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We study the entanglement properties of a closed chain of harmonic oscillators that are coupled via a transla-
tionally invariant Hamiltonian, where the coupling acts only on the position operators. We consider the ground
state and thermal states of this system, which are Gaussian states. The entanglement properties of these states
can be completely characterized analytically when one usesthe logarithmic negativity as a measure of entangle-
ment.
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I. INTRODUCTION

Quantum entanglement is possibly the most intriguing
property of states of composite quantum systems. It mani-
fests itself in correlations of measurement outcomes that are
stronger than attainable in any classical system. The renewed
interest in a general theory of entanglement in recent yearsis
largely due to the fact that entanglement is conceived as the
key resource in protocols for quantum information process-
ing. Initial investigations focused on the properties of bipartite
entanglement of finite dimensional systems such as two-level
systems. In fact, significant progress has been made, and our
understanding of the entanglement of such systems is quite
well developed [1]. A natural next step is the extension of
these investigations to multi-partite systems. Unfortunately,
the study of multi-partite entanglement suffers from a prolif-
eration of different types of entanglement already in the pure
state case [2], and even less is known about the mixed state
case. For example, necessary and sufficient criteria for sepa-
rability are still lacking. For other properties, such as distilla-
bility, no efficient decision methods are known, and it is even
difficult to find meaningful entanglement measures [3]. A di-
rection that promises to lead to simpler structures is that of
infinite dimensional subsystems, such as harmonic oscillators
or light modes, which are commonly denoted as continuous-
variable systems [4, 5]. Indeed, for continuous-variable sys-
tems the situation becomes much more transparent if one re-
stricts attention to Gaussian states (e.g. coherent, squeezed
or thermal states) which are, in any case, the states that are
readily experimentally accessible.

Quite recently, it has been realized that it might be a very
fruitful enterprise to apply the methods from the theory of en-
tanglement not only to problems of quantum information sci-
ence, but also to the study of quantum systems that are typi-
cally regarded as belonging to statistical physics, systems that
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consist of a large or infinite number of coupled subsystems
[7, 8, 9, 10]. Examples of such systems are interacting spin
systems, which, like most interacting systems, exhibit thenat-
ural occurrence of entanglement, i.e., the ground state is gen-
erally an entangled state [7, 8, 9]. It has, furthermore, been
suspected that the study of the entanglement properties of such
systems may shed light on the nature of the structure of clas-
sical and quantum phase transitions [7, 9]. It has turned out,
however, that the theoretical analysis of infinite spin chains is
very complicated and only very rare examples can be solved
analytically. Coupled harmonic oscillator systems allow for
a much better mathematical description of their entanglement
properties than spin systems. Physical realizations of such
systems range from the vibrational degrees of freedom in lat-
tices to the discrete version of free fields in quantum field the-
ory. This motivates the approach that we have taken in this
work, namely to investigate the entanglement structure of in-
finitely extended harmonic oscillator systems.

In this paper we study a special case, namely a set of har-
monic oscillators arranged on a ring and furnished with a har-
monic nearest-neighbor interaction, i.e., oscillators that are
connected to each other via springs. The paper is organized
as follows. In Section II we provide the basic mathematical
tools that are employed in the analysis following in the re-
maining sections. We then move on to derive a simple ana-
lytical expression for the ground state energy of the harmonic
oscillator systems. Our main interest is the computation of
entanglement properties of the ground state of the chain. In
Section III we derive a general formula for the logarithmic
negativity [11, 12] which we employ as our measure of en-
tanglement. In Section IV we present analytical results that
concern the symmetrically bisected chain, that is the situa-
tion where the chain is subdivided into two equal contiguous
parts and the entanglement is calculated between those parts.
We show how to construct a very simple lower bound on the
log-negativity, in the form of a closed-form expression based
on the coupling strengths; that is, no matrix calculations are
necessary. Furthermore, for nearest-neighbor interaction, we
show that the bound is sharp, i.e., gives the exact value of the
log-negativity. Surprisingly, the value of the log-negativity in
this case is independent of the chain length; in particular,it
remains finite. We show in Section V that the problem is not
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reducible to a four-oscillator picture, thereby demonstrating
the non-triviality of the physical system. We then move on
to Section VI, where we study general bisections of the chain
numerically. We demonstrate that entanglement is maximized
for the symmetrically bisected chain. Furthermore, and rather
counterintuitively, for asymmetric bisections where one group
of oscillators is very small, and especially when it consists of
only one oscillator, we find that the entanglement decreasesif
the size of the other group is increased. We also demonstrate
that for large numbers of oscillators the mean energy of the
ground state and the value of the negativity are proportional
and provide an interpretation for this result. In Section VII we
discuss our results. We also provide an intuitive picture that
allows to explain the results in the previous sections.

Generally we have attempted to structure the sometimes
somewhat involved mathematics in such a way, that the reader
can skip it and extract the main physical results easily. We
state at the beginning of each section what main result will be
obtained and we state this result clearly, either in the formof
a theorem or at the end of the section.

II. COVARIANCE MATRIX FOR GAUSSIAN STATES OF
THE HARMONIC CHAIN

In this section we derive an expression for the covariance
matrix of the ground state and of the thermal states of a set of
harmonic oscillators that are coupled via a general interaction
that is quadratic in the position operators (e.g. oscillators cou-
pled by springs). As a byproduct we also give an expression
for the energy of the ground state.

Let us first consider the covariance matrix for the ground
state of a single uncoupled harmonic oscillator. The Hamilto-
nian is given by (we have adopted units where~ = 1)

Ĥ =
1

2m
P̂ 2 +

mω2

2
X̂2.

Denoting the quadrature operators as a column vectorR, with
R1 = X̂ and R2 = P̂ , the Hamiltonian can be concisely
rewritten as

Ĥ = RT

(

mω2/2 0
0 1/(2m)

)

R.

The covariance matrixγ of a general stateρ is given by

γk,l = ReTr[ρ(Rk − Tr[ρRk])(Rl − Tr[ρRl])].

for 1 ≤ k, l ≤ 2. For ρn then-th eigenstate of the Hamilto-
nian,ρn = |n〉〈n|, it is a straightforward exercise to calculate
that

γ = (n + 1/2)

(

1/(mω) 0
0 mω

)

.

We will only be interested in the ground state,ρ0 = |0〉〈0|,
however, since this is the only eigenstate which is Gaussian.

Passing to the harmonic chain consisting ofn harmonic os-
cillators, we will only consider interactions between the os-
cillators due to a coupling between the different position op-
erators. According to the(q, p)-convention we have adopted

here, the vectorR of quadrature operators is given byRj =

X̂j andRn+j = P̂j , for 1 ≤ j ≤ n. The Hamiltonian is then
of the form

Ĥ = RT

(

V mω2/2 0
0 11n/(2m)

)

R,

where then × n-matrixV contains the coupling coefficients.
The Hamiltonian is thus written as a quadratic form in the
quadrature operators; we will call the matrix corresponding
to this form theHamiltonian matrix(as opposed tôH , the
Hamiltonianoperator). In the present case, the Hamiltonian
matrix is a direct sum of thekinetic matrix11n/(2m) and the
potential matrixV mω2/2.

In this paper, we will consider a harmonic chain “con-
nected” end-to-end by a translationally invariant Hamiltonian.
The V -matrix of the Hamiltonian is, therefore, a so-called
circulant matrix [14]. This is a special case of a Toeplitz
matrix because not only do we haveVj,k = vj−k, but even
Vj,k = v(j−k) mod n for 1 ≤ j, k ≤ n, due to the end-to-end
connection. We can easily write the coefficientsvk in terms
of the coupling coefficients. For a nearest-neighbor coupling
with “spring constant”K, the potential term of the Hamilto-
nian reads

n
∑

k=1

mω2

2
X̂2

k + K(X̂(k+1) mod n − X̂k)2.

Therefore, we have

v0 = 1 + 4K/(mω2), v1 = −2K/(mω2).

More generally, includingk-th nearest-neighbor couplings
with spring constantsKk, and defining

αk =
2Kk

mω2
,

we have

v0 = 1 + 2(α1 + α2 + . . .),

vj = −αj, for j > 0.

The calculation of the corresponding covariance matrix can
now proceed via a diagonalisation of the Hamiltonian ma-
trix, which effectively results in a decoupling of oscillators.
Since the commutation relations between the quadrature op-
erators must be preserved, the diagonalisation must be based
on asymplectic transformationS ∈ Sp(2n, R). This means
that we can only use equivalence transformationsC 7→ C′ =
ST CS such thatST ΣS = Σ, where, in the(q, p)-convention,
thesymplectic matrixΣ is given by

Σ =

(

0 11n

−11n 0

)

.

This real skew-symmetric matrix incorporates the canoni-
cal commutation relations between the canonical coordinates.
Fortunately, because the kinetic matrix is a multiple of the
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identity, the Hamiltonian matrix can be diagonalized by an
orthogonalequivalence of the form

C 7−→ C′ = (S ⊕ S)T C(S ⊕ S),

whereS is the real orthogonaln× n-matrix that diagonalizes
the potential matrixV . It is readily checked that the resulting
transformation is indeed a symplectic one. In fact,S⊕S is an
element of the maximal compact subgroup ofSp(2n, R).

SoC′ is now diagonal and of the formC′ = (mω2/2)V ′⊕
11n/(2m), whereV ′ is the diagonaln× n-matrix with entries
ηj , 1 ≤ j ≤ n, the eigenvalues ofV . The covariance matrix
γ′ of the ground state of the transformed Hamiltonian consists
therefore just of single-oscillator covariance matrices with pa-
rameterωj = ω

√
ηj , 1 ≤ j ≤ n, and is diagonal itself, to wit,

γ′ = (γ′
x ⊕ γ′

p)/2,

(γ′
x)j,j = 1/(mωj),

(γ′
p)j,j = mωj.

The covariance matrixγ in the original coordinates is then
obtained by transformingγ′ back,

γ = (S ⊕ S)γ′(S ⊕ S)T

= [(Sγ′
xST ) ⊕ (Sγ′

pS
T )]/2

= [(V −1/2/(mω)) ⊕ (mωV 1/2)]/2.

To simplify the notation, we will henceforth setm = 1 and
ω = 1. So we have a simple formula for the covariance matrix
in terms of the potential matrixV ,

γ = (γx ⊕ γp)/2,

γx = V −1/2,

γp = V 1/2.

Using this same derivation, we can also easily find a for-
mula for the energy of the ground state. We will need this re-
sult in Section VI, where we will compare the log-negativity
of a state to its energy. Indeed, the ground state energy
of a single oscillator is~ω/2. In the decoupled descrip-
tion of the ground state of the chain, the oscillators have en-
ergy ~ω

√
ηj/2, with ηj , 1 ≤ j ≤ n, being the eigenvalues

of the potential matrixV . The total ground state energy is
E = (~ω/2)

∑n
j=1

√
ηj . Denoting~ω/2 by E0, we therefore

have

E = E0Tr[V 1/2].

Finally, we turn to Gibbs states corresponding to some tem-
peratureT > 0, the states associated with the canonical en-
semble, given by

ρ(β) = exp(−βĤ)/Tr[exp(−βĤ)],

whereβ = 1/T . Again, one can obtain the covariance matrix
γ(β) of the stateρ(β) in a convenient manner in the basis in
which the Hamiltonian matrix is diagonal. The2n × 2n di-
agonal matrixγ′(β) can be obtained using the virial theorem:

the mean potential energy and the kinetic energy of a single
oscillator are identical and half the mean energy of the system
at inverse temperatureβ. Using this procedure one obtains

γ′(β) = (γ′
x(β) ⊕ γ′

p(β))/2,

(γ′
x(β))j,j =

1

mωj

(

1 +
2

exp(βωj) − 1

)

,

(γ′′
p (β))j,j = mωj

(

1 +
2

exp(βωj) − 1

)

.

In the convention wherem = 1, ω = 1, one gets

γ(β) = (γx(β) ⊕ γp(β))/2,

γx(β) = V −1/2
(

11n + 2(exp(βV 1/2) − 11n)−1
)

,

γp(β) = V 1/2
(

11n + 2(exp(βV 1/2) − 11n)−1
)

,

for the covariance matrix of a Gibbs state in the original
canonical coordinates.

III. GENERAL FORMULA FOR THE LOGARITHMIC
NEGATIVITY

In this section we derive a general formula for the loga-
rithmic negativity of a Gaussian state ofn coupled harmonic
oscillators with respect to a bipartite split, given the covari-
ance matrixγ of the Gaussian state. This set may consist of
all n oscillators or of a subset ofm < n oscillators. The
only restriction is that the covariance matrix must be a direct
sum of a position partγx and a momentum partγp, i.e., there
must be no correlations between positions and momenta. The
resulting formula can be found at the end of this section.

Let m1 andm2 be the sizes of the two groups of oscilla-
tors the entanglement between which we wish to calculate,
and letm = m1 + m2 ≤ n. From Section II, we know that
the covariance matrixγ of the ground state of the harmonic
chain is given byγ = (γx ⊕ γp)/2, whereγx = V −1/2 and
γp = V 1/2. In order to calculate the entanglement between
two disjoint groups of oscillators in this state, we need to con-
sider the covariance matrix associated with the reduced state
of them oscillators of the two groups. This covariance ma-
trix µ – from now on also referred to as reduced covariance
matrix – is given by the2m × 2m principal submatrix ofγ
that consists of those rows and colums ofγ that correspond
to the canonical coordinates of either group1 or group2. If
m = n, meaning that the whole set ofn oscillators is consid-
ered, this step is not necessary. The reduced covariance matrix
µ is again of the form

µ = (µx ⊕ µp)/2,

where bothµx andµp arem × m-matrices.
Taking thepartial transposeof a covariance matrix corre-

sponds to changing the sign of the momentum variables of
the oscillators in the second group. This operation maps the
covariance matrixµ to

µΓ = PµP
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with

P = Px ⊕ Pp, Px = 11m;

Pp is am×m diagonal matrix. Specifically, thej-th diagonal
element ofPp is 1 or−1, depending on whether the oscillator
on position1 ≤ j ≤ m belongs to group 1 or 2, respectively.

The logarithmic negativity[11, 12] of a state is defined as
the logarithm of the trace norm of the partial transpose of the
state. The negativity is an entanglement measure in the sense
that it is a functional that is monotone under local quantum
operators [12, 13]. To date it is the only feasible measure of
entanglement for mixed Gaussian quantum states. The def-
inition of the logarithmic negativity can be easily translated
into an expression which does not involve the state itself, but
rather the covariance matrix of the state: as the trace norm
is unitarily invariant, one has the freedom to choose a basis
for which the evaluation of the trace norm becomes partic-
ularly simple. More specifically, one may make use of the
Williamson normal form[15] for the partial transpose of the
covariance matrix. The problem of evaluating the logarithmic
negativity is then essentially reduced to a single-mode prob-
lem. This procedure gives rise to the formula [12]

N = −
2m
∑

k=1

log2(min(1, 2|λk(iΣ−1µΓ)|)),

whereλk(iΣ−1µΓ), 1 ≤ k ≤ 2m, are the eigenvalues of
iΣ−1µΓ. Σ is the symplectic matrix

Σ =

(

0 11m

−11m 0

)

.

Since Σ−1 = −Σ, we have to calculate the spectrum of
the matrix B = −iΣPµP , giving 2m real eigenvalues
λk(B) of B. Then the logarithmic negativity equalsN =

−∑2m
k=1 log2 min(1, 2|λk(B)|). This formula can be further

simplified due to the direct sum structure ofµ = (µx⊕µp)/2.
Simplification ofB yields

B =
i

2

(

0 −PpµpPp

µx 0

)

.

The eigenvalue equation of a block matrix of this form reads
(

0 X
Y 0

)(

u
v

)

= λ

(

u
v

)

,

which is equivalent to the coupled system of equationsXv =
λu and Y u = λv. Substituting one equation in the other
yields XY u = λ2u, hence the eigenvalues of the block
matrix are plus and minus the square roots of the eigen-
values of XY . In particular, the eigenvalues ofB are
±(λj(µxPpµpPp/4))1/2, 1 ≤ j ≤ m. Because of the±-sign,
taking the absolute value of the eigenvalues has the effect of
doubling the eigenvalue multiplicity. Hence,

N = −
m

∑

j=1

log2 min(1, λj(µxPpµpPp)),

which is finally the resulting formula of the logarithmic nega-
tivity in terms of the matricesµx andµp.

3
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FIG. 1: The symmetrically bisected harmonic chain. The oscillators
1 to n/2 form group1, the oscillatorsn/2 + 1 to n form group2.

IV. THE SYMMETRICALLY BISECTED HARMONIC
CHAIN

In this section we present exact analytical results for the
log-negativity in a chain ofn harmonic oscillators with a
translationally invariant coupling. Moreover, we shall bein-
terested here in the most symmetric case of calculating the en-
tanglement with respect to a symmetric bisection of the chain.
That is, the numbern of oscillators should be even and the
oscillators in positions 1 ton/2 constitute group 1, the others
group 2 (see Figure 1). Hence, in the notation of Section III
µ = γ.

Using the result of Section III, we find that the logarith-
mic negativity of a symmetrically bisected oscillator chain, of
lengthn and with potential matrixV , is equal to

N = −
n

∑

j=1

log2(min(1, λj(Q))),

with

Q = V −1/2PV 1/2P

P = 11n/2 ⊕ (−11n/2).

A. Symmetry properties of Q

We begin our analytical investigations by studying a more
general object thanQ, namely the matrix

R = G−1PGP.

Here,G is a general realcirculant matrix that is symmetric
under transposition. SinceG is symmetric and circulant, it
can be written in2 × 2 block form as

G =

(

G′ G′′

G′′ G′

)

.
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We will first show thatR exhibits the same block structure.
Define then × n flip-matrixF = Fn as

Fi,j = δi,n+1−j .

To simplify the notation, we will mostly refrain from mention-
ing the sizen of F ; the mathematical context should make it
clear whichn is being used.

Lemma 1 The matrixR can be written in2×2 block form as

R =

(

A B
B A

)

.

Proof. SinceG is circulant and symmetric,FGF = G, which
is true for every symmetric Toeplitz matrix. Also,FPF =
−P holds. Writing

R =

(

A B
C D

)

,

symmetry demands thatC = FBF andD = FAF . Further-
more, bothG andP are also invariant under theFn/2 ⊕ Fn/2

symmetry. Hence,R exhibits this symmetry too, i.e.,(F ⊕
F )R(F ⊕ F ) = R. Thus,A andB are invariant underF . �

Matrices with this block structure can be brought in block
diagonal form using a similarity transform:

Lemma 2 LetS = (P + F )/
√

2. Then

S
(

A B
B A

)

S = (A + BF ) ⊕ (A − BF ).

Proof. This follows by direct calculation and noting that
S−1 = S and

S =

(

11n F
F −11n

)

/
√

2.

�

We now specialize the above results forR to the matrix

Q = V −pPV pP,

with V again a general real symmetric circulant matrix. The
powerp remains hitherto unspecified. Note that any power
of a symmetric circulant matrix is again symmetric circulant.
Again, then×n-matrixV can be written in2× 2 block form

(

V ′ V ′′

V ′′ V ′

)

,

where bothV ′ andV ′′F are Hermitian. By Lemma 1,Q can
similarly be written as the block matrix

(

Q′ Q′′

Q′′ Q′

)

.

The following Lemma is crucial for the rest of the calcula-
tions.

Lemma 3 With the previous notations,Q′ + Q′′F = (Q′ −
Q′′F )−1 and

det(Q′ + Q′′F ) = exp(−pTr[F log(V )]),

det(Q′ − Q′′F ) = exp(+pTr[F log(V )]).

For p in the interval0 ≤ p ≤ 1, the following also holds: if
V ′′F ≥ 0, thenQ′ + Q′′F ≤ 11n/2, and if V ′′F ≤ 0, then
Q′ − Q′′F ≤ 11n/2.

Proof. ConsiderSQS. On one hand, we have, by Lemma 2,

SQS = (Q′ + Q′′F ) ⊕ (Q′ − Q′′F ),

and similarly,SV S = (V ′ + V ′′F ) ⊕ (V ′ − V ′′F ). Also,
SPS = F , as a short calculation shows. On the other hand,
we also have

SQS = SV −pPV pPS
= SV −pSSPSSV pSSPS
= (SV S)−pSPS(SV S)pSPS,

and therefore

SQS = ((V ′ + V ′′F )−p ⊕ (V ′ − V ′′F )−p)F ×
((V ′ + V ′′F )p ⊕ (V ′ − V ′′F )p)F

= ((V ′ + V ′′F )−p ⊕ (V ′ − V ′′F )−p) ×
((V ′ − V ′′F )p ⊕ (V ′ + V ′′F )p)

= (V ′ + V ′′F )−p(V ′ − V ′′F )p ⊕
(V ′ − V ′′F )−p(V ′ + V ′′F )p.

Identifying the blocks in the two expressions forSQS, we get

Q′ + Q′′F = (V ′ + V ′′F )−p(V ′ − V ′′F )p,

Q′ − Q′′F = (V ′ − V ′′F )−p(V ′ + V ′′F )p,

so thatQ′ + Q′′F is the inverse ofQ′ − Q′′F and

det(Q′ + Q′′F ) =

(

det(V ′ − V ′′F )

det(V ′ + V ′′F )

)p

.

Furthermore,log V = S(log(V ′+V ′′F )⊕log(V ′−V ′′F ))S,
hence

Tr[F log V ]

= Tr[SFS(log(V ′ + V ′′F ) ⊕ log(V ′ − V ′′F ))]

= Tr[P (log(V ′ + V ′′F ) ⊕ log(V ′ − V ′′F ))]

= Tr[log(V ′ + V ′′F ) − log(V ′ − V ′′F )]

= log
det(V ′ + V ′′F )

det(V ′ − V ′′F )
.

This then yields

det(Q′ + Q′′F ) = exp(−pTr[F log V ]),

det(Q′ − Q′′F ) = exp(+pTr[F log V ]).

Considering the second assertion, ifV ′′F ≥ 0, thenV ′ +
V ′′F ≥ V ′ − V ′′F , and, by Löwner’s theorem [14],

(V ′ + V ′′F )p ≥ (V ′ − V ′′F )p
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for 0 ≤ p ≤ 1. Hence, for any vectorx 6= 0 satisfying
an equation(V ′ − V ′′F )px = λ(V ′ + V ′′F )px, it follows
that λ must be less than or equal to 1 (to see this, take the
inner product of both sides with the vectorx). Rearranging
the equation to

(V ′ + V ′′F )−p(V ′ − V ′′F )px = λx,

which is just(Q′ + Q′′F )x = λx, yields that theλ for which
such anx exists are precisely the eigenvalues ofQ′ + Q′′F .
Hence, under the conditionV ′′F ≥ 0, the eigenvalues ofQ′+
Q′′F are less than or equal to 1. Similarly, ifV ′′F ≤ 0, we
proceed in an identical way to show that the eigenvalues of
Q′ − Q′′F are less than or equal to 1. �

B. A lower bound on the negativity

We will now apply Lemma 3 to the casep = 1/2 andV
being the potential matrix of the oscillator chain to obtaina
lower bound on the logarithmic negativity:

Theorem 1 The logarithmic negativity of the bisected oscil-
lator chain of lengthn obeys

N ≥ |Tr[F log2(V )]|/2.

If V ′′F is semidefinite (i.e., either positive or negative
semidefinite), then equality holds.

Proof. To calculate the negativity we need the eigenvalues of
Q with p = 1/2 that are smaller than 1. By Lemma 2, the
spectrum ofQ is the union of the spectra ofQ′ + Q′′F and
of Q′ − Q′′F . By Lemma 3, forV matrices satisfying the
V ′′F ≥ 0 condition, the eigenvalues ofQ smaller than 1 are
the eigenvalues ofQ′ + Q′′F . Furthermore,

Tr[log(Q′ + Q′′F )] = log det(Q′ + Q′′F )

= −pTr[F log(V )].

Settingp = 1/2 then givesN = Tr[F log2(V )]/2. On the
other hand, ifV ′′F ≤ 0, it is the eigenvalues ofQ′ − Q′′F
that we need to consider. SinceTr[log(Q′ − Q′′F )] =
+pTr[F log(V )], we find

N = −Tr[F log2(V )]/2.

For generalV ′′F , we first note that the general formula for
the negativity can be written as

N = −Tr[log2 min(11n, Q)].

For commutingX andY , min(X, Y ) is the elementwise min-
imum in the eigenbasis ofX (andY ). By Lemma 2, we then
haveN = −Tr[log2 min(11n, (Q′ + Q′′F ) ⊕ (Q′ − Q′′F ))]
and this is also equal toN = −Tr[log2 min(11n/2, Q

′ +
Q′′F )] − Tr[log2 min(11n/2, Q

′ − Q′′F )]. From Lemma 3
we also know thatQ′ + Q′′F andQ′ − Q′′F are each other’s
inverse. Hence,

N = −Tr[log2 min(Q′ + Q′′F, Q′ − Q′′F )],

and, because the two arguments of min commute,N =
−Tr[min(log2(Q

′ + Q′′F ), log2(Q
′ − Q′′F ))]. Finally, the

trace of a minimum is smaller than or equal to the minimum
of the traces, so that

N ≥ max(Tr[log2(Q
′ + Q′′F )], Tr[log2(Q

′ − Q′′F ))].

Because the two arguments of max are each other’s negative,
the maximum amounts to taking the absolute value of, say,
the first argument. Hence,N ≥ |Tr[log2(Q

′ + Q′′F )]| =
|Tr[F log2(V )]|/2, where the last equality follows from the
first part of the proof. �

For the nearest-neighbor Hamiltonian,V is of the form

V =



















v0 v1 0 · · · 0 v1

v1 v0 v1 0

0 v1 v0
. . .

...
...

. . .
. . . v1 0

0 v1 v0 v1

v1 0 · · · 0 v1 v0



















,

so

V ′ =



















v0 v1 0 · · · 0

v1 v0 v1

...

0
. . .

. . .
. . . 0

... v1 v0 v1

0 · · · 0 v1 v0



















, (1)

V ′′F =













v1 0 · · · 0
0 0
...

. . .
...

0 0
0 · · · 0 v1













. (2)

As v1 ≤ 0, V ′′F is obviously a (negative) semidefinite ma-
trix. Therefore, the nearest-neighbor Hamiltonian satisfies the
equality condition of the Theorem, and the logarithmic neg-
ativity of the bisected harmonic chain with nearest-neighbor
Hamiltonian equalsN = |Tr[F log2(V )]|/2.

C. An explicit formula in the coupling

The bound of Theorem 1 is actually a very simple one be-
cause we can give an explicit formula for|Tr[F log2(V )]| in
terms of the coupling coefficientsαj , as follows.

Theorem 2 For a translationally invariant potential matrixV
with coupling coefficientsα1, α2, . . .αm,

|Tr[F log2(V )]| = log2(1 + 4(α1 + α3 + . . .)).

Note, in this formula, the absence of the coefficients with even
index.
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Proof. The eigenvalue decomposition of a general circulant
n × n matrix V is very simple to calculate. For convenience
of notation, we use matrix indices starting from zero instead
of 1. Let Vk,l = vk−l, thenV = Ω†ΛΩ, with Ω the kernel
matrix of the discrete Fourier transform,

Ωk,l = exp
(

kl
2πi

n

)

/
√

n,

with 0 ≤ k, l ≤ n − 1. This matrix is unitary and symmetric.
The eigenvaluesΛk are related tovl via a discrete Fourier
transform according to

Λk =

n−1
∑

l=0

exp

(

2πi

n
kl

)

vl.

For real symmetricV this gives

Λk = v0 + 2v1 cos
(

k
2π

n

)

+ 2v2 cos
(

2k
2π

n

)

+ · · · .

It is now a straightforward calculation to obtain an expression
for Tr[F log2(V )]. First,

(ΩFΩ†)k,l

=

n−1
∑

j,j′=0

exp(jk
2πi

n
)δj,n−1−j′ exp(−j′l

2πi

n
)/n

=

n−1
∑

j=0

exp([jk − (n − 1 − j)l]
2πi

n
)/n

=

n−1
∑

j=0

exp([j(k + l) − (n − 1)l)]
2πi

n
)/n.

All elements are zero except those for whichk+l is an integer
multiple ofn, i.e., eitherk = l = 0 or k + l = n:

(ΩFΩ†)0,0 =

n−1
∑

j=0

exp((0j + 0)
2πi

n
)/n = 1

and

(ΩFΩ†)n−l,l =
n−1
∑

j=0

exp((jn − (n − 1)l)
2πi

n
)/n

= exp(−l
2πi

n
).

In the calculation ofTr[F log2(V )] we only need the non-
zero diagonal elements ofΩFΩ†, which are the(0, 0) and the
(n/2, n/2) elements. Hence

Tr[F log2(V )]

= log2(Λ0) + log2(Λn/2) exp((n/2)
2πi

n
)

= log2

v0 + 2v1 + 2v2 + · · ·
v0 − 2v1 + 2v2 − · · · .

Inserting the relations between the elements ofV and the cou-
pling coefficientsαj

v0 = 1 + 2(α1 + α2 + . . .),

vj = −αj, for j > 0,

yields the stated formula. �

For the nearest-neighbor Hamiltonian, the only non-zeroαj

coefficient isα ≡ α1, giving rise to the following simple ex-
pression for the logarithmic negativity.

Corollary 1 For the nearest-neighbor Hamiltonian with cou-
pling coefficientα ≥ 0, the logarithmic negativity of the bi-
sected chain of lengthn is given by

N =
1

2
log2(1 + 4α).

It is remarkable indeed that the negativity is independent of n,
the chain length.

D. Other potential matrices

To conclude this section, we will prove that any other circu-
lant symmetric potential matrix does not satisfy the equality
condition of Theorem 2 so that the negativity will in general
be larger than the lower bound and, moreover, dependent on
the sizen of the chain. Consider first a Hamiltonian with a
nearest-neighbor coupling of strengthα1 and a next-nearest-
neighbor coupling of strengthα2, whereα1, α2 > 0. The
matrixV ′′F is then of the form

V ′′F =













−α1 −α2 · · · 0
−α2 0

...
0 −α2

· · · −α2 −α1













.

The non-zero eigenvalues of this matrix are those of the sub-
matrix

(

−α1 −α2

−α2 0

)

.

As its determinant is negative,−α2
2, it is not a definite matrix,

hence neither isV ′′F .
Generally, ak-th neighbor couplingαk, i.e., a coupling be-

tween oscillatorsk places apart, yields a matrixV ′′F which
is Hankel[14] and has−αk on two skew-diagonals. If there
is ak such thatαk andαk+1 are non-zero butαk+2 = 0, then
V ′′F contains a2 × 2 principal submatrix of the form

(

−αk −αk+1

−αk+1 0

)

,

which is again not definite. Hence, in that case,V ′′F is not
semidefinite. Now, if one fixes the interactions and then letn
grow (which is exactly the setting here), there will always be
some point whenV ′′F will exhibit a zero skew-diagonal and,
hence, is not semidefinite.
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FIG. 2: There exist no symplectic transformations that decouple all
but four oscillators from each other in the case of the bisected har-
monic chain with nearest-neighbor Hamiltonian.

V. INEQUIVALENCE TO A FOUR-OSCILLATOR
PROBLEM

At this point, one might be tempted to think that the inde-
pendence of the log-negativity of the chain lengthn, in the
case of nearest-neighbor interaction, is a consequence of the
presumption that the bisected harmonic chain of lengthn ≥ 4
with nearest-neighbor interaction is in fact equivalent toa
much simpler problem: there could be an appropriate choice
of basis of the Hilbert spaces of system 1 and 2, corresponding
to a symplectic transformation, such that, in effect, only those
four oscillators that are adjacent to the split boundary would
be in an entangled state. The othern/2− 2 oscillators of each
system would then be in pure product states, thereby not con-
tributing to the logarithmic negativity. This would mean that
one could locally disentangle all but four oscillators withlocal
symplectic transformations (see Figure 2).

If this indeed were the case, then symplectic transforma-
tionsS1, S2 ∈ Sp(n, R) would exist such that

γ = (S1 ⊕ S2)
T γ′(S1 ⊕ S2)

γ′ = (11n−4/2) ⊕ γ12 ⊕ γ̃12 ⊕ (11n−4/2)

(note that we are using a quadrature ordering convention here
that is different from the one used in the rest of this paper).
Here,γ12 and γ̃12 are4 × 4-covariance matrices associated
with the oscillators1 and n on the one hand andn/2 and
n/2 + 1 on the other hand, and11n−4/2 is the covariance ma-
trix of the pure product states of the remainingn/2 − 2 oscil-
lators of system 1 and 2, respectively. If for anyn such a basis
change could be performed, leading to the same covariance
matricesγ12 and γ̃12, then the invariance of the logarithmic
negativity of the bisected chain – the statement of Corollary 1
– would follow as a trivial consequence. We will briefly show,
however, that this is not the case.

Consider the eigenvalues ofB′ = iΣ−1γ′Γ

B′ = iΣ−1P
(

(11n−4/2) ⊕ γ12 ⊕ γ̃12 ⊕ (11n−4/2)
)

P.

0 2 4 6 8 10 12 14 16 18 20
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

α

FIG. 3: Positive eigenvalues ofQ − 11 versusα, for a chain of size
n = 20. From Lemma 3 it follows that the eigenvalues ofQ come in
reciprocal pairs; hence, the plot shows that in this case alleigenvalues
of Q are either larger than 1 or smaller than 1. For other chain sizes,
the eigenvalues behave in a similar way. This shows that the sym-
metrically bisected chain typically cannot be reduced to the system
depicted in Figure 2.

The spectrum of the corresponding matrixQ′ that enters in
the formula for the negativity can easily be evaluated using
the procedure mentioned in Section III. It is given by

σ(Q′) = {1, ..., 1, q1, q2, q3, q4},

whereq1, . . . , q4 > 0, and1 appearsn − 4 times.

Now we can confront this result with the spectrum of the
matrix Q of the harmonic chain as is. A simple numerical
calculation yields the values depicted in Figure 3. Since the
eigenvalues ofQ come in reciprocal pairs, we only show the
eigenvalues larger than 1; furthermore, we subtract 1 from
them and show the result on a logarithmic scale (in order
to clearly distinguish all eigenvalues). In the case depicted,
n = 20, we see that 10 eigenvalues are larger than 1, for any
value of the coupling constantα. Furthermore, the 10 remain-
ing eigenvalues are all smaller than 1. This means that, in fact,
1 is not included in the spectrum ofQ, which is completely at
variance with the result forQ′ of the purported reduced chain.
Hence, we arrive at the statement that not even a single os-
cillator can be exactly decoupled from all the others by the
application on an appropriate local symplectic transformation.

This analysis shows that the coupled bisected chain with
nearest-neighbor interaction can not be reduced to a problem
of only two pairs of interacting oscillators. In Section VII–
equipped with further results from numerical investigations –
we will discuss these findings and present an intuitive picture
of the correlations present in the ground state of this system
of coupled oscillators.
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FIG. 4: Logarithmic negativityN of a harmonic chain bisected in
groups of sizen1 andn2. The interaction is nearest-neighbor with
couplingα = 20.

VI. GENERAL BISECTIONS

In this section we turn towards more general problems, ex-
hibiting less symmetry. As these problems are much more
difficult to solve analytically, we basically have restricted our-
selves to numerical calculations and we only give analyti-
cal results for small subproblems, valid in some asymptotic
regime only.

A. Asymmetrical bisections

In Figures 4 and 5 we show the results of a numerical
calculation for asymmetrically bisected chains with nearest-
neighbor coupling. That is, the groups of oscillators have
sizesn1 6= n2. From these figures a number of features
are immediately obvious. The most striking feature is the
“plateau” in the entanglement that is reached whenever both
groups are sizeable enough (sayn1, n2 > 10, at least in the
presented case for coupling strengthα = 20). Of course,
whenn1 = n2, being the “diagonal” of the plot, we recover
the result of Section IV that the log-negativity is independent
of n = n1 + n2. From these figures we are led to conjec-
ture that, in the case of nearest-neighbor coupling, the value
of log-negativity forn1 = n2 is an upper bound on the values
for n1 6= n2 (not to be confounded with the result of Theorem
1, which says that this value is alowerbound for all symmet-
ric bisections with general circulant couplings). Moreover,
for general circulant couplings, we conjecture that an upper
bound onN(n1, n2) is given bylimm→∞ N(m, m). Another
feature is that when, say,n1 is kept fixed the log-negativity
decreases withn2 from a given value ofn2 onwards. This
phenomenon is seen most clearly with smalln1, particularly
for n1 = 1. We will endeavour an intuitive explanation of
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0

5

10

15

20
1.8

2
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2.4
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2.8

3

3.2

n
1

N vs. n
1
 and n

2
   α

1
=20

n
2

N

2 n1n

N

FIG. 5: Same as Figure 4, but seen from a different viewpoint.
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0.55
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0.8
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1

N/N∞  vs. n
1
  for n

2
=20  varying α

n
1

N/N∞

α = 1, 2, 5, 10, 20 

1n

N(n1; n2)=N(1;1)

FIG. 6: Effect of coupling strengthα on the convergence of the
log-negativity towards its maximal value. Group sizen2 is kept
fixed at 20 and group sizen1 is varied. Shown is the ratio
N(n1, n2)/N(∞,∞). The different curves are for various values
of α. One clearly sees that for small couplings the limit value is
reached much faster.

these features below. In conclusion, we conjecture that, again
for general circulant couplings,limn2→∞ N(1, n2) is a lower
bound onN(n1, n2).

From Figure 6 we can see that the convergence ofN to-
wards its plateau valueN(∞,∞) depends on the strength
of the couplingα. For higher values, convergence is slower.
What cannot be seen from this figure is that the actual plateau
value is larger as well.
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B. Entanglement versus energy

It is interesting to compare the entanglement present in
the chain ground state with its energy. We consider nearest-
neighbor interaction only. We have shown in Section II that
the ground state energy equals(~ω/2)Tr[V 1/2]. For zero
coupling (V = 11n) this gives justn times the single-oscillator
ground state energyE0 = ~ω/2, as expected. For large cou-
plingsα, we show that the ground state energy is of the order
of

√
αnE0.

From the proof of Theorem 2, we have that the eigenvalues
λk of V are given by

λk = v0 + 2v1 cos(k2π/n) + 2v2 cos(2k2π/n) + . . . .

The energy in terms of these eigenvalues is
∑n−1

k=0 λ
1/2
k . For

large values ofn, we can replace the discrete sum overk by
an integral inx = 2πk/n. For nearest-neighbor coupling, this
yields:

E ≈ E0(n/π)

∫ π

0

dx(v0 + 2v1 cos 2x)1/2

= 2E0(n/π)

∫ π/2

0

dx((v0 + 2v1) − 4v1 sin2 x)1/2

= 2E0(n/π)

∫ π/2

0

dx(1 + 4α sin2 x)1/2

= 2E0(n/π)
√

α

∫ π/2

0

dx(4 sin2(x) + 1/α)1/2.

In the limit of α tending to infinity, the latter integral tends

to 2
∫ π/2

0 dx sin(x) = 2, so that indeed

E ≈ nE0
4

π

√
α.

Recalling the exact formula for the log-negativity in the sym-
metrically bisected case, we have that the negativity (not the
logarithmic one) is

√
1 + 4α. We thus find that the negativ-

ity is approximately proportional to the mean energy per os-
cillator. The exact values, calculated numerically, have been
plotted in Figure 7. Forα = 0, the curve obviously goes
through the point with mean energy equal toE0 and negativ-
ity equal to 1. Forα going to infinity, the mean energy goes
to (2/π)E0 = 0.63662E0 times the negativity.

C. Non-contiguous groups

From the above, one would get the impression that the mean
energy gives a general upper bound on the amount of entan-
glement in the system (apart from a numerical factor). This
is certainly not the case, because, until now, we only have in-
vestigated the cases where the two groups of oscillators were
contiguous. In the following paragraph we look into the en-
tanglement between non-contiguous groups. Specifically, we
look at the extreme case of entanglement between the group
of even oscillators and the group of odd ones. As can be seen

1 2 3 4 5 6 7 8 9 10 11
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
energy per oscillator per unit of negativity

negativity

0.63531 

Energy per oscillator per unit of negativity

N

FIG. 7: Energy per oscillator (in units of~ω/2) per unit of negativity
(not logarithmic) in function of the negativity, for the case of con-
tiguous groups of large enough size (so that the entanglement plateau
in Figure 5 is reached). The interaction is nearest-neighbor and the
coupling is implicitly present as a parameter. The dashed line depicts
the limiting value for infinitely strong coupling. Here, thenumbern
of oscillators is taken to be 20. However, the results becomeinde-
pendent ofn for n large enough: forn = 20, the limiting value is
0.63531, while for infiniten the exact result is2/π = 0.63662.

from Figure 8, numerical calculations already show that the
log-negativity tends to a constant timesn, the chain length.
Therefore, in this case, the log-negativity can grow indefi-
nitely large even when the mean energy is kept fixed. In view
of this, it would be more correct to say that there are two con-
tributions to the entanglement: one is the mean energy, which
is directly related to the coupling strengths, and the second
is the surface area of the boundary between the two groups of
oscillators, which in the 1-dimensional case is just the number
of points where the two groups “touch” each other. We will
return to this issue in Section VII.

The validity of the purported linear relationship can be
shown analytically in a rather simple way, yielding as a by-
product an expression for the proportionality constant. First
of all, the diagonal elements of theP matrix for this configu-
ration are 1 for odd index values, and -1 for even index values.
The Fourier transform ofP , that is:ΩPΩ† (see proof of The-
orem 2), is equal to

(

0 11n/2

11n/2 0

)

,

as is easily checked. We already have calculated the Fourier
transform of theV matrix, which again can be inferred from
the proof of Theorem 2. It is given byΛ = ΩV Ω†; here,
Λ is a diagonal matrix with diagonal elementsΛk = v0 +
2v1 cos(2kπ/n) + 2v2 cos(4kπ/n) + · · ·, 0 ≤ k ≤ n − 1.
Inserting this in the expression for theQ-matrix gives:

Q = Ω†Λ−1/2

(

0 11n/2

11n/2 0

)

Λ1/2

(

0 11n/2

11n/2 0

)

Ω.
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FIG. 8: Entanglement between the group of even oscillators and the
group of odd oscillators, in function of the chain lengthn (evenn
only). Interaction is again nearest-neighbor with coupling α = 20.
The log-negativity is seen to quickly converge to a constanttimesn.
The value of the constant depends onα and the relationship is shown
in Figure 9.

If we write Λ in 2 × 2 block form as
(

Λ′ 0
0 Λ′′

)

,

the spectrum ofQ is the union of the spectrum of
Λ′−1/2

Λ′′1/2 and of Λ′′−1/2
Λ′1/2. Worked-out, this gives

the eigenvalues(Λk+n/2/Λk)1/2 and (Λk/Λk+n/2)
1/2, for

0 ≤ k ≤ n/2 − 1. Using the inherent symmetry that
Λn−k = Λk, the eigenvalues ofQ are

(

Λk

Λn/2−k

)±1/2

.

The formula for the log-negativity obtained in Section III can
be reformulated as minus the sum of the negative eigenvalues
of log2 Q. In the present case we get as log-negativity

N =
1

2

n/2
∑

k=0

| log2

Λk

Λn/2−k
|.

For the nearest-neighbor Hamiltonian, this simplifies to

N =
1

2

n/2
∑

k=0

| log2

v0 + 2v1 cos(2πk/n)

v0 − 2v1 cos(2πk/n)
|

=

n/4
∑

k=0

log2

1 + 2α(1 + cos(2πk/n))

1 + 2α(1 − cos(2πk/n))

for n that are multiples of 4. For largen, we can replace the
discrete sum by an integral,

N ≈ n

2π

∫ π/2

0

dx log2

1 + 2α(1 + cos(x))

1 + 2α(1 − cos(x))
,
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FIG. 9: Relationship between the constant factorc appearing in the
asymptotic formula for the log-negativityN = cn in the even-odd
setting (as in Figure 8) and the coupling constantα.

which indeed proves that, for largen, the log-negativity is a
linear function ofn. The integral itself cannot be brought in
closed form. In Figure 9, we show the result of numerical
calculations giving the asymptotic value ofN/n versusα.

D. Effect of group separation

In the following paragraph, we give some results for con-
tiguous groups that do not comprise the whole chain. In Fig-
ure 10 we consider a fixed chain ofn = 40 oscillators and
look at the entanglement between two equally sized contigu-
ous groups, in function of the group size and the separation
between them. We define the separation as the number of os-
cillators in the smallest gap between the groups; since we are
dealing with a ring, there are two gaps between the groups.
Note that the log-negativity is plotted on a logarithmic scale.
There are two main features in this figure. The first and least
unexpected feature is that the entanglement decreases moreor
less exponentially with the separation. We believe that this is
quite natural in view of the fact that the coupling between the
groups also decreases with the distance.

The more remarkable feature is that for small groups, the
entanglement quickly becomes zero altogether, as measured
by the logarithmic negativity. Bound entanglement [6, 17] is
of course not detected by this measure of entanglement, and it
would be an interesting enterprise in its own right to study the
structure of bound entanglement present in coupled oscillator
systems. We will leave this, however, for future investigations.
From now on, the term that no entanglement is present will be
used synonymically with the statement that the logarithmic
negativity vanishes.

For groups of size 1, the log-negativity is zero already at
separation 1 (the gap consists of one oscillator). For groups
of size 2, there is still entanglement at separation 1, but none
at separation 2. The larger the groups, the larger the maxi-



12

0 2 4 6 8 10 12 14 16
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

N vs. group separation and group size (s)

Group separation

N

s=2 

s=3 

s=4 

s=5 

N

Group separation

vs. group separation and group sizeN s

FIG. 10: Log-negativity for two contiguous groups that do not com-
prise the whole chain. The chain consists of 40 oscillators,coupling
is nearest-neighbor with coupling strengthα = 20. Shown is the
log-negativity, displayed on a logarithmic scale, versus the separa-
tion between the groups, i.e., the number of oscillator positions be-
tween them. The different curves are for different group sizess (both
groups are taken to be equal in size). The curve for group size1 is
not visible because it is a single point: the log-negativitybetween 2
oscillators turns out to be 0 whenever their separation is larger than
0.

mal separation for which there is still entanglement can be.
One could try to interpret this by saying that there is a kind
of threshold value below which entanglement drops to zero.
However, this is more a reformulation of the results than an
explanation, because it sheds no light on why this supposed
threshold should depend on the group size.

To really explain what is happening, we need to take a
closer look at the exact calculations. Consider first two groups
of oscillators of size 2 and with separation 1; that is, group1
is at positions 1 and 2, group 2 at 4 and 5. TheQ-matrix of
this configuration (withn = 40 andα = 20) has eigenvalues
2.063, 1.1339, 1.0938 and 0.88361. As one of the eigenval-
ues is smaller than 1, there is, indeed, entanglement present.
We might be led to think that this entanglement is the cumula-
tive result of the entanglement between the different oscillator
pairs, (1,4), (1,5), (2,4) and (2,5), but this is not true, because
these pairs are not entangled themselves: their separationis
larger than 0. What is happening here is that the eigenvalues
of the Q-matrix belonging to pair (1,4), say, are 1.8065 and
1.1724, which are both larger than 1 and, therefore, do not
count in the entanglement figure.

The resolution of this strange behaviour in terms of the sep-
aration is that the mere fact alone of having correlations be-
tween the groups (eigenvalues ofQ different from 1) is not
enough to have entanglement. The correlations must be of
special nature, namely: the eigenvalues ofQ must be smaller
than 1. One could say that larger groups can more easily ex-
hibit entanglement; theirQ matrix has a larger dimension and,
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FIG. 11: Classical correlations in a chain consisting of 40 oscillators;
coupling is nearest-neighbor with coupling strengthα = 20. Shown
is the quantity〈X̂1X̂j〉, displayed on a logarithmic scale, versus the
second oscillator indexj.

hence, more eigenvalues, so that there are more opportunities
for having at least one eigenvalue smaller than 1.

In this respect, it is interesting also to have a look at the
classicalcorrelations in the chain, i.e. the expectation values
〈X̂jX̂k〉. From the treatment in Section II we immediately
see that these correlations are given by the elements of the
matrix γx/2 = V −1/2/2. In the case of circulant symmetry,
we only have to consider the first row of the matrix, giving
the correlations between the first oscillator and any other one.
Figure 11 shows these classical correlations for the system
considered in Figure 10 (n = 40, α = 20). As could be
expected, these correlations decrease exponentially withthe
oscillator distance and, furthermore, never vanish completely.

E. Thermal state

To conclude this section, we consider a thermal state in-
stead of the ground state. The calculations are exactly the
same in both cases, apart from the fact that in the covariance
matrix there is an additional factor11n+2(exp(β

√
V )−11n)−1

to theγp andγx blocks (T = 1/β). The results are shown in
Figure 12. One sees that for small temperatures the negativity
is equal to the ground state negativity, and from some value
onwards it starts to decrease more or less linearly withT until
there is no (free) entanglement at all anymore.

VII. DISCUSSION

The numerical results we have obtained in Section VI can
be interpreted in a qualitative way, by means of two rules-of-
thumb. These rules are not to be interpreted as strict math-
ematical statements; for that, we already have the exact for-
mulas. The importance of the two rules is that they allow to
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FIG. 12: Log-negativity of a thermal state with temperatureT versus
T and chain sizen. Symmetrically bisected chain, nearest-neighbor
interaction with couplingα = 20.

reason about the dependence of entanglement on various fac-
tors, like group size, coupling strengths and group geometry.

The first rule is that,due to the coupling between the oscil-
lators, the system exhibits inter-oscillator correlations which
are decreasing with distance. This is a fairly natural state-
ment, in view of the fact that the couplings between the oscil-
lators are short-range as well. In a more mathematical way,
one could consider the matrixγx = V −1/2, whose elements
are the classical correlations〈X̂jX̂k〉. Thej-th row describes
the correlations between thej-th oscillator and all other os-
cillators. The correlations can thus, in a figurative way, be
subdivided into packets, one packet for every row in the cor-
relation matrix. For chains with a circulant potential matrix V ,
it is self-evident thatγx is also circulant so that the correlation
packets all have an identical shape (see Figure 13).

The second rule is thatthe entanglement between two
groups of oscillators depends on the total amount of correla-
tion between the groups. Again, this rule looks fairly innocu-
ous and even trivial. However, combining the two rules read-
ily shows why, in the case of contiguous groups, the entangle-
ment in function of the group sizes should reach a plateau. In-
deed, even while the total amount of correlation grows, more
or less, linearly with the chain size, this has very little impact
on the entanglement between the groups because it are only
the correlation packets that straddle the group boundariesthat
enter in the bipartite entanglement figure. For large groups,
most of the correlation packets describe correlationswithin
the groups. What is important is the amount of correlations
betweenthe groups, and this quantity is virtually independent
on the group size, provided the groups are so large they can
accomodate most of the packets within their boundaries.

We must stress, however, that these two rules are of a qual-
itative nature. As noted already in Section VI, in the discus-
sion of the dependence of entanglement on group separation,
having correlations between the groups alone is not enough

FIG. 13: Schematic drawing of the inter-oscillator correlation pack-
ets, i.e. the rows of the correlation matrixγx. The line thickness
indicates the amount by which the correlation packet is involved in
the entanglement between the groups, i.e., how much it is shared by
the two groups.

for having entanglement. The correlations must be such that
theQ matrix has at least one eigenvalue smaller than 1. The
bottom line is in any case that one must go through the exact
calculations to see whether or not there is entanglement.

Another effect that can be accounted for is the dependence
of the log-negativity on the group size if at least one group is
very small. If both groups are very small, say 1 oscillator both,
then the packets are so wide they wind up along the chain and,
therefore, cross every group more than once, adding to the en-
tanglement figure a number of times. If one of the groups is
kept fixed, and the other is made larger, the winding number
of the packets decreases and so does the amount by which the
packet is shared by the groups. This effect could explain the
decrease of entanglement with growingn2. At this point, the
qualitative reasoning again breaks down, however, since the
reduction of the amount of sharing per packet is counteracted
by an increase in the number of packets. To show that the bal-
ance is still in favour of an entanglement decrease, once again
one really needs to go through the exact calculations; this is
what we have done in Section IV. Nevertheless, the qualitative
reasoning has the virtue that it shows what the main ingredi-
ents are. Furthermore, it immediately leads to the conjecture
that the effect of decreasing entanglement would not occur in
a chain that is not connected end-to-end, since no winding oc-
curs there.

A numerical experiment immediately showed that this is
exactly what happens, as witnessed by Figure 14. One has
to be careful, though, about how one “opens” the chain. To
clearly show the disappearance of the winding effect, one has
to make sure that opening the chain does not introduce side-
effects. Particularly, the oscillators at both ends shouldstill
“see” the same springs as before opening the chain. One can
take care of this by connecting the ends of the chain to two
additional oscillators that are kept in a zero-energy state(i.e.
with zeroX-variance; hence, they must be oscillators with in-
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FIG. 14: Same as Figure 5, but with a Hamiltonian that does notcon-
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plains why the log-negativity is only about one half of the value it
had with end-to-end connection. Furthermore, for smalln1 we now
see an increase withn2 instead of a decrease, which seems to imply
that the counterintuitive behaviour on the ring is actuallya winding
effect (see text).

finite mass). At the level of the potential matrix, this means
that the diagonal elementsV1,1 andVn,n are still1 + 2α, al-
though the elementsV1,n andVn,1 are being set to zero. Not-
ing the analogy between harmonic chains and transmission
lines, we call this special connection process thetermination
of the harmonic chain. In transmission line theory, correctter-

mination of a line (using appropriately matched impedances)
is necessary to avoid signal reflections at the ends of the line.
We believe that analogous reflection effects could be exhib-
ited by non-terminated harmonic chains, but leave the investi-
gation of this boundary phenomenon to future work.

Finally, for non-contiguous groups, and, specifically, for
the entanglement between even and odd oscillators, the two
rules-of-thumb correctly predict that the entanglement keeps
increasing with growing chain length. Indeed, ifn grows,
then the “boundary area” between the even and odd group
also grows (linearly withn), in contrast with the contiguous
groups, whose boundary area is fixed (1 for the open chain, 2
for the closed chain). Hence, the amount of correlations strad-
dling the boundary should grow too. The exact calculation
confirms this effect and shows a linear relationship between
log-negativity and chain size. It would be interesting to inves-
tigate what happens in three-dimensional oscillator arrange-
ments with couplings decreasing with distance. We believe
that a similar relation will show up between entanglement be-
tween two groups and the area of the boundary between the
groups. We leave this issue, however, for future investiga-
tions.
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