r < − logψ1 andψ1 < 1, i.e.− logψ1 > 0. Clearly we have
Qs → ψ1 ass ր 1, hence−rs − logQs → −r − logψ1 > 0 ass ր 1. Hence
limsր1 es(r) = ∞, and sincee(r) = sup0≤s< 1 es(r), we also havee(r) = ∞. ⊓⊔

In conjunction with Proposition 3 we obtain a closed form description of the Ho-
effding bound for possibly nonequivalent measuresp, q, in terms of the original error-
exponent functione(r).

Theorem 4.Let p, q be arbitrary probability measures on a finite sample space. Then
the statement of the HBCL Theorem (Theorem 3) is true, where the error-exponent
function defined in (42) obeyse(r) = ∞ for 0 ≤ r < − logψ1 if ψ1 < 1.
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We noted already that fore(r) = ∞, the bound onαR(φ) is achievable in the sense that
a test exists having exactlyαn(φ) = 0 for all n.

Using the properties of the rate functionẽ pertaining to equivalent measuresp̃, q̃,
as illustrated in Figure 1, and the representation of Lemma 4we obtain the follow-
ing description of the general rate exponent function. In the interval[0,− logψ1) it
is infinity. At r = − logψ1 it takes valuee(r) = − logψ0 + H(q̃‖p̃) = H(q̃‖p).
For r ≥ − logψ1 it is convex and non-increasing. More precisely, over the interval
[− logψ1,− logψ1 + H(p̃‖q̃) = H(p̃‖q)] e(r) is convex (even strictly convex) and
monotone decreasing. Over the interval[H(p̃‖q),∞) it is constant with value− logψ0.
A visual impression can be obtained by imagining the origin in Figure 1 shifted to the
point (− logψ1,− logψ0). This picture will explicitly appear in Figure 2 below, in a
situation further generalized to two quantum states with different supports.

5.3. Quantum Hoeffding Bound.In the quantum setting the error-exponent function
e(r) has to be replaced by a functioneQ : R

+
0 −→ [0,∞] given by

eQ(r) := sup
0≤s<1

−rs− log Trσsρ1−s

1 − s
. (44)

In view of Proposition 1,eQ(r) coincides with the error-exponent functione(r) for the
pair of probability distributions(p, q) associated with(ρ, σ) via relation (12). Therefore,
we can use Lemma 4 to describe properties of the functioneQ(r), or the remarks after
Theorem 4.

Recall that for a pair(p, q), we defined a related pair of probability distributions
(p̃, q̃) by conditioningp andq, respectively, on the intersectionB = D0 ∩ D1 of the
two support setsD0 andD1, and alsoψ0 = p(B), ψ1 = q(B). In the present context,
in accordance with (12) we have

D0 = {(i, j) : 1 ≤ i, j ≤ d, λi > 0} , D1 = {(i, j) : 1 ≤ i, j ≤ d, µj > 0} .

Let, as before,̃e(r) be the error-exponent function pertaining to the pair(p̃, q̃) according
to (42). Then the quantum error-exponent functioneQ(r) for the hypothesesρ, σ may
be represented simply by

eQ(r) = e(r) =

{

− logψ0 + ẽ(r + logψ1), for r ≤ − logψ1

∞, for 0 ≤ r < − logψ1.
(45)

It obtains its characteristic properties from the classical function being convex and
monotone decreasing in the interval[− logψ1, H(p̃‖q)] with e(− logψ1) = H(q̃‖p),
and constant with value− logψ0 in the interval[H(p̃‖q),∞).

Lemma 5. Let suppρ, suppσ be the support projections associated withρ, σ. Then the
critical points and extremal values ofeQ(r) may be expressed in a more direct way in
terms of the density operators:

ψ0 = Tr [ρ supp σ] , ψ1 = Tr [σ supp ρ]

and

H(p̃‖q) = Sσ(ρ‖σ) H(q̃‖p) = Sρ(σ‖ρ),
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where the entropy type quantities on the right-hand side aredefined as

Sσ(ρ‖σ) := Tr

[

ρ

ψ0

(

log
ρ

ψ0
− log σ

)

supp σ

]

,

Sρ(σ‖ρ) := Tr

[

σ

ψ1

(

log
σ

ψ1
− log ρ

)

supp ρ

]

.

Proof. Note that forB = D0 ∩D1 we have

ψ0 =
∑

(i,j)∈B

λi |〈xi|yj〉|2 =
∑

i,j

λi sgn(µj) |〈xi|yj〉|2

=
∑

i,j

λi |〈xi|sgn(µj)yj〉|2 =
∑

i,j

λi |〈xi| (supp σ) yj〉|2

=
∑

i,j

λi |〈(supp σ) xi|yj〉|2 =
∑

i

λi ‖(supp σ) xi‖2
=

= Tr

[

∑

i

λi |(supp σ)xi〉 〈(supp σ) xi|
]

= Tr [ρ supp σ]

and analogously forψ1. Furthermore

H(p̃‖q) =
∑

(i,j)∈B

p̃i,j log
p̃i,j
qi,j

=
∑

(i,j)∈B

λi |〈xi|yj〉|2
1

ψ0
log

λi
µjψ0

=
∑

i,j

sgn(µj) |〈xi|yj〉|2
λi
ψ0

log
λi
ψ0

−
∑

i,j

sgn(µj) |〈xi|yj〉|2
λi
ψ0

logµj

= Tr

[

σ

ψ1

(

log
σ

ψ1

)

supp ρ

]

− Tr

[

σ

ψ1
(log ρ) supp ρ

]

where the third equality is analogous to the calculation in the proof of Proposition 1.
⊓⊔

To shed some light on the entropy type quantitySσ(ρ‖σ), note that it may be rewritten
as a difference of usual (Umegaki’s) relative entropies:

Sσ(ρ‖σ) = S(
ρ

ψ0
suppσ‖σ) − S(

ρ

ψ0
suppσ‖ ρ

ψ0
).

This may be verified by direct calculations similar to those in the proof of Lemma 5.
The linear operatorρψ0

suppσ is a kind of conditional expectation ofρ. While it is
not self-adjoint, the relative entropies on the right-handside are well defined (in a math-
ematical sense) and real: first, the entropy ofρ

ψ0

suppσ is defined in terms of its spec-
trum, which is positive and normalised to 1, hence giving a real, positive entropy, and
second,Tr[ρ suppσ log(ρ)] can be written asTr[suppσρ log ρ suppσ], from which it
is evident that this term is also real.

It is easily seen from the above formula thatSσ(ρ‖σ) coincides withS(ρ‖σ) if σ is
a faithful state, or more generally ifsupp ρ ≤ supp σ. OtherwiseS(ρ‖σ) = ∞, while
Sσ(ρ‖σ) is finite.



Asymptotic Error Rates in Quantum Hypothesis Testing 27

Fig. 2. Example plot of the quantum error-exponent functioneQ(r) in the general case.

Note also thatSρ(σ‖ρ) ≥ − logψ0 and equality holds if and only if it holds in
Sσ(ρ‖σ) ≥ − logψ1. This immediately follows fromSρ(σ‖ρ) + logψ0 = H(p̃‖q̃),
which is seen from Lemma 5. This happens in particular if bothρ andσ are pure states.
In this case there is only one pair(i, j) where bothλi > 0 andµj > 0, hence the set
B consists of one element only. In this case we must havep̃ = q̃, henceH(p̃‖q̃) =
H(q̃‖p̃) = 0.

The general shape of the quantum error-exponent functioneQ(r) is represented in
Figure 2. If bothρ andσ are pure states then the shape degenerates to ‘rectangular’
form (eQ(r) = ∞ or eQ(r) = − logψ1).

A quantum generalisation of the HBCL Theorem then reads as follows.

Theorem 5.(Quantum HBCL)For eachr > 0 there exists a sequenceΠ of test pro-
jectionsΠn onH⊗n for which the rate limits of type-I and type-II errors behavelike
αR(Π) = eQ(r) andβR(Π) ≥ r, respectively. Moreover, for any sequenceΠ such
thatαR(Π) andβR(Π) both exist, the relationβR(Π) > r impliesαR(Π) ≤ eQ(r).

The statement of the quantum HBCL Theorem is that for every sequenceΠ (for
which both error rate limits exist) the point(βR(Π), αR(Π)) lies on or below the curve
eQ(r) over(0,∞], and for every point on the curve over the closed interval[0,∞] there
is a sequenceΠ achieving it.

We remark that, just like (37), the relationship (41) seems to have no general quan-
tum counterpart, even when both states are faithful. In other words, there is no known
subset of linear operatorsτ with positive spectrum such thateQ(r) = infτ{S(τ‖ρ) :
S(τ‖σ) ≤ r}.

To prove the quantum Hoeffding bound, the following lemmas are needed.

Lemma 6. For scalarsx, y > 0, bounds onlog(x+ y) are given by

max(log x, log y) ≤ log(x+ y) ≤ max(log x, log y) + log 2. (46)



28 K.M.R. Audenaert, M. Nussbaum, A. Szkoła, F. Verstraete

Proof.For the first inequality, putx = ea andy = eb, and note

log(ea + eb) = a+ log(1 + eb−a)

≥ a+ max(0, b− a)

= max(a, b).

The second inequality follows directly from the fact that the logarithm increases mono-
tonically, so thatlog((x+ y)/2) ≤ log max(x, y). ⊓⊔

A direct consequence of this Lemma is

Lemma 7. For two scalar sequencesxn, yn > 0 with rate limitsxR andyR, the rate
limit of xn + yn is given by

lim
n→∞

− 1

n
log(xn + yn) = min(xR, yR). (47)

5.4. Proof of Optimality of the Quantum Hoeffding Bound.Again we use the mapping
from the pair(ρ, σ) to the pair(p, q), so that, by Proposition 1,e(r) = eQ(r). From
Proposition 2 we have that for any sequenceΠ of orthogonal projectionsΠn and for
any real value of the scalarx, for all n ∈ N one as

α(Πn) + e−nxβ(Πn) ≥ 1

2

(

α(φn) + e−nxβ(φn)
)

,

whereφn are classical test functions corresponding to the maximum likelihood decision
rule, cf. the proof of Proposition 2. Recall that the type-I and type-II errors are defined
asα(φn) =

∑

i p
n
i φn(i) andβ(φn) =

∑

i q
n
i (1 − φn(i)).

On taking the rate limit on the left side, this gives

lim
n→∞

− 1

n
log
(

α(Πn) + e−nxβ(Πn)
)

≤ lim inf
n→∞

− 1

n
log
(

α(φn) + e−nxβ(φn)
)

By possibly taking a subsequence, we can ensure that the ratelimits αR(φ), β(φn) also
exist. By Lemma 7, the above simplifies to

min(αR(Π), x+ βR(Π)) ≤ min(αR(φ), x + βR(φ)). (48)

Assume now thatβR(φ) ≤ − logψ1. Then, by selectingx < 0 and |x| sufficiently
large, we obtainx+βR(Π) ≤ x+βR(φ) and henceβR(Π) ≤ − logψ1. SinceeQ(r) =
∞ for r < βR(Π) ≤ − logψ1 according to the discussion above Lemma 5, the claim
αR(Π) ≤ eQ(r) holds trivially. Henceforth we assume thatβR(φ) > − logψ1.

From the classical HBCL Theorem (more precisely, from Theorem 4), the right-hand
side of (48) is bounded above bymin(e(r), x+βR(φ)), for anyr with − logψ1 ≤ r <
βR(φ). Note thate(r) is continuous forr ≥ − logψ1 (since it is monotonely nonin-
creasing and convex). By lettingr ր βR(φ) we obtain an upper boundmin(e(r), x+r)
with r ≥ − logψ1.

We can now prove the optimality part of the quantum HBCL Theorem, using only
this upper bound plus the fact thate(r) is monotonously decreasing.

The upper boundmin(e(r), x+ r) holds for some particular valuer. We will find a
further upper bound by maximizing overr ≥ − logψ1. For this we have to distinguish
two cases, depending on the value ofx.
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a) At r = − logψ1 we havee(r) > x + r. Sincee(r) is decreasing inr and
continuous, andx + r is increasing, the maximum ofmin(e(r), x + r) is obtained
whene(r) = x + r. Let r∗(x) > − logψ1 be the solution ofx + r = e(r). We now
have that for any sequence of quantum measurementsΠ and for any real value of the
scalarx,

min(αR(Π), x+ βR(Π)) ≤ x+ r∗(x) = e(r∗(x)).

b) At r = − logψ1 we havee(r) ≤ x+r. Again by the properties ofe(r) andx+r,
the maximum ofmin(e(r), x + r) is e(r∗) is attained forr∗(x) = − logψ1. We then
obtain the upper bound

min(αR(Π), x+ βR(Π)) ≤ e(r∗(x)).

Now setx = αR(Π) − βR(Π), then both inequalities above yieldαR(Π) ≤ e(r∗).
Assumer < βR(Π); we intend to show that this impliesαR(Π) ≤ e(r). Indeed, in
both cases a) and b)r∗ is such that

e(r∗) ≤ x+ r∗ = αR(Π) − βR(Π) + r∗ < αR(Π) − r + r∗

hencer∗ − r ≥ e(r∗) − αR(Π) ≥ 0. Therefore, from the monotonicity of the error-
exponent function followse(r∗) ≤ e(r) and we finally obtainαR(Π) ≤ e(r) = eQ(r).
⊓⊔

5.5. Proof of Achievability of the Quantum Hoeffding Bound.The proof of achievabil-
ity is mainly due to Hayashi [12], who used inequality (24), which is obtained as a
byproduct of the proof of Theorem 2. However, we modify it avoiding any implicit as-
sumption that the involved quantum states are faithful; hence we prove Theorem 5 in
full generality, which includes for example the case of two non-orthogonal pure states.

Let us fix an arbitrarys ∈ (0, 1), and set

a = e−nxσ⊗n (49)

b = ρ⊗n, (50)

where the value ofx will be chosen in due course. Consider the sequence of POVMs
{(11−Πn, Πn)} withΠn the projector on the range of(a− b)+; again element11−Πn

is assigned to the null hypothesisρ⊗n, and elementΠn is assigned to the alternative
hypothesisσ⊗n. We will show that this POVM asymptotically attains the Hoeffding
bound.

Recall that inequality (24) states

Tr[asb1−s] ≥ Tr[Πb+ (11−Π)a].

By positivity of Tr[Πb] andTr[(11−Π)a], this implies the two inequalities

Tr[Πb],Tr[(11−Π)a] ≤ Tr[asb1−s].

These yield the following upper bounds on theα andβ errors of the chosen POVM
(recallQs = Tr[ρ1−sσs]):

βn(Πn) = Tr[(11−Πn)σ
⊗n]

= enxTr[(11−Πn)a]

≤ enxTr[asb1−s]

= enx(1−s)Qns
= exp[n(x(1 − s) + logQs)]. (51)
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αn(Πn) = Tr[Πnρ
⊗n]

= Tr[Πnb]

≤ Tr[asb1−s]

= e−nxsQns
= exp[n(−xs+ logQs)]. (52)

Choosingx such thatx(1 − s) + logQs = −r then yields, from (51),

βn(Πn) ≤ exp(−nr),

and from (52),

αn(Πn) ≤ exp

(

−n
(

−sr + logQs
1 − s

− logQs

))

= exp

(

−n−rs− logQs
1 − s

)

≤ exp (−neQ (r)) ,

where in the last inequality we have used the fact that the parameters was arbitrarily
chosen from(0, 1).

Thus, for the rate limits we get

βR ≥ r, αR ≥ eQ(r).

The optimality, proven in the previous subsection, states thatαR ≤ eQ(r) if βR = r.
Furthermore, sinceeQ(r) is a non-increasing function,αR ≤ eQ(r) if βR > r. This
implies that for the chosen sequence of POVMs

βR = r, αR = eQ(r)

must hold, which proves that the Hoeffding bound is indeed attained. ⊓⊔

5.6. Quantum Stein’s Lemma and quantum version of Sanov’s Theorem. The quantum
generalisation of Stein’s lemma deals with the asymptoticsof the error quantity

β∗
n(ǫ) := inf

Πn

{βn(Πn) : αn(Πn) ≤ ǫ}, (53)

for fixed0 < ǫ < 1. Here, the infimum is taken over all positive semi-definite contrac-
tionsΠn onH⊗n.

Quantum Stein’s Lemma states that the rate limitβ∗
R(ε) of the sequence(β∗

n(ǫ))
exists and is equal toS(ρ‖σ), independently ofǫ. It was first obtained by Hiai and Petz
[15]. Its optimality part was then strengthened by Ogawa andNagaoka in [24].

Here we use the quantum HBCL Theorem to prove that the relative entropyS(ρ‖σ)
is an achievable error rate limit and deduce optimality of this bound from Proposition 1
in [5].

Proof of the quantum Stein’s lemma.We need to show that there is a sequenceΠ with
α(Πn) ≤ ǫ achievingβR(Π) = S(ρ‖σ). Let η > 0 be small and setr = S(ρ||σ) − η.
Achievability of the quantum Hoeffding bound means that a sequenceΠ exists for
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whichβR ≥ r andαR = eQ(r). SinceeQ(r) > 0 for all r < S(ρ‖σ) andη > 0, the
sequenceαn converges to 0. Thus, from a certain value ofn onwards,αn will get lower
than any valueǫ > 0 chosen beforehand. This means thatΠ is a feasible sequence in
(53) for n large enough, exhibitingβR(ǫ) ≥ r = S(ρ‖σ) − η. As this holds for any
η > 0, we find thatβ∗

R(ǫ) ≥ S(ρ‖σ).
With β∗

R(ǫ) ≥ S(ρ‖σ) the two hypotheses associated to the pair of density operators
(ρ, σ) satisfy the HP-condition in the terminology of the paper [5]. Thus Proposition 1
in [5] impliesβ∗

R(ǫ) = S(ρ‖σ). ⊓⊔

We remark that in [5] the HP-condition was introduced for (ordered) pairs(Ψ, Φ) of
arbitrary correlated states on quantum spin chains, while in the present paper only den-
sity operators of the tensor-product formρ⊗n have been considered. These correspond
to the special case of shift-invariant product states on theinfinite spin chain (quantum
i.i.d. states). A pair(Ψ, Φ) is said to satisfy the HP-condition if the relative entropy rate
s(Ψ‖Φ) exists and is a lower bound on the lower rate limitβ∗

R
(ε) for all ε ∈ (0, 1).

Specifically to our setting (the i.i.d. case), Theorem 1 in [5] states that the achievability
part in quantum Stein’s Lemma (the HP-condition) is equivalent to a quantum version
of Sanov’s theorem, which has been presented in [4] and whichis a priori a result ex-
tending quantum Stein’s Lemma in the following way:

Let the null hypothesisH0 correspond to a familyΓ of density operators onH instead
of a single density operatorρ. Let the alternative hypothesisH1 be still represented by a
fixed density operatorσ. Then there exists a sequenceΠ of orthogonal projectionsΠn

onH⊗n, respectively, such that for allρ ∈ Γ the corresponding type-I error vanishes
asymptotically, i.e.

lim
n→∞

Tr[ρ⊗nΠn] = 0, (54)

while the type-II error rate limitβR(Π) is equal to the relative entropy distance fromΓ
to σ:

S(Γ‖σ) := inf
ρ∈Γ

S(ρ‖σ).

MoreoverS(Γ‖σ) is the upper bound on type-II error (upper) rate limit, for any se-
quenceΠ of POVMs satisfying the constraint (54).

With the above reasoning we obtain the statement of quantum Sanov’s Theorem from
the quantum HBCL Theorem as well.
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A. Proofs of Bounds onQ

Inequality (32) stated in terms of general positive operators is

Theorem 6.For positive operatorsA andB, and0 ≤ s ≤ 1,

‖A1/2B1/2‖1 ≤ (Tr[AsB(1−s)])1/2 (Tr[A])(1−s)/2 (Tr[B])s/2. (55)

Specialising to states,A = σ andB = ρ, the left-hand side is justF (ρ, σ), while the
right-hand side is equal toQs(ρ, σ)1/2.

Proof.We rewriteA1/2B1/2 as a product of three factors

A1/2B1/2 = A(1−s)/2(As/2B(1−s)/2)Bs/2,

apply Hölder’s inequality on the 1-norm of this product, and exploit the relation

‖Xp‖q = ‖X‖ppq
(forX ≥ 0) a number of times.

‖A1/2B1/2‖1 = ‖A(1−s)/2(As/2B(1−s)/2)Bs/2‖1

≤ ‖A(1−s)/2‖2/(1−s) ‖As/2B(1−s)/2‖2 ‖Bs/2‖2/s

= (Tr[A])(1−s)/2 ‖As/2B(1−s)/2‖2 (Tr[B])s/2

= (Tr[AsB(1−s)])1/2 (Tr[A])(1−s)/2(Tr[B])s/2.

⊓⊔

We now give a direct proof of inequality (30) that circumvents the proof of (29) and
goes through in infinite dimensions. We state it in terms of general positive operators:

Theorem 7.For positive operatorsA andB,

‖A− B‖2
1 + 4(Tr[A1/2B1/2])2 ≤ (Tr(A+B))2. (56)

Proof.Consider two general operatorsP andQ, and define their sum and difference as
S = P + Q andD = P − Q. We thus haveP = (S + D)/2 andQ = (S − D)/2.
Consider the quantity

PP ∗ −QQ∗ =
1

4
((S +D)(S +D)∗ − (S −D)(S −D)∗)

=
1

2
(SD∗ +DS∗).

Its trace norm is bounded above as

‖SD∗ +DS∗‖1/2 ≤ (‖SD∗‖1 + ‖DS∗‖1)/2

= ‖SD∗‖1

≤ ‖S‖2‖D‖2.

In the last line we have used a specific instance of Hölder’s inequality for the trace norm
([3] Cor. IV.2.6). Now putP = A1/2 andQ = B1/2, which exist by positivity ofA and
B, and which are themselves positive operators. We getS,D = A1/2 ±B1/2, hence

‖A−B‖1 ≤ ‖A1/2 +B1/2‖2 ‖A1/2 −B1/2‖2,
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which upon squaring becomes

‖A−B‖2
1 ≤ Tr(A1/2 +B1/2)2 Tr(A1/2 −B1/2)2

= Tr(A+B +A1/2B1/2 +B1/2A1/2)

×Tr(A+B − A1/2B1/2 −B1/2A1/2)

= (Tr(A+B) + 2 Tr(A1/2B1/2))

×(Tr(A+B) − 2 Tr(A1/2B1/2))

= (Tr(A+B))2 − 4(Tr(A1/2B1/2))2.

⊓⊔
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