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Abstract: We consider the problem of discriminating between two déffe: states of

a finite quantum system in the setting of large numbers ofep@nd find a closed
form expression for the asymptotic exponential rate at tvitie specified error proba-
bility tends to zero. This leads to the identification of theagtum generalisation of the
classical Chernoff distance, which is the correspondirantjty in classical symmetric
hypothesis testing, thereby solving a long standing opehlpm.

The proof relies on a new trace inequality for pairs of pusitbperators as well
as on a special mapping from pairs of density operators s pdiprobability distri-
butions. These two new techniques have been introducediemfeph/0610027] and
[quant-ph/060721.6], respectively. They are also welleglitb prove the quantum gen-
eralisation of the Hoeffding bound, which is a modificatidrttee Chernoff distance
and specifies the optimal achievable asymptotic error reties context of asymmetric
hypothesis testing. This has been done subsequently bysHiajgpuiant-ph/0611013]
and Nagaoke [quant-ph/0611289] for the special case whathehypotheses have full
support.

Moreover, quantum Stein’s Lemma and quantum Sanov’s theanay be derived
directly from quantum Hoeffding bound combining it with auét obtained recently in
[math/0703772).

The goal of this paper is to present the proofs of the aboveiored results in a
unified way and in full generality (allowing hypothetic statwith different supports)
using mainly the techniques from [quant-ph/0607216] anfd-ph/0610027].

Additionally, we give an in-depth treatment of the propestof the quantum Cher-
noff distance. We argue that, although it is not a metrig @ natural distance measure
on the set of density operators, due to its clear operatimeahing.
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1. Introduction

One of the basic tasks in information theory is discrimimgtbetween two different
information sources, modelled by (time-discrete) stottbgsocesses. Given a source
that generates independent, identically distributedl().random variables, according
to one out of two possible probability distributions, thektas to determine which dis-
tribution is the true one, and to do so with minimal error, velver error criterion one
chooses.

This basic decision problem has an equally basic quantdionarational incarna-
tion. Given an information source that emits quantum systgrarticles) independently
and identically prepared in one out of two possible quanttates, figure out which
state is the true one, with minimal error probability.

In both settings, we're dealing with two hypotheses, eaahmsrtaining to one law
represented by a probability distribution or a quantumestagspectively, and the dis-
crimination problem is thus a particular instance of a hijzpets testing problem.

In hypothesis testing, one considers a null hypothesis aradtarnative hypothesis.
The alternative hypothesis is the one of interest and stladé¢$something significant is
happening”, for example, a cell culture under investigatiocoming from a malignant
tumor, or some case of flu is the avian one, or an e-mail attanohis a computer
virus. In contrast, the null hypothesis corresponds totihisbeing the case; the cells
are normal ones, the flu can be treated with an aspirin, anatthehment is just a nice
picture. This is inherently an asymmetric situation, angitNan and Pearson introduced
the idea of similarly making a distinction between type | &k 1l errors.

— The type | error or “false positive”, denoted hy is the error of accepting the al-
ternative hypothesis when in reality the null hypothesisli@and the results can be
attributed merely to chance.

— The type Il error or “false negative”, denoted Byis the error of accepting the null
hypothesis when the alternative hypothesis is the true sfatature.

The costs associated to the two types of error can be wid#greint, or even incom-
mensurate. For example, in medical diagnosis, the typeor eéasrresponds to diag-
nosing a healthy patient with a certain affliction, which ¢@nan expensive mistake,
causing a lot of grievance. On the other hand, the type Ir@ney correspond to declar-
ing a patient healthy while in reality (s)he has a life-thiesdng condition, which can
be a fatal mistake.

To treat the state discrimination problem as a hypothesiswe assign the null hy-
pothesis to one of the two states and the alternative hypisthe the other one. If all
we want to know is which one of the two possible states we aseming, the math-
ematical treatment is completely symmetric under the at@nge of these two states.
It therefore fits most naturally in the setting ®fmmetric hypothesis testinghere no
essential distinction is made between the two kinds of srffw wit, in symmetric hy-
pothesis testing, one considers the average, or Bayesianpeobability P., defined as
the average ok and3 weighted by the prior probabilities of the null and the aitgive
hypothesis, respectively.

This paper will be concerned with symmetric as well as witpnametric quantum
hypothesis testing. Since we have developed the main gebsin the symmetric set-
ting we will start with this case and address the asymmegtiing at the end.

The optimal solution to the symmetric classical hypothéss is given by the
maximume-likelihood (ML) test. Starting from the outcomesam experiment involv-
ing n independent draws from the unknown distribution, one dates the conditional
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probabilities (likelihoods) that these outcomes can baiakt when the distribution is
the one of the null hypothesis and the one of the alternatypmthesis, respectively.
One decides then on the hypothesis for which the conditiprddability is the highest.
I.e. if thelikelihood ratiois higher than 1, the null hypothesis is rejected, otheriise
accepted.

In the quantum setting, the experiment consists of pregarimdependent copies
of a quantum system in an unknown state, which is either o, and performing an
optimal measurement on them. We assume that the quantuemsyate finite, imply-
ing that the states are associated to density operators aiteadimensional complex
Hilbert space. Under the null hypothesis, the combimedpies correspond to anfold
tensor product density operat@?”, while under the alternative hypothesis, the associ-
ated density operator is®™. The null hypothesis is then accepted or rejected according
to the outcome of the measurement and the specified decidmrilihe task of finding
this optimal measurement is so fundamental that it was orleeofirst problems con-
sidered in the field of quantum information theory; it wasvsdlin the one-copy case
more than 30 years ago by Helstrom and Holeval[14,17]. We tefthe generalised
ML-tests as Holevo-Helstrom tests. In the special case oélegriors, the associated
minimal probability of error achieved by the optimal measuent can be calculated
from the trace norm distance between the two states:

* 1 n n
Pe,n(pa(j) = 5(1 - Hp® - G® H1/2)7 (1)

where||A||; := Tr|A| denotes the trace norm.

Going back to the classical case again, in a seminal pap&hkknoff [8] investi-
gated the so-calledsymptotical efficiencyf a class of statistical tests, which includes
the likelihood ratio test mentioned before. The probapitit error P, ,, in discrimi-
nating two probability distributions decreases exporadigtin n, the number of draws
from the distribution:P, ,, ~ exp(—¢n). For finiten this is a rather crude approxima-
tion. However, as grows larger one finds better and better agreement, and plomert
¢ becomes meaningful in the asymptotic limit. The asympébtitficiency is exactly
the asymptotic limit of this exponent.

Chernoff was able to derive an (almost) closed expressiothfe asymptotic effi-
ciency, which was later named eponymously in his honourtWwomiscrete probability
distributionsp andg, this expression is given by

¢es(p,q) == —1og< inf Zp(i)l‘SQ(i)s> ; )

0<s<1

which is of closed form but for a single variable minimisatid his quantity goes under
the alternative names of Chernoff distance, Chernoff deace and Chernoff informa-
tion.

While Chernoff’s main purpose was to use this asymptoticieficy measure to
compare the power of different tests — the mathematicaliiyrag test need not always
be the most practical one — it can also be used as a distirahilith measure between
the distributions (states) of the two hypotheses. Indegohdithe test, its efficiency
for a particular pair of distributions gives a meaningfutlization of how well these
two distributions can be distinguished by that test. Thissigecially meaningful if the
applied test is the optimal one.
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A quantum generalisation of Chernoff’s result is highly id&sle. Given the large
amount of experimental effort in the context of quantuminfation processing to pre-
pare and measure quantum states, it is of fundamental iempE@to have a theory that
allows to discriminate different quantum states in a megfisinvay. Despite consid-
erable effort, however, the quantum generalisation of ther@off distance has until
recently remained unsolved.

In the previous papers, [21] and [1], this issue was finalffestind the asymptotic
error exponent was identified, when the optimal Holevo-tfets strategy for discrim-
inating between the two states is used, by proving that thewimg version of the
Chernoff distance

Socn(p.0) = ~log ( int Trlp' 0], @)

has the same operational meaning as its classical courttétgaecifies the asymptotic
rate exponent of the minimal error probabili®/,, (recall definition[[1)). Remarkably,
it looks like an almost naive generalisation of the classixpressior({2).

We remark that in the literature different extensions ofdlassical expression have
been considered. Indeed, when insisting only on the comiptiwith the classi-
cal Chernoff distance, there is in principle an infinitudepofsiblities. Among those,
three especially promising candidate expressions had fetefiorward by Ogawa and
Hayashi[23], who studied their relations and found thatdtexists an increasing or-
dering between them. Incidentally, the second candidatecictes with [8) and thus
turns out to be the correct one.

Kargin [18] gave lower and upper bounds on the optimal erxpoaent¢ in terms
of the fidelity between the two density operators and fouradl @gawa and Hayashi's
third candidate (in their increasing arrangement) is a tdveeind on the optimal error
exponent for faithful states, i.e. it is an achievable ratayashi[11] made progress
regarding[(B), by showing that for = 1/2, —log Tr[p! ~*0*] is also an achievable
error exponent.

The proof of our main result consists of two parts. In themptity part, which was
first presented in_[21], we show that for any test the (Baygssaror rate—% log P,
cannot be made arbitrary large but is asymptotically bodratesve byocp. In the
achievability part, first put forward in_[1], we prove thatder the Holevo-Helstrom
strategy the bound is actually attained in the asymptatid i.e.

1
lim sup (—5 log Pe*n) >&ocB-

n—oo

It is the purpose of this paper to give a complete, detailad,ified account of
these results. We will present the complete proof in Se@idvioreover, we give an in-
depth treatment of the properties of the quantum Chernsfadtce in Sectionl 4. More
precisely, we show that it defines a distance measure betyuearium states.

Distinguishability measures between quantum states hega bsed in a wide va-
riety of applications in quantum information theory. Thesnhpopular of such mea-
sures seems to be Uhimann’s fidellty[27], which happensittcade with the quantum
Chernoff distance when one of the states is pure. The trage distancg|p — o||; =
Tr |p—o| has a more natural operational meaning than the fidelityalblas monotonic-
ity under taking tensor powers of its arguments. The proligetimat one can easily find
stateg, o, o', o’ such thaf|p— o1 < [|p" —o’[|1 but[|p®* = o[y > [|p/®? — ',
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This already happens in the classical setting: take thevitig 2-dimensional diagonal

states
(1/4 0 (3/40Y , _(00\ , (b 0
P=\03/4)7= o0 14)” \0o1)7 T {o1-b)

wherel — 1/v/2 < b < 1/2. Then|p —o|y = 1 > 2b = ||p’ — o/||1, while
p92 — o®2|; = 1 < 2b(2 — b) = [|p'®% — 0’®?||;. The quantum Chernoff dis-
tance characterises the exponent arising in the asymetiaviour of the trace norm
distance, in the case of many identical copies, and thexdfprconstruction does not
suffer from this problem. As such, the quantum Chernoffattise can be considered
as a kind of regularisation of the trace norm distance. Fethove-mentioned states,
¢ocs(p,0) = —log(v/3/2) (optimals = 1/2) andégep(p’,0’) = —log(l — b)
(optimals = 1).

A related problem that attracted a lot of attention in thedf@lquantum information
theory was to identify the relative entropy between two dquarstates. An information-
theoretical way of looking at the classical relative enyrdyetween two probability
distributions, or Kullback-Leibler distance, is that itazhcterises the inefficiency of
compressing messages from a soyressing an algorithm that is optimal for a source
p’ (i.e. yields the Shannon information bound for that sourBéyased differently, it
guantifies the way one could cheat by telling that the givebability distribution isp
while the real one ig’. By proving a quantum version of Stein’s lemmal[15, 24], isha
been shown that the quantum relative entropy, as introdogddimegaki, has exactly
the same operational meaning.

When using the relative entropy to distinguish betweerestaine faces the prob-
lem that it is not continuous and is asymmetric under excharigts arguments, and
therefore it does not represent a distance measure in mativafty strict manner. Fur-
thermore, for pure states, the quantum relative entropyisvary useful, since it is
either O (when the two states are identical) or infinite (wtrezy are not). In contrast,
the quantum Chernoff distance seems to be much more naturany situations.

On the other hand, (quantum) relative entropy is a cruciibnan asymmetridy-
pothesis testing. There it obtains an operational mearsiigeabest achievable asymp
totic rate of type Il errors. Its properties, which are peghhtic for a candidate for a
distance measure, reflect the asymmetry between the nuldléemhative hypothesis
arising from treating the type-I and type-Il errors in a éifint way. As exemplified by
the medical diagnosis case mentioned above, the type H isrtioe one that should be
avoided at all costs. Hence, one puts a constiairt € on the type | error, and min-
imises thes-rate. One obtains that the optimalrate is the relative entropy of the null
hypothesis w.r.t. the alternative, independent of the taimede. The mathematical
derivation of this statement goes under the name of Steiafarha. When the con-
straint consists of a lower bound on the asymptotic expaéaleate of the type Il error,
one obtains what is called the Hoeffding bound.

Asymmetric hypothesis testing has been subject to a quatiiteonetical treatment
much earlier, although it is a much less natural settingtferttasic state discrimination
problem. The quantum generalisation of Stein’s Lemma wakdlrtained by Hiai and
Petz [15]. Its optimality part was then strengthened by Ggawd Nagaoka iri [24].
In the last few years there has been a lot of progress extgridenstatement of the
lemma in different directions. In[4] the minimal relativeteopy distance from a set of
guantum states, the null hypothesis, w.r.t. a referencetguastate, the alternative, has
been fixed as the best achievable asymptotic rate of the gpels, see alsd [13]. This
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may be seen as a quantum generalisation of Sanov’s theanearrecent paper [5] an
extension of this result to the case where the hypothesesspamd to sources emitting
correlated (not necessarily i.i.d.) classical or quantatatias been given. Additionally,
an equivalence relation between the achievability pairaitum) Stein’s Lemma and
(quantum) Sanov’s Theorem has been derived.

Just a few months after the appearanceé of [21,1], the teabrigioneered in those
two papers were used to find a quantum generalisation of tredftHog bound un-
der the implicit assumption of equivalent hypotheses,foe states with coinciding
supports, thereby (partially) solving another long-stagdpen problem in quantum
hypothesis testing. Just as in the case of the Chernoffriisteghe Hoeffding bound
containsy_, p(i)'~*q(i)* as a sub-expression, and the quantum generalisation of the
Hoeffding bound is obtained by replacing this sub-expsbly Tr[p! ~*c*]. The op-
timality of the bound (also called the “converse part”) wasven by Nagaoke [20],
while its achievability (the “direct part”) was found by Hashi [12]. Using the same
techniques, Hayashi also gave a simple proof of the achiéyabart of the quan-
tum Stein’s Lemma, in that same paper. In Sedfibn 5 we firshfitate and prove an
extended version of the classical Hoeffding bound, whidbwad nonequivalent hy-
potheses. Secondly, we present a complete proof of the gmarbeffding bound in a
unified way. Moreover, we derive quantum Stein’s Lemma as$ agetjuantum Sanov’s
Theorem from the quantum Hoeffding bound combined with tketioned equivalence
relation proved in([5].

2. Mathematical Setting and Problem Formulation

We consider the two hypothesék (null) and H; (alternative) that a device prepares
finite quantum systems either in the stater in the stater, respectively. Everywhere
in this paper, we identify a state with a density operatet, & positive tracé linear
operator on a finite-dimensional Hilbert spakeassociated to the type of the finite
guantum system in question. Since the (quantum) Chernsfnite arises naturally
in a Bayesian setting, we supply the prior probabilitigsand 1, which are positive
guantities summing up to 1; we exclude the degenerate eases 0 andm; = 0
because these are trivial.

Physically discriminating between the two hypothesesasponds to performing a
generalised (POVM) measurement on the quantum systemalo@nto the classical
proceeding one accepi$, or H; according to a decision rule based on the outcome
of the measurement. There is no loss of generality assurhatghe POVM consists
of only two elements, which we denote ¥¢ — 17, IT}, wherell may be any linear
operator orf{ with 0 < IT < 1. We will mostly make reference to this POVM by its
IT element, the one corresponding to the alternative hypisthiBise type-l and type-I|
error probabilitiesy and 5 are the probabilities of mistaking for p, and vice-versa,
and are given by

a := Tr[IIp)
B :=Tr[(d — I)o].

The average error probabiliy), is given by
P, = mpa+ mf = mo Tr[II p] + m Tr[(L — IT)o]. (4)

The Bayesian distinguishability problem consists in figdihe 77 that minimisesP..
A special case is the symmetric one where the prior proltiesitiy, 7, are equal.



Asymptotic Error Rates in Quantum Hypothesis Testing 7

Before we proceed, let us first introduce some basic notatilousing terminology,
we will use the term ‘positive’ for ‘positive semi-definitedenotedd > 0). We employ
the positive semi-definite ordering on the linear operator( throughout, i.eA > B
iff A— B > 0. For each linear operatot € B(H) theabsolute valueA| is defined
as|A| := (A*A)'/2. The Jordan decomposition of a self-adjoint operatds given by
A=A, — A_,where

Av= (Al +4)/2, A= (4] - 4)/2 (5)

are thepositive partandnegative partof A, respectively. Both parts are positive by
definition, and4, A_ = 0.

There is a very useful variational characterisation of thed of the positive part of
a self-adjoint operatas:

Tr[A] = max{Th[AX] : 0 < X < 1}. (6)

In other words, the maximum is taken over all positive casttve operators. Since the
extremal points of the set of positive contractive opeiatiye exactly the orthogonal
projectors, we also have

Tr[Ay] = mgx{Tr[AP] :P>0,P=P?%}. ()
The maximiser on the right-hand side is the orthogonal ptojeonto the range ofl ;..

We can now easily prove the quantum version of the NeymansBedemma.

Lemma 1 (Quantum Neyman-Pearson)Let p ando be density operators associated
to hypothesedi, and H;, respectively. Lefl" be a fixed positive number. Consider
the POVM with elementél — I7*, IT*} where IT* is the projector onto the range

of (To — p)4, and leta* = Tr[IT*p] and 5* = Tr[(1 — IT*)o] be the associated

errors. For any other POVM1 — II, IT}, with associated errorsx = Tr[I1p] and

8 = Tr[(1 — II)o], we have

a+TB>a*+TH* =T —Tr[(To — p)+].
Thus ifa < o*, theng > 5*.

Proof.By formulae [6) and{]7), for ald < IT < 1 we havelr[/I(To —p)] < Tr(To —
p)+ = Te[II*(To — p)]. In terms ofa, 5, a*, 8*, thisreadsl'(1 — 8) —a < T(1 —
5*) — o, which is equivalent to the statement of the Lemma.

The upshot of this Lemma is that the POVM. — I7*, IT*}, wherell* is the pro-
jector on the range dfl’'c — p)., is the optimal one when the goal is to minimise the
quantitya + T'5. In symmetric hypothesis testing the positive nunmbes taken to be
the ratior; /7 of the prior probabilities.

We emphasize that we have started with the assumption thathisical systems
in question are finite systems with an algebra of observaB(&$), i.e. the algebra
of linear operators on a finite-dimensional Hilbert sp&teThis is a purely quan-
tum situation. In the general setting (of statistical mests) one associates to a finite
physical system, classical or quantum, a finite-dimensieralgebra 4. Such an al-

gebra has a block representat@f:1 B(H;), i.e. it is a subalgebra d§(H), where
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H:= Eszl ‘H;. If the Hilbert space&{; are one-dimensional for all=1,. .., k, then
A is *-isomorphic to the commutative algebra of diagofiak k)-matrices. This cov-
ers the classical case. Now, in view of Lemimha 1 it becomes tiedin the context of
hypothesis testing there is no restriction assuming theaalfpebra of observables of the
systems in question 8(); indeed, the optimally discriminating projectdis® are al-
ways in thex-subalgebra generated by the two involved density opeyatando. This
implies that they are automatically elements of the algebcdaracterising the physi-
cal systems. In particular, if the hypotheses correspomaitimially commuting density
operators then the problem reduces to a classical one inetime ghat the best test
IT* commutes with the density operators as well. Hence it cdegivith the classical
ML-test, although there are many more possible test¥#) than in the commutative
subalgebra of observables of the classical subsystem.

The basic problem we focus on in this paper is to identify hbe/érror probabil-
ity P. behaves in the asymptotic limit, i.e. when one has to didodte between the
hypothesedi, and H; on the basis of a large numberof copies of the quantum sys-
tems. This means that we have to distinguish between-fioéd tensor product density
operatorg®™ ando®™ by means of POVMS1 — I1,,, IT,,} on H®™.

We define the rate limi¢; for any positive sequendeg,,) as

1
SR = nh_)rrgo (—5 log sn) ,

if the limit exists. Otherwise we have to deal with the lowedaipper rate limits
andsg, which are the limit inferior and the limit superior of theqsﬂence(—% log s,,),
respectively. In particular, we define thge-I error rate limitand thetype-Il error rate

limit for a sequencél := (I1,,) of quantum measurements (where, as mentioned, each
orthogonal projectioril,, corresponds to the alternative hypothesis) as

ar(M) = lim (—llogan) = lim (—%logTr[p@LHn]) (8)

n—oo n n—oo

Br(II) := lim (—llogﬁn) = lim (—llogTr[U®"(Jl— Hn)]) , (9
n—00 n n—00 n

if the limits exist. Otherwise we consider the limit inferand the limit superiot  (17)
andar (1), respectively. Similar definitions hold in the classicaea

3. Bayesian Quantum Hypothesis Testing: Quantum Chernoff Bund

In this section we consider the Bayesian distinguishgbgioblem. This means the
goal is to minimise the average error probabilRy, which is defined in[{(4) and can
be rewritten as?. = m; — Tr[lI (w0 — mop)]. By the Neyman-Pearson Lemma, the
optimal test is given by the projectdi* onto the range ofri0 — mp)4, and the
obtained minimal error probability is given by
Py =m —Tr[(mo — mop)+]
=m — (m — m)/2 — Tr[|mo — mop|/2]
1

=501- 7m0 —mopll1),
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where||A||; = Tr |A] is the trace norm. We will calll * the Holevo-Helstrom projector.
Next, note that the optimal test to discriminateand o in the case ofn copies
enforces the use of joint measurements. However, the pkatipermutational symme-
try of n-copy states guarantees that the optimal collective measamt can be imple-
mented efficiently (with a polynomial-size circuif)! [2], dhence that the minimum
probability of error is achievable with a reasonable amadimésources.
We need to consider the quantity

P, = (1= [|mo®" — mp®"||1)/2. (10)

It turns out thatP;,, vanishes exponentially fast astends to infinity. The theorem

below provides the asymptotlc value of the exponeﬁtlog > n» 1-€. the rate limit of
P ., which turns out to be given by thguantum Chernoff distanc@his is our main
result.

Theorem 1.For any two statep and o on a finite-dimensional Hilbert space, occur-

ring with prior probabilitiesto and 7y, respectively, the rate limit aP;,,, as defined
by (Z0), exists and is equal to the quantum Chernoff distgpee;
. 1 « 1—
lim | ——log P, | =&ocn = —log 1nf Tr( s S) . (12)
n— oo n ’

Because the product of two positive operators always hasyespectrum, the quantity
Tr[p!~%0°] is well defined (in the mathematical sense) and guarantekd teal and

non-negative for ever§ < s < 1. As should be, the expression ¢ reduces to

the classical Chernoff distanée s defined by[(R) whep ando commute.

3.1. Proof of Theorern] 1: Optimality Parin this Section, we will show that the best
discrimination is specified by the quantum Chernoff distarticat is £, g is an upper
bound on
lim sup (— l log Pe,n>
n—00 n
for any sequence of testél,,) andP. ,, := m — Tr [m10®" — mop®™].

The proof, which first appeared in [21], is essentially basedelating the quantum
to the classical case by using a special mapping from a pairofl density matrices
(p, o) to a pair of probability distributionép, ¢) on a set of cardinalityi®.

Let the spectral decompositionspéndo be given by

p= ZAlxz zil, U—Zﬂ7|yj yil,

where(|z;)) and(|y;)) are two orthonormal bases of eigenvectors &g and ()
are the corresponding sets of eigenvalues ahdo, respectively. Then we map these
density operators to th&-dimensional vectors

pij = Nl (@ily) s ai = mil(xily;) ), (12)

with 1 < 4, 5 < d. This mapping preserves a number of important properties:
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Proposition 1. Withp; ; andg; ; as defined in[(12), and € R,

Tr[p'~*0*] =Y pl%¢, (13)
i
S(plle) = H(pllg). (14)

Here,S(p||o) is the quantum relative entropy defined as

Tr[p(log p — log o)}, if Suppp < Suppo

. 15
+o00, otherwise, (15)

S(olo) = {
whereSupp p denotes the support projection of an operataand H (p||q) is the clas-
sical relative entropy, or Kullback-Leibler distance,

>, Pijlogpi; —logai;), if p<q

: 16
400, otherwise. (16)

H(lo) -~ {
Proof. The proof proceeds by direct calculation. For example:

Te[p' o] = Y A wsl(wily,) P

2%

=3 A sy ) PO () 2

]
_ 1—s s
= E:pz‘,j i,j-
i.j
O

A direct consequence of identity (13) is thaandq are normalised ip ando are.
Furthermore, tensor powers are preserved by the mappatgsttif p ando are mapped
to p andg, thenp®” is mapped tp®" ando®" to ¢=™.

Now define the classical and quantum average (Bayesiamn) obabilities P, .
andP. , as

P.o(¢,p,m0,q,m) = Y _[moe(i)p; + m1 (1 — ¢(i))a;] (17)

2

Pe,q(nvpvﬂ'()vo'vﬂ'l) = Tr[ﬂ-OHp_Fﬂ'l(ﬂ-_H)U]v (18)

wherep, ¢ are probability distributionsy, o are density matrices, ant, m; are the
respective prior probabilities of the two hypotheses. fk@nhore ¢ is a non-negative
test functior) < ¢ < 1, andIT is a positive semi-definite contractioh< I7 < 1, so
that{41 — II, IT} forms a POVM.

The main property of the mapping that allows to establisimegiity of the quantum
Chernoff distance is presented in the following Propositio

Proposition 2. For all orthogonal projectord! and all positive scalargg, 1 (not nec-
essarily adding up to 1), and fgrandq associated t@ ando by the mappind(12),

1,
Peyq(H7p777050'7 771) 2 5 Hdl)fpe-,c(qsapv 7707(]5771)7

where the infimum is taken over all test functions ¢ < 1.
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Note that we have replaced the priors by general positivlars;ahis will be useful
later on, in proving the optimality of the Hoeffding bound.

Proof. Sincell is a projector, one hall = 111 =} IT|y;)(y; |11, where the second
equality is obtained by inserting a resolution of the idgntti= >, |y;) (y;|. Likewise,

1 - IT is also a projector, and using another resolution of thetityed. = >, |z;) (x4,
we similarly getl — 17 = >, (1 — IT)|x;)(x;|(1 — II). This yields

Te[ITp] = > i Te[IT|a; ) (i ]
= > X T[T |y;) (yy [ 1T |s) (]
0.3
= > Nl ly;)I%,
0.3
and, similarly,
Te((L— M)o] = > pyl(wslL — My;) .
0.3
Then the quantum error probability is given by
P. o =noTe[IIp] + m Tr[(1 — I)o]
= moXil (@il T1y;) >+ mups |l — I Jy;) .
i.J
The infimum of the classical error probabilif . is obtained when the test functign

equals the indicator functioft = x(,,¢>n.p} (COrresponding to the maximum likeli-
hood decision rule); hence, the value of this infimum is gibgn

inf Pee = D min(iopi, 1)
2%
= min(noAi, m ;)| (i ly;) .
2%

For a fixed choice of, j, leta be the2 x 2 non-negative diagonal matrix
q.— (M 0 7
0 mpu;
and letb be the 2-vector

b= ((zi[Hy;), (zi|L — I y;)).

Thei, j-term in the sum fo?, , can then be written as the inner prodiigz|b). Sim-
ilarly, the factor|(x;|y;)|* occurring in thei, j-term in the sum forP. . can then be
written as|b; + bo|?.

Now we note thatb|b) = ||b]|3, while [by + ba|* < ||b]|3. Ford-dimensional vectors,
the inequalityl|b||> > ||b]|1/v/d holds; in our case] = 2. Together with the inequality
a > min(noA;, n1p;)1s this yields

. . 1
(blalb) > min(noXi, n1p;)(blb) > mln(’l’]oAi,’l’]lﬂj)iwl + bol?. (19)
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Therefore, we obtain, for any j,

noXi [ (@i [ I |y;) 1* + mups | (s 4 — T y;) 1 > < min(noXs, mups)| (@ |y;) |-

N =

As this holds for any, 7, it holds for the sum ovet, j, so that a lower bound for the
guantum error probability is given by

1 , 1,
Pe,q 2 5 Zmln(nopi,janlqi,j) = 5 1gf Pe,ca

2%
which proves the Proposition.O

Using these properties of the mapping, the proof of optityali the quantum Cher-
noff bound is easy.

Proof of optimality of the quantum Chernoff bouhet hypothesegi, and H,, with
priors Ty andm;, correspond to the product statg®™ ando®". Using the mapping
(12), these states are mapped to the probability distdbati®” and¢®". By Proposi-
tion[d, the quantum error probability is bounded from belew a

1
Peq(ﬂn7p®n1ﬂ—070—®naﬂ—l) S

)

ane c(¢nap 77-07(]@"777-1)' (20)

[\D

By the classical Chernoff bound, the rate limit of the rigfatad side is given by

—log inf Zplljsqf]
4,

0<s<1

(provided the priorsrg, w1 are non-zero) and this is, therefore, an upper bound on the
rate limit of the optimal quantum error probability. By Pomition[] the latter expres-
sion is equal to- log infp<s<1 Tr[p! ~*0*], which is what we set out to prove

In a similar way one can prove the converse part of the quahtaeffding bound
by relating it to the classical problem in the sensd of (12gleeady noted by Nagaoka
in [20]. This will be discussed in Sectignb.4.

3.2. Proof of Theoremnl 1: Achievability Partn this Section, we prove the achievabil-
ity of the quantum Chernoff bound, which is the statement tha error rate limit
lim,, 00 (—— log P; ) is not only bounded above by, but is actually equal to the guan
tum Chernoff dlstanceQCB This can directly be inferred from the following matrix
inequality, which first made its appearancelin [1]:

Theorem 2.Leta andb be positive semi-definite operators, then forta s < 1,

Tr[a®b' %] > Trla + b — |a — b|]/2. (21)
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Note that inequality[{21) is also interesting from a purelgtrix analytic point of view,
as it relates the trace norm to a multiplicative quantity imighly nontrivial and very
useful way.

If we specialise this Theorem to statess o andb = p, with Trp = Tro = 1, we
obtain

Qs +T>1, 0<s<1,

whereQ, := Qs(p,0) := Tr[p ~*¢*] andT := T(p,0) := ||p — o||1/2 is the trace
norm distance.

As an aside it is interesting to note that the inequality+ 7' > 1 is strongly sharp
which means that for any allowed value®Bbne can fingh ando that achieve equality.
Indeed, take the commuting density operaters: |0)(0] ando = (1 — T)|0)(0| +
T|1)(1], then their trace norm distancefis andQ; =1 —T.

Proof of achievability of the quantum Chernoff bound fronedieni2
We will prove the inequality

lim inf (—l log P;n) > &qcB- (22)
o ,

Puta = 710%™ andb = 7yp®", so that the right-hand side @f{21) turns into
(1 = [lmo®™ = mop®"|11)/2 = P,

The logarithm of the left-hand side of inequalify{21) siifipk to
log (g~ *7%) + nlog (Tr[p' ~*0]).

Upon dividing byn and taking the limith — oo, we obtainlog Q) ,, independently of
the priorsmy, 1 (as long as the priors are not degenerate, i.e. are diffr@ntO or 1).
Then [22) follows from the fact that the inequality

1
lim inf <—— log Pe*n) > —log Qs
n ;

n—oo

holds for alls € [0, 1] and we can replace the right-hand sideby: 5. O

Proof of Theorerhl2

The left-hand and right-hand sidesof{(21) look very disfmiiaut they can nevertheless
be brought closer together by expressing b — |a — b| in terms of the positive part
(a — b)+. The inequality[(2l1) is indeed equivalent to

Trla — a*b' =] < Trla — (a + b — |a — b])/2]
= Tr[(a — b+ |a—b|)/2]
= Tr[(a — b)]. (23)
At this point we mention another equivalent formulation listinequality, which

will be used later in the proof of the achievability of the gtuiam Hoeffding bound.
With IT the projector on the range 6 — b) ., we can write:

Tr[a*b' %] > Tr[ITb+ (1 — IT)a). (24)
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What we do next is strengthening the inequalityl (23) by reipits left-hand side
by an upper bound, and its right-hand side by a lower boumateSior any self-adjoint
operatorH, we haveH < H,, we can write

Tr[a _ asbl—s] _ Tr[as(al—s _ bl—s)] < Tr[as(al—s _ bl_s)+]
_ T‘I‘[GSH(S) (alfs _ blfs)]
= Te[I1®) (a — b'~*a®)],

wherell(®) is the projector on the range (' —* — b'~*) .. Likewise,
Te[IT) (a — b)] < Tr[(a —b)4],

becausér[(a — b).] is the maximum offr[II(a — b)] over all orthogonal projections
I1. Inequality [21) would thus follow if, for that particuldf *),

T[T (a — b ~%a®)] < Tr 1) (a — b).

The benefit of this reduction is obvious, as after simplifaratve get the much nicer
statement

Te[IT®b 5 (a® — b%)] > 0.

Equally obvious, though, is the risk of this strengthenibhgpuld very well be a false
statement. Nevertheless, we show its correctness below.

It is interesting to note the meaning here of this strengtigeim the context of the
optimal hypothesis test, i.e. when= ¢®" andb = p®". While the Holevo-Helstrom
projectorsil; are optimal for every finite value af, we can use other projectors that
are suboptimal but reach optimality in the asymptotic sehtgge we are indeed us-
ing 11+, the projector on the range ¢i'—*" — b'=*") ., wheres* is the minimiser
of Tr[p*~*0*] over[0, 1], if it exists. Otherwise we have to use the Holevo-Helstrom
projector.

In the next few steps we will further reduce the statemeneligrmulating the matrix
powers in terms of simpler expressions. One can immediatedprb one of them into
a andb via appropriate substitutions. As we certainly don’t wapoaver appearing in
the definition of the projectaf (), we are led to apply the substitutions

A=a'"% B=0b"% t=s/(1-5).
This yields a value of between 0 and 1 only wheh< s < 1/2. However, this is no
restriction since the case’2 < s < 1 can be treated in a completely similar way after
applying an additional substitution— 1 — s.

Inequality [21) is thus implied by the Lemma below, which gtite proof of Theo-
rem2. O

Lemma 2. For matricesA, B > 0, ascalar0 < ¢t < 1, and denoting by the projector
on the range of A — B), the following inequality holds:

Tr[PB(A" — BY)] > 0. (25)
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Proof. To deal with thet-th matrix power, we use an integral representation (see, fo
example([8] (V.56)). For scalars> 0 and0 < ¢t < 1,

sin(t +oo
at = —mn( m) / dr zt1 a .
T 0 a+x

For other values of this integral does not converge. This integral can be exérd
positive operators in the usual way:

sin(tm

+oo
Al = ) / de =" A(A+z1)~ .
0

™
To deal with non-invertibleA (arising when the states and o are not faithful), we
definelim, o A(A + z1)~! = 1.
The potential benefit of this integral representation i$ staements about the inte-
gral might follow from statements about the integrand, Wwhgca simpler quantity.
Applying the integral representation # andB?, we get

sin(tm

) [T
Tr[PB(A' — BY)] = / dr o' ' Tr[PB(A(A+ )™ = B(B+2z) 1))
0

™

If the integrand is positive for alt > 0 (it is zero forz = 0), then the whole integral is
positive. The Lemma follows if indeed we have

Te[PB(A(A+2)"! — B(B +2)"1)] > 0.

As a further reduction, we note that a difference can be eggabas an integral of a
derivative:

1
d
fla) = f(b) = f(b+ (a—1b)) — f(b) = / dt — f(b+(a—b)t).
0
Here, we will apply this to the expressiet{A+x) ' — B(B+z) . LetA = A— B.
Then
tod
A(A+2) ' = B(B+x) ! = / dt (B +tA)(B +tA+ z)~ L
0
The potential benefit is again that the required statemegitidllow from a statement
about the integrand, which is a simpler quantity provided @nable to calculate the
derivative explicitly. In this case we are not dealing withteonger statement, because
the statement has to hold for the derivative anyway (whés close toB).
In the present case, we can indeed calculate the derivative:

%(BJﬂtA)(BJﬂtAJr:z:)*1 =z (B+tA+2) " A(B+tA+2) L

Therefore,
Tr[PB(A(A+2)™' = B(B+2)™ 1))

1
::c/ dt Te[PB(B+tA+z) "A(B +tA+2)7Y].
0
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Again, if the integrand is positive fdr < ¢ < 1, the whole integral is positive. Absorb-
ing t in A we need to show, witl the projector oA, :

Tr[PBV AV] >0, whereV := (B4+ A+z)"! > 0.

After all these reductions, the statement is now in suffityesimple form to allow
the final attack. Sinc& = V! —x— A, we haveBVAV = A(V -V AV) -2V AV.
Positivity of B impliesVBV =V — VAV — 2V?2 > 0, thusV — VAV > zV?2.
Furthermore, sinc®A = A, > 0,

Tr[PBV AV] = Te[P(A(V — VAV) — 2V AV))
= Tr[A(V = VAV)] — 2 Tr[PVAV]
> 2(Tr[A, V?] — Te[PV AV)).

Becausel > P > 0, Ay, > 0,andA, > A,
Tr[A,V?] = Te[VA, V] > Te[P(VA,L V)] > Te[P(VAV)].
The conclusion is that, inde€tly[PBV AV] > 0, which proves the Lemma.O

4. Properties of the Quantum Chernoff Distance

In this Section, we study the non-logarithmic vari€yof the quantum Chernoff dis-
tancefgcen, i.e.
— 1-s5 s
Q(p,U) T OéIslfg.lTr[p o ]7 (26)
wherep, o are density operators on a fixed finite-dimensional HilbpeceH. All
properties offgcr = —log @ can readily be derived fron®. It will turn out that

£oc B is notametric, since it violates the triangle inequality, ibhas a lot of properties
required of a distance measure on the set of density opsrator

4.1. Relation to Fidelity and Trace Distanc&he Uhlmann fidelityF' between two
states is defined as

F(p,0) = [lp"20" 2|l = Tr[(p"/?ap"/?)1/2]. @7

Here, the latter formula is best known, but the first one iseeand makes the sym-
metry under interchanging arguments readily apparent.Utlenann fidelity can be
regarded as the quantum generalisation of the so-calldahged affinity [25] defined
asB(po,p1) = Y, v/po(i)p1(i), wherep, andp, are classical distributions. It is an
upper bound ord), which can be shown as follows. By definition, for any fixedueal
of s € [0,1], Qs = Tr[p!~*0*] is an upper bound 0. In particular, this is true for
s = 1/2. Furthermore, by replacing the trace with the trace nprrif,, we get an even
higher upper bound. Indeed,

Q < Te[p"/26" %] = | pY16 2014 |, < ||p/26V/2|, = F. (28)

In the last inequality we have used the fact ([3], Prop. 1X)1hat for any unitarily
invariant norm|||AB||| < |||BA]|| if AB is normal. In particular, consider the trace

norm, withA = p'/4¢/2 andB = p'/*.
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For a pair of density operators the trace distafide defined by

1
T(p,o) = 5llp = ol
Fuchs and van de Graaf [10] proved the following relatiomieen 7" andT":

1-F)??<T?<1-F2 (29)
Combining this with inequality(28) yields the upper bound
Q*+T*<1. (30)

Recall the relation — T' < @, following from Theorem 2. Then combining everything
yields the chain of inequalities

1-V1-F2<1-T<Q<F<+1-T2 (31)
There is a sharper lower bound @hin terms of ', namely
F?<Q. (32)

This bound is strongly sharp, as it becomes an equality wherobthe states is pure
[18]. Indeed, fop = |+)) (x|, the minimum of the expressidir|[p! ~*5*] is obtained for
s = 1 and reduces t¢|o|v), while F' is given by the square root of this expression.
We prove[(3PR) in AppendikA, where we also give an alternapinaof of the upper
bound@ < /1 — T2. Both proofs go through in countably infinite dimensions.

4.2. Range of). The maximum valu&) can attain is 1, and this happens if and only
if p = o. This follows, for example, from the upper bou@d + 72 < 1. The minimal
value is 0, and this is only attained for pairs of orthogonales, i.e. states such that
Tr po = 0. Consequently the range of the Chernoff distand@,isc] and the infinite
value is attained on orthogonal states; this has to be siattavith the relative entropy,
where infinite values are obtained whenever the states hdifiegent support.

4.3. Triangle inequality.As already mentioned, on the set of pure states we have the
identity @ = F2. The Uhimann fidelityF does not obey the triangle inequality; how-
ever it can be transformed into a metric by going ovesit@:os F', while the Chernoff
distance on pairs of pure states is equalder = —log Q = —2log F..

When considering the triangle inequality féc 5, one should note first that in
the classical case, the classical expresgiop should be expected to behave like a
squaredmetric, similarly to the relative entropy or Kullback-Légl distance. Indeed
consider two laws from the normal shift family (u, 1), ¢ € R; then it is easy to see
thatécp = (1 — ;LQ)Q /8. Thusécp defines a squared metric on the normal shift
family, which will not satisfy the triangle inequality due the square, buy/¢c g will.
However/£cp does not satisfy the triangle inequality in the general casesee this,
let Be(e) be the Bernoulli law with parametere [0, 1]. Some computations show that
¢op (Be(1/2), Be(e)) — log2 andécp (Be(e), Be(l —¢)) — oo ase — 0. As a
consequence we have, fosmall enough,

dp (Be(e), Be(1 =) > &/ (Be(e), Be(1/2)) + &5 (Be(1/2), Be(1 — <))
contradicting the triangle inequality.
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4.4. Convexity of), as a function ok. The target function — Q. = Tr[p*~*c*] in
the variational formula definin@ has the useful property to be convexsire [0, 1] in
the sense of Jensen’s inequaliy;,, ; (1—¢)s, < tQs, + (1 —1)Qs, forall t € [0, 1].
This implies that a local minimum is automatically the glbds@e, which is an important
benefit in actual calculations.

Indeed, the function — x!~%y* is analytic for positive scalarg andy, and in
this case its convexity may be easily confirmed by calculatire second derivative
x17%y*(logy —log z)?, which is non-negative. If one of the parameters, sdyappens
to be0, thens — 1 ~%y* is a constant function equal tofor s € [0, 1) and equal to
1 ats = 1. Hence, it is still convex, albeit discontinuous. Consittean a basis with
respect to which the matrix representatiorpa$ diagonal

p = Diag()\l, AQ, . )
Let the matrix representation ef(in that basis) be given by
o = U Diag(u1, po, ... ) U™,
whereU is a unitary matrix. Then
Te[p' 0] = > AU
ij

As this is a sum with positive weights of convex terods‘suj, the sum itself is also
convex ins.

4.5. Joint concavity of) in (p, o). By Lieb’s theorem[[10]Tr[p!~*c*] is jointly con-
cave on pairs of density operatdys o) for each fixeds € R. Since( is the point-wise
minimum of Tr[p!~%c*] overs € [0, 1], it is itself jointly concave as well. Hence the
related quantum Chernoff distance is jointly convex, jiks the relative entropy.

4.6. Monotonicity under CPT map&rom the joint concavity one easily derives the
following monotonicity property: for any completely pdsé trace preserving (CPT)
map® on theC*-algebral53(H) of linear operators, one has

Q(2(p), P(0)) =z Q(p,0). (33)

To prove this, one first notes th@tis invariant under unitary conjugations, i.e.

QUPU",UcU") = Q(p,0).

Secondly( is invariant under addition of an ancilla system: for anysigroperatorr
on a finite-dimensional ancillary Hilbert space we have trentity

QlpeT1,007)=Q(p,0).

This is becausr([(p @ 7)!7%(c @ 7)°] = Tr[p'~*c*] Tr[r]. Exploiting the unitary
representation of a CPT map, which is a special case of thes@iiing form, the mono-
tonicity statement follows for general CPT maps if we carnvprib for the partial trace
map. As noted by Uhimann [Z26, 7], the partial trace map can bigew as a convex
combination of certain unitary conjugations. Monotonjiaf ¢ under the partial trace
then follows directly from its concavity and its unitary anance.
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4.7. Continuity. By the lower bound) + 7' > 1, the distance measurés— ) and
£ocp are continuous in the sense that states that are close mdisiance are also
close w.rt.l — @ and w.r.t.{gep. Indeed, we have < 1 — Q < T andégep =
—logQ < —log(1 —=T) =T+ O(T?).

4.8. Relation of the Chernoff distance to the relative gutran the classical case there
is a striking relation between the Chernoff distaieg and the relative entropf (- ||-).
It takes its simplest version if the two involved discretelpability distributiong and
¢ have coinciding supports since ther- log >~ p'~*(2)¢*(z) = log @, is analytic
over|0, 1] and its infimum, which defines the Chernoff distance, may lt&ined simply
by setting

0= (log Qs)" = H(ps|p) — H(pslla)
(the prime denotes derivation w.rs). Here

1-s,s

- p' g
Ty (@)t (w)

defines a parametric family of probability distributiongarpolating betweep andq as
the parametes varies between andl. In the literature, this family is called Hellinger
arc. It follows that the minimises™ € [0, 1] is uniquely determined by the identity

H(ps-lla) = H(ps-|p)- (34)
Furthermore, for any € [0, 1] we have:
H(ps|lp) = s(log Qs)" —log Qs, (35)
and similarly
H(psllq) = —(1 = s)(log Qs)" — log Qs (36)

This may be verified by direct calculation using essentitily identitylogp!=¢® =
log p'=* + log ¢°. For the minimises* the formulas[(3b) and (36) reduce to

H(ps+|lp) = H(ps+|lq) = &cB(p,q)- (37)

In the generic case of possibly different supports ahdq one has to modifyi(34) and
(32) slightly, seel[22].

It turns out that in the quantum setting the minimisere [0, 1] of inf¢ (o 1) log Qs
can be characterised by a generalized versidn ¢f (34). Hexviae surely more remark-
able relation[(37) between the Chernoff distafigg and the relative entropy seems to
have no quantum counterpart.

We assume again that the involved density operatarsdo both have full support,
i.e. are invertible. Ther), = Tr(p'!~*0*) is an analytic function ovejo, 1] and its
local infimum over0, 1], which is a global minimum due to convexity, can be found by
differentiating@s w.r.t. s:

8 —S8 __S —S S —S S
== Tr[p'*0°] = = Tr[(log p) p' > 0°] + Tr[p'~* o° log o]

ds
= —Tr[p' ™% 0° log p] + Tr[p' =% o° logo]. (38)
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The infimum is therefore obtained for are [0, 1] such that
Tr[p' ~*0* log p] = Tr[p' *o* log o).
This is equivalent to the condition

S(psllp) = S(ps||o), (39)

whereS(p||o) denotes the quantum relative entropy definedby (15)arid defined
as
1—s s

p S0
’I‘r[pl—sas] '

Note thatp,, with s € (0,1), is not a density operator, because it is not even self-
adjoint (except in the case of commutipgando). Nevertheless, as it is basically the
product of two positive operators, it has positive spectramd its entropy and the
relative entropies used ih (89) are well-defined. The vafuefor which both relative
entropies coincide is the minimiser in the variational egsion[(2b) foQ.

The family ps, s € [0, 1], can be considered as a quantum generalisation of the
Hellinger arc interpolating between the quantum statasdo, albeit out of the state
space, in contrast to the classical case.

When attempting to generalise relatiénl(37) to the quanttting) one has to verify
(39) or [36) with density operatogs o replacing the probability distributions ¢. This
would require the identit§lr ps log p* ~*0* = Tr p,(log p' ~* + log o) to be satisfied.
However, this is not the case for arbitrary non-commutativesity operatorg, o. Thus
the second identity i (37) seems to be a classical specialaaly.

Ps = (40)

5. Asymmetric Quantum Hypothesis Testing: Quantum Hoeffdhg Bound

In this Section, we consider the applications of our techegpresented in Sectibh 3
to the case of asymmetric quantum hypothesis testing. M@eigely, we consider a
guantum generalisation of the Hoeffding bound and of Stdiemma.

5.1. The Classical Hoeffding Boundhe classical Hoeffding bound in information
theory is due to Blahut [6] and Csiszar and Longo [9]. Theesponding ideas in statis-
tics were first put forward in the papér [16] by W. Hoeffdingyrh which the bound got
its name. Some authors prefer the more complete name of diogfBlahut-Csiszar-
Longo bound. In the following paragraph we review the bassults in Blahut's termi-
nology; at this point we have to mention that many differestational conventions are
in use throughout the literature.

Letp be the distribution associated with the null hypothesid,gtiie one associated
with the alternative hypothesFollowing [6], and for the purposes of this discussion,
we initially assume thap andq are equivalent (mutually absolutely continuous) on a
finite sample space. The Hoeffding bound gives the best exg@i convergence rate
of the type-I error under the constraint that the rate lirhihe type-Il error is bounded
from below by a constant, i.e. when the type-Il error tends to O sufficiently fast.

1 In[6], the null hypothesis corresponds My, with distributiongs,
and the alternative hypothesis & , with distributiong; .
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Blahut defines therror-exponent functior(r), » > 0, with respect to two prob-
ability densitiesp and ¢ with coinciding supports, as a minimisation over prob&pili
densitiest:

e(r) = inf{H (z|p) : H(z|q) <7}, (41)

whereH (-||-) is again the classical relative entropy definedlid (16). Tisimisation
is a convex minimisation, since the target function is carimer, and the feasible set,
defined by the constraidf (x||q) < r, is a convex set. Pictorially speaking, the optimal
x is the point in the feasible set that is closest (as measurdtebrelative entropy)
to p. If p itself is in the feasible set (i.e. il (p||q) < r), then the optimak: is p, and
e(r) = 0. Otherwise, the optimat is on the boundary of the feasible set, in the sense
that H(x|q) = r, ande(r) > 0. Obviously, ifr = 0, the feasible set is the singleton
{q}, ande(r) = H(q|[p).

The error-exponent function is thus a non-increasing, erriunction ofr > 0,
with the properties that(0) = H(q||p) ande(H(p||q)) = 0. It can be expressed in a
computationally more convenient format as

_ —1 s, 1—s
e(r) = sup rs — 1083 Gips (42)

0<s< 1 1-s

An example is shown in Figufé 1.

Lety = (¢,,) be a sequence of test functions. Recall the notatign(®) andSr (¢)
introduced in Sectionl 2 for the rate limits (if they exist)tbé corresponding type-1 and
type-Il errors, respectively:

an(9) = Tim ~logan(9), fa(d) = lim — log f(0)

n—00 n
Then the classical HBCL Theorem can be stated as follows.

Theorem 3. (HBCL) Assume thap, ¢ are mutually absolutely continuous. Then for
eachr > 0 there exists a sequengeof test functionsp,, such that the rate limits of
the type-1l and type-I errors behave lik(¢) > r andagr(¢) = e(r). Moreover, for
any sequence such thatwv (¢) and8r(¢) both exist, the relatiomz(¢) > r implies
ar(¢) <e(r).

We remark that for sequencef test functionsp,, for which the rate limitsyz (¢)
or Br(¢) do not exist, the result still applies to subsequeriggs) along which both
error rate limits exist. The second part of the HBCL theorsithus a statement about
all accumulation points of— 1 log a, (¢), — < log 3, (¢)) for an arbitrary test sequence

o.

Referring to Figuré]l, the claim of this Theorem is that foy @equence of test
functions¢ the point(Sr(¢), ar(¢)) cannot be above the graph ef-) overr > 0
and for any point on the graph over> 0 one can find a sequenge SinceSr(¢) = 0
may correspond to the case wheigb,,) vanishes subexponentially slowly as well as
converges to a positive value, a rate limit of type-1 ery(¢) larger thane(0) =
H(q||p) is achievable.

The caseSr(¢) > r > H(p|lq), wheree(r) = 0, can be shown to correspond
to a(¢,,) converging tol, rather than td. (This is basically the content of the so-
called ‘Strong Converse’.) In the ca8e(¢) = H (pl|/q) a convergence af(¢,,) to0is
achievable, albeit only subexponantially slowly (this ieedo Stein’s Lemma.)

Note that in order to obtain a bound @ under a constrainedg one just has to
interchange andq in the Theorem.
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e(r)

DO e

¢ <— H(al p)
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Fig. 1. (Color online) Example plot of the error-exponent functigir), eq. [42), for the distributiong =
(0.95,0.05) andg = (0.5,0.5). The thick (red) line is the graph ef(r), while the thin (blue) lines are
instances of the linear functiofi-rs — log >, qZpi’S)/(l — s) for various values o, of which e(r)
is the point-wise maximum. For the chosgrand g, the value ofH (p||¢) = 0.49463 and the value of
H(q|lp) = 0.83037.

5.2. Nonequivalent hypotheseBhe Chernoff and Hoeffding bounds have typically
been treated in the literature under a restrictive assumphiat hypotheses, ¢ are
mutually absolutely continuous (equivalent), cf., e.datit [€]. As a prerequisite for
a quantum generalisation, unless one wants to limit onasédithful states, one has to
understand the classical Hoeffding bound for nonequivdigpotheses. For the Cher-
noff bound, a corresponding discussion can be found_in [2#jomt restrictions on
the underlying sample space. Here we limit ourselves tcefisatmple spaces, thereby
excluding infinite relative entropies for equivalent maasy, .

For probability measures ¢ on a finite sample spac@, let D, be the support of
p, D1 be the support of andB = Dy N D;. Letyy = p(B), 1 = ¢(B) and note
thatvy > 0,11 > 0 unless the measuresq are orthogonal (which we exclude for
triviality). Define conditional measures giventhe 8etp (-) = p (-|B), ¢ (*) = ¢ (*| B).
Note thatp, ¢ are equivalent measures; we may have §. We consider hypothesis
testing for a pair of product measung®”, ¢=.

Recall that a (nonrandomised) test is a mapping 2" — {0,1}. In our setting,
only observations in eithedi or D} can occur, so we will modify the sample space to
be DU Dy. We will then establish relation of tests, in the original problempy®” vs.
¢®™ to tests in the ‘conditional’ proble@®” vs. G®", i.e. to testsp,, : B" — {0,1}.
Call a testp,, null admissible if it takes valué on D§ \ B™ and valuel on D} \ B".
These tests correspond to the notion that if a point in theosaspace?2” is not in B™,
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then it identifies the hypothesis errorfree (eitheor ¢). We need only consider null
admissible tests; for any test there is a null admissiblevéh equal or smaller error
probabilitiesa,,, 8,. The restrictionp,,| B™ gives a test orB™, i.e. in the conditional
problem.

Lemma 3. There is a one-to-one corresppndence between null adri@gsistse,, in
the original problenp®” vs.¢®" and testsp,, in the conditional problem®™ vs.g®",
given bye,, = ¢,,|B™. The errror probabilities satisfy

@ (9) = e (8) . Ba (6) = w118 (4)
wherey, = p(B) andyy = ¢(B).

Proof. The first claim is obvious, if one takes into account that wektall tests in the
original problem to be mappings, : DjuU D} — {0,1}. For the relation of error
probabilities, note thai®"(A) = ¥§p®" (AN B™), A C D§U D} and therefore

an (¢) = /¢ndp®” = [ ¢,dp®" (by null admissibility)
BTZ

0§ [0udp™ = [ Gudp®" = v (3)

B’Vl
and analogously fo8,, (¢). O

This result already allows to state the general Hoeffdingrlokin terms of the error-
exponent function for the conditional problem

~1—s

—_ —1 s
é("’) = sup s Olg Zk qkpk
0<s< 1 - S

Indeed, rate limitsxr(¢) and3r(¢) for a null admissible test sequengexist if and
only if they exist for the corresponding test sequencand

an (¢) = —logvo+ar (9) . Or(6) = —logt + 6r (6) . (43)

Proposition 3. Letp, g be arbitrary probability measures on a finite sample space.
(i) (achievability) For eachr > —log 1 there exists a sequengeof test functions,,
such that the rate limits of the type-Il and type-I errors heé like 5 (¢) > = and
ag (¢) = —log g+ é(r+log ). Forthe casd < r < —log v, there is a sequence
¢ of test functiong,, obeying—n~"'1log 3, (¢) = —logvy anda,, (¢) = 0 for every
n.

(i) (optimality) Consider any sequenegesuch thatar(¢) and Sr(¢) both exist. If
r > —log )y then the relation3g(¢) > rimpliesag(¢) < —logg + é(r + log ).

Note that in (ii) the omission of the case< r < —log; means that there is no
upper bound omvz(¢), as shown by the achievability part£ (¢) has to be set equal
to oo for a test of vanishing error probability;,).



24 K.M.R. Audenaert, M. Nussbaum, A. Szkota, F. Verstraete

Proof. (i) Assumer > —logt and take a test sequengg in the conditional prob-
lem 5®" vs. §®" such that3z(¢) > r + log1 andagr (@) = é(r + log ), which
exists according to the HBCL theorem singg] are mutually absolutely continuous.
According to Lemma3, the corresponding null admissibl¢ #essatisfies[(413) and
hencefr (¢) > r andagr (¢) = —logvy + é(r + logt1). Furthermore, consider
the testp, = 0 in p®" vs. ¢®". This hasa,(¢,) = 0 andB,(¢,) = 1, hence the
corresponding null admissible test hasa., (¢,,) = 0 andg,(¢,) = Y.

(i) Using a reduction to the conditional problei®” vs. §®" similar to the one
above, the optimality part also follows immediately frone tHBCL theorem. O

Remark:Consider the dual of the test used in the second part ofgi}thie null admissi-
ble extension of the test, = 1. This one obviously has,, (¢) = g andB,(¢) = 0. 1t
can be used for achievability for largei.e. it hasGr(¢) = co andag(¢) = — log ¢y.

It is possible to obtain a closed form expression for the Fied bound, using the
error-exponent function defined for> 0 exactly as in[(4R), for the case of nonequiva-
lentp, ¢q. The difference is that we now have to admit a value for certain arguments.

Lemma 4. For generalp, g, the error-exponent functios(r) satisfies

_ J —logto + é(r +logepr), forr < —login
e(r) = 0, for0 <r < —logs.

Remark:For two distinctp, ¢ it is possible thap = ¢. In that case(r) = 0 for » > 0.

It follows thate(r) = oo for r < —logy; ande(r) = —log for r > —log ;. This
case will be relevant in the quantum setting when the hysetheill be represented by
two non-orthogonal pure quantum states.

Proof. Assumer > — log; and set
—rs —log Qs
1—5
whereQ, = 3, pr °¢;. LetQ, = 3, i *G; and noteR, = 4“3 Q,. Hence
—rs — (1= 5)log ¢ — slog ¢y — log Qs
1—s

—(r +log11)s — log Qs
1—s

es(r) =

es(r) =

= —logto + = —log o + és(r + logy)
whereé; is the analogue of the functian (r) with @ replaced b)@s. Sincee(r) =
supg<,< 1 €s(r) and the analogue is true fér andé, the claim follows in the case
r > —log.

Assume now) < r < —logty andyy < 1, i.e.—logyy > 0. Clearly we have
Qs — Y1 ass /1, hence—rs —logQs — —r —logyy > 0 ass / 1. Hence
lim, ~1 e4(r) = oo, and sincex(r) = supg<,. 1 es(r), we also have(r) = co. O

In conjunction with Proposition]3 we obtain a closed formatiggion of the Ho-
effding bound for possibly nonequivalent measyrag in terms of the original error-
exponent functiom(r).

Theorem 4.Let p, g be arbitrary probability measures on a finite sample spadenT
the statement of the HBCL Theorem (Theokém 3) is true, wierestror-exponent
function defined iM{42) obey$r) = co for0 < r < —log if 11 < 1.
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We noted already that fefr) = oo, the bound omvz(¢) is achievable in the sense that
a test exists having exactty, (¢) = 0 for all n.

Using the properties of the rate functiérpertaining to equivalent measurgsj,
as illustrated in Figur€ll, and the representation of Lerlmee 4btain the follow-
ing description of the general rate exponent function. I ititerval[0, — log ) it
is infinity. At r = —log1); it takes valuee(r) = —logwo + H(q||p) = H(q||p)-
Forr > —log1 it is convex and non-increasing. More precisely, over theriral
[—log vy, —logyy + H(p||G) = H(p|lq)] e(r) is convex (even strictly convex) and
monotone decreasing. Over the intefi#d(p||q), oo) it is constant with value- log v.

A visual impression can be obtained by imagining the origifigurel shifted to the
point (— log 41, — log ). This picture will explicitly appear in Figurg 2 below, in a
situation further generalized to two quantum states witfeint supports.

5.3. Quantum Hoeffding Boundn the quantum setting the error-exponent function
e(r) has to be replaced by a functieg : Rj — [0, oo] given by

—rs —logTropt—*
eq(r) = Oiugl s . (44)

In view of PropositiofifL¢ (r) coincides with the error-exponent functiefr) for the
pair of probability distributiongp, q) associated witllp, o) via relation[[12). Therefore,
we can use Lemnid 4 to describe properties of the funetign), or the remarks after
Theoreni 4.

Recall that for a pai(p, ¢), we defined a related pair of probability distributions
(p, ¢) by conditioningp andq, respectively, on the intersectidh = Dy N D of the
two support setd), and D4, and alsapy = p(B), ¥1 = ¢(B). In the present context,
in accordance witH{12) we have

DOZ{(Z,])lgl,]§d7 /\l>0}a Dlz{(l,])lgl,]§d7 :u7>0}

Let, as beforei(r) be the error-exponent function pertaining to the faig) according
to (42). Then the quantum error-exponent functigrir) for the hypotheseg, o may
be represented simply by

_ | —logto + é(r +logey), forr < —logyn
eq(r) =e(r) = {oo7 for0 <r < —logs. (45)

It obtains its characteristic properties from the cladsioaction being convex and
monotone decreasing in the interyallog vy, H(p||q)] with e(—logvn) = H(q||p),
and constant with value log v, in the interval H (p||q), co).

Lemma 5. Let suppp, suppo be the support projections associated witlr. Then the
critical points and extremal values ef, () may be expressed in a more direct way in
terms of the density operators:

Yo = Tr[psupp o], 1 = Trlo supp p

and

H(pllg) = Ss(pllo)  H(qllp) = Sp(ellp),
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where the entropy type quantities on the right-hand sidedafened as

So(pllo) :==Tr [% (log % —log 0) supp 0] ,

ag ag
(ol =T | 2 (1og - ~ togp ) supp .

Proof. Note that forB = Dy N D, we have

= > Nil{@ily)? —ZA sen(py) |(ily;)|*

(i,j)€B

—Z/\ (xilsgn(py)y;)| Z)‘ SuppU)yJ>|

—Z/\ (supp o) z4|y;)|? —Z/\ l[(supp ) a]|* =

=Tr [ > i |(supp o) z;) ((supp o) ;| | = Tr[p supp o]
and analogously fop; . Furthermore

Di.j Ai
H(pllq) = Z i jlo 1_7 = Z Ai [(@ily;) | —10g

(i,5)€B J (”)eB 1150

= sen(uy) [(@:]y;))? —1 %—Zbgn 1) (@ily;) |
@]

=Tr {E (1og E) supp p] —Tr {E (log p) supp p}

where the third equality is analogous to the calculatiorhim pproof of Propositiof]1.
O

2 Ai log w5
1/10 g Uy

To shed some light on the entropy type quanfify(p||o), note that it may be rewritten
as a difference of usual (Umegaki’s) relative entropies:

p P p
Sa(pllo) = S(-suppal|o) — S(suppol| 7).

This may be verified by direct calculations similar to thas¢hie proof of LemmaAl5.
The linear operatorj—osuppcr is a kind of conditional expectation @f While it is
not self-adjoint, the relative entropies on the right-haide are well defined (in a math-
ematical sense) and real: first, the entropyfgi;uppa is defined in terms of its spec-
trum, which is positive and normalised to 1, hence givinga, ngositive entropy, and
secondIr[p suppo log(p)] can be written adr[suppoplog p supps], from which it

is evident that this term is also real.

It is easily seen from the above formula ti$gt(p||o) coincides withS(p||o) if o is
a faithful state, or more generallysfipp p < supp o. OtherwiseS(p|lo) = oo, while
So(pllo) is finite.
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e(r)

Mp\vY vy

—log o

—log ¢y So(pllo)

Fig. 2. Example plot of the quantum error-exponent functiey(r) in the general case.

Note also thatS,(c|lp) > —logvo and equality holds if and only if it holds in
Ss(pllo) > —logy. This immediately follows fromS,(o||p) + logyo = H(p||q),
which is seen from Lemnid 5. This happens in particular if hagindo are pure states.

In this case there is only one pair, j) where both\; > 0 andu; > 0, hence the set
B consists of one element only. In this case we must liave ¢, henceH (p||¢) =
H({|p) = 0.

The general shape of the quantum error-exponent funetign) is represented in
Figure[2. If bothp and o are pure states then the shape degenerates to ‘rectangular’
form (eq(r) = oo Oreg(r) = —logyn).

A quantum generalisation of the HBCL Theorem then reads|ss.

Theorem 5. (Quantum HBCL)For each > 0 there exists a sequendé of test pro-
jectionsII,, onH®" for which the rate limits of type-1 and type-II errors behdile
ar(IT) = eg(r) and Sr(II) > r, respectively. Moreover, for any sequerigesuch
thatar (17) and Br (1) both exist, the relatioz (II) > r impliesar (11) < eq(r).

The statement of the quantum HBCL Theorem is that for evequeecell (for
which both error rate limits exist) the poiftr (I1), «r(II)) lies on or below the curve
eq(r) over(0, oo, and for every point on the curve over the closed intefalo] there
is a sequencél achieving it.

We remark that, just likd(37), the relationshipl(41) seemisave no general quan-
tum counterpart, even when both states are faithful. Inrottoeds, there is no known
subset of linear operatorswith positive spectrum such thag(r) = inf, {S(7]|p) :
S(t|lo) < r}.

To prove the quantum Hoeffding bound, the following lemmasreeeded.

Lemma 6. For scalarsz,y > 0, bounds orog(x + y) are given by

max(log z,logy) < log(z + y) < max(logz,logy) + log 2. (46)
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Proof. For the first inequality, put = e* andy = €%, and note

log(e® + €b) = a + log(1 4+ €*~9)
> a+ max(0,b— a)

= max(a, b).

The second inequality follows directly from the fact tha¢ tbgarithm increases mono-
tonically, so thatog((x + y)/2) < log max(z,y). O
A direct consequence of this Lemma is

Lemma 7. For two scalar sequences,, y,, > 0 with rate limitsz g andyg, the rate
limit of =, + v, is given by

1
lim —— 1Og(xn + yn) = min(xR, yR)' (47)
n

n—oo

5.4. Proof of Optimality of the Quantum Hoeffding Bourtjain we use the mapping
from the pair(p, o) to the pair(p, ¢), so that, by Propositidnl 2(r) = eq(r). From
Propositio 2 we have that for any sequeiitef orthogonal projectiongr,, and for
any real value of the scalaf, for all n € N one as

o) + BT 2 5 (a(60) + € B(60))

whereg,, are classical test functions corresponding to the maxiniketitood decision
rule, cf. the proof of Propositidd 2. Recall that the typextidype-II errors are defined
asa(gn) =32, pi'dn(i) @andB(on) = 32, ¢i' (1 — ¢n(i)).

On taking the rate limit on the left side, this gives

lim 1 log (a(ﬂn) + e_"””ﬁ(ﬂn)) < lim inf 1 log (a(¢n) + e_mﬁ(@l))
n—00 n n— oo n
By possibly taking a subsequence, we can ensure that thémiteea z (¢), 5(6,) also
exist. By Lemm&l7, the above simplifies to

min(ag(I1), z + Br(I)) < min(ar(9),  + Br(¢))- (48)

Assume now thaBir(¢) < —logn. Then, by selectingg < 0 and|z| sufficiently
large, we obtain+ g (IT) < z+Fr(¢) and henc@r(II) < —log . Sinceeg(r) =
oo for r < Br(IT) < —log; according to the discussion above Lenitha 5, the claim
ar(IT) < eg(r) holds trivially. Henceforth we assume that(¢) > — log 1.

From the classical HBCL Theorem (more precisely, from Tee®4d), the right-hand
side of [48) is bounded above hyin(e(r), z + Br(¢)), for anyr with — log iy < r <
Br(¢). Note thate(r) is continuous forr > —log; (since it is monotonely nonin-
creasing and convex). By letting,” 3r(¢) we obtain an upper boundin(e(r), x+r)
with r > —log .

We can now prove the optimality part of the quantum HBCL Tleemrusing only
this upper bound plus the fact th&t) is monotonously decreasing.

The upper bounéhin(e(r), x + r) holds for some particular value We will find a
further upper bound by maximizing over> — log ;. For this we have to distinguish
two cases, depending on the valuerof
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a) Atr = —logy; we havee(r) > x + r. Sincee(r) is decreasing i and
continuous, and: + r is increasing, the maximum afiin(e(r),z + r) is obtained
whene(r) = x + r. Letr*(x) > —logn be the solution ofc + r = e(r). We now
have that for any sequence of quantum measureniérasd for any real value of the
scalarz,

min(ag(IT),z + Br(Il)) < x4+ r*(x) = e(r*(z)).

b) Atr = —log vy we havee(r) < z+r. Again by the properties ef(r) andz +r,
the maximum ofmin(e(r), z + r) is e(r*) is attained for*(z) = —log;. We then
obtain the upper bound

min(ar(),z + Br(I)) < e(r*(z)).
Now setx = agr(IT) — Br(II), then both inequalities above yieldz (I1) < e(r*).
Assumer < (r(IT); we intend to show that this impliesg(I7) < e(r). Indeed, in
both cases a) and by is such that
e(r Y <ax+r*=ar(ll)—prI)+r* <ag(Il)—r+r*

hencer* —r > e(r*) — ar({I) > 0. Therefore, from the monotonicity of the error-
exponent function follows(r*) < e(r) and we finally obtairxg (I7) < e(r) = eq(r).
O

5.5. Proof of Achievability of the Quantum Hoeffding Boudhe proof of achievabil-
ity is mainly due to Hayashi([12], who used inequalifyl(24hieh is obtained as a
byproduct of the proof of Theorenh 2. However, we modify it igog any implicit as-
sumption that the involved quantum states are faithfulckeme prove Theoref 5 in
full generality, which includes for example the case of tvem+orthogonal pure states.
Let us fix an arbitrary € (0, 1), and set
a=e "8 (49)
b= p®", (50)
where the value of will be chosen in due course. Consider the sequence of POVMs
{(1- 11, IT,,) } with II,, the projector on the range &f — b) ;. ; again element — I7,,
is assigned to the null hypothesi$™, and elemenfl,, is assigned to the alternative
hypothesisz®™. We will show that this POVM asymptotically attains the Huolgig
bound.
Recall that inequality(24) states
Tr[a®b' ] > Tr[IIb + (1 — IT)a).
By positivity of Tr[/7b] andTr[(1 — IT)a], this implies the two inequalities
Tr[ITb], Tr[(1 — IT)a] < Tr[a®b' %]
These vyield the following upper bounds on theand 5 errors of the chosen POVM
(recallQ, = Tr[p!~*0?)):
Bn(l3) = Tr[(1 — )0 "]

=" Tr[(4 - I1,,)a)

S enz TI,[asblfs]

_ enz(lfs)Q;L

= exp[n(z(1 — s) + log Q)] (51)
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an () Tr[an®”]

[11,,0]

[asbl—s]

e QL

expln(—xs + log Qs)]. (52)
Choosingr such that:(1 — s) + log Qs = —r then yields, from[(5]1),

ﬁn (Hn) S eXp(_nT)a

Tr
Tr

IN

and from [52),

an(nn) S exp (—TL (_S% - log Qs))

< exp(—neq (r)),

where in the last inequality we have used the fact that tharpaters was arbitrarily
chosen from0, 1).
Thus, for the rate limits we get

BR > r, QR > BQ(T).

The optimality, proven in the previous subsection, stdtattr < eq(r) if 5r = 7.
Furthermore, sinceg(r) is a non-increasing functiomr < eq(r) if Sg > r. This
implies that for the chosen sequence of POVMs

Br=r, oar=ceq(r)

must hold, which proves that the Hoeffding bound is indeésmirzéd. O

5.6. Quantum Stein’s Lemma and quantum version of Sanogtr@im. The quantum
generalisation of Stein’s lemma deals with the asymptaticke error quantity

Br(€) = %lf{ﬁn(nn) san () < 5}7 (53)

for fixed0 < e < 1. Here, the infimum is taken over all positive semi-definitatcac-
tionsII,, on H®™,

Quantum Stein’s Lemma states that the rate liftfi{c) of the sequencég; (¢))
exists and is equal t8(p||o), independently of. It was first obtained by Hiai and Petz
[15]. Its optimality part was then strengthened by Ogawaldagaoka in[[24].

Here we use the quantum HBCL Theorem to prove that the relatitropyS (p||o)
is an achievable error rate limit and deduce optimality &f Hound from Proposition 1
in [5].

Proof of the quantum Stein’s lemm&ke need to show that there is a sequefcwith
a(IT,,) < e achieving8g(II) = S(p||o). Letn > 0 be small and set = S(p||o) — 7.
Achievability of the quantum Hoeffding bound means that quesicell exists for
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which 8r > r andag = eq(r). Sinceeg(r) > 0 forall r < S(p||o) andn > 0, the
sequencey,, convergesto 0. Thus, from a certain value.a@nwards,, will get lower
than any value > 0 chosen beforehand. This means thats a feasible sequence in
(53) for n large enough, exhibitingr(¢) > r = S(pllo) — n. As this holds for any
n > 0, we find thatsy (e) > S(pl|o).

With 83 (e) > S(p||o) the two hypotheses associated to the pair of density opsrato
(p, o) satisfy the HP-condition in the terminology of the paper [Hjus Proposition 1
in [5] implies 55 (e) = S(pllo). O

We remark that in [5] the HP-condition was introduced fod@ned) pairg?, &) of
arbitrary correlated states on quantum spin chains, whilkee present paper only den-
sity operators of the tensor-product fopfi™ have been considered. These correspond
to the special case of shift-invariant product states orirtfieite spin chain (quantum
i.i.d. states). A paif?, @) is said to satisfy the HP-condition if the relative entropter
s([|®) exists and is a lower bound on the lower rate ligfjf(<) for all e € (0, 1).

Specifically to our setting (the i.i.d. case), Theorem 1 Jrsfates that the achievability
part in quantum Stein’s Lemma (the HP-condition) is eq@mato a quantum version
of Sanov’s theorem, which has been presentedlin [4] and wkialpriori a result ex-
tending quantum Stein’s Lemma in the following way:

Let the null hypothesigl, correspond to a family’ of density operators of instead

of a single density operatpr Let the alternative hypothesi$, be still represented by a
fixed density operatar. Then there exists a sequen@eof orthogonal projectionsl,

on H®", respectively, such that for gl € I" the corresponding type-I error vanishes
asymptotically, i.e.

lim Tr[p®"II,] =0, (54)

n—oo

while the type-Il error rate limiz (I7) is equal to the relative entropy distance frém
too:

S(Il|o) := inf S(p]lo).

MoreoverS(I'||o) is the upper bound on type-Il error (upper) rate limit, foy ae-
quencell of POVMs satisfying the constrairi(b4).

With the above reasoning we obtain the statement of quanamo\& Theorem from
the quantum HBCL Theorem as well.
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A. Proofs of Bounds on

Inequality [32) stated in terms of general positive opasi®
Theorem 6. For positive operatorsi and B, and0 < s < 1,

IAYZBY2||y < (Te[A* BU)Y2 (Te[A]) =)/ (Tx([B])*/2. (55)

Specialising to statesi = o andB = p, the left-hand side is just'(p, o), while the
right-hand side is equal 1@, (p, 0)'/>.
Proof. We rewriteA'/2 B1/2 as a product of three factors

A1/2B1/2 _ 14(175)/2(145/23(175)/2)135/27
apply Holder’s inequality on the 1-norm of this productdasxploit the relation
[XPllq = 11 X115,
(for X > 0) a number of times.
||A1/2B1/2H1 _ ||A(175)/2(AS/2B(175)/2)BS/2H1
< AU g g | A2 BO=2 |15 | B2y
= (Te[A)1=*)/2 | A2 BU=9)72 ||, (Te[B))*/?
= (Te[A*BUI)Y2 (Te[A]) =92 (Te[B)) /2.
O

We now give a direct proof of inequalitly (B0) that circumvetite proof of[(2P) and
goes through in infinite dimensions. We state it in terms afggal positive operators:

Theorem 7.For positive operatorsi and B,
|A — B||? + 4(Tr[AY2BY?])? < (Tr(A + B))%. (56)

Proof. Consider two general operataPsand(, and define their sum and difference as
S=P+Q@QandD = P — Q. We thus have® = (S + D)/2 and@ = (S — D)/2.
Consider the quantity

PP = QQ" =

= 2(SD* + DS™).

Its trace norm is bounded above as
[SD* + DS*[[1/2 < ([[SD*||1 + | DS*[]1)/2
= [|SD*|lh
< ISl2lID2-

(S+D)(S+D)"—(S—D)(S—-D)")

| — ]

In the last line we have used a specific instance of Holdeeguality for the trace norm
(3] Cor. IV.2.6). Now putP = A'/2 and@ = B'/2, which exist by positivity ofA and
B, and which are themselves positive operators. Wesgét = A'/2 + B1/2 hence

1A= Blly < [ AY2 + BY2|)y | AY2 — BV,
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which upon squaring becomes

|A— B|} < Tr(AY? 4+ BY/?)* Tr(A'/? — B'/?)?
=Tr(A+ B+ A'2B'? 4+ B'/2A1/?)
x Tr(A+ B — AV/2p1l/2 Bl/2A1/2)
= (Tr(A + B) + 2 Te(AY?BY/?))
x(Tr(A 4+ B) — 2 Tr(AY2BY2))
= (Tr(A + B))? — 4(Tr(A/2B'/?))2.
O
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