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Semiclassical threshold law when the Wannier exponent diverges
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Using semiclassical methods we investigate the threshold behavior for three-particle breakup of a system
with one particle of charg& and two other particles of chargeq. For the particular case where the ratio of
the charges of the third particle to the wing particleZig= 1/4, the Wannier exponent for breakup diverges
and the threshold law changes from a power law to an exponential law of the formexfi). The threshold
behavior is tested above the region of divergence and it is found th@tder 0.3 a power law does not hold.
lonizing trajectories show that the dynamics within the near zone can become crucial to the energy dependence
of the cross section. Cases are found to arise where more than one trajectory contributes to the same final state
giving rise to semiclassical interference effe¢81050-294{08)05205-4

PACS numbds): 34.80.Dp

[. INTRODUCTION Cross sections are also calculated for a range of energies
and nuclear charges and it is found that they do not follow a
Wannier's picture of ridge propagation and Wannierpower law for a range of greater than 0.25, at least for
theory[1] have been shown to give the correct threshold lanenergies greater than 0.01 eV. WH&a 0.3 the cross section
when the cross section is calculated semiclassically fodoes not fit a power law over the range of very low energies
electron-impact ionization of hydrogefi2,3]. Near the that we investigate.

thresholdE— O+ Wannier theory predicts a power law In addition, deflection functions are found that are non-
monotonic where different trajectories lead to the same final
o~E* (1)  state and interfere in the semiclassi@matrix. This is a

) . surprising result that differs from previous results ¥ 1
for the breakup cross section of three charged particles whergj.

E is the total energy of the system agdis the threshold lonizing trajectories that give a power law follow very
exponent. In the case of a symmetric system where one Gfimilar paths in the reaction and Coulomb zof#kfor dif-

the particles has madd and chargeZ and the other two ferent small energies above threshold. These trajectories cor-
wing (outgoing particles have equal massesand charges respond to the orbits at small excess energy that Wannier
—g (Z andq have the same sigrone has for the exponent showed are no different in these zones from orbits of zero

[4,5] energy. lonizing trajectories that follow different paths
within these zoneor the small energies usgdive rise to a
_ 3\/1 161+2m/M 1 2 different law. The differing near-zone trajectories demon-
{= 4 + 9 1-q/4z 4 @ strate the requirement that for certain systems the behavior in

the near zone must be included to correctly evaluate the cross
If m<M, q=1, andZ=1, the original Wannier resulf  section.
=1.127 is recovered for electron-impact ionization of hydro-
gen.
When the ratio of charges of the third particle to the wing Il. THEORY
particles isZ/q=1/4, the Wannier exponent becomes infi-

) . ) . We use a semiclassical formulation for inelastic electron-
nite. This case arises in the process

atom scattering. It is derived from the path-integral represen-
4+ 4 B3t 4+ 4o+ Bett tation of theS matrix and is especially designed to describe
Be Be’’—Be e +Be @ the threshold region of ionizatidr2,3].

We wish to find the semiclassical threshold law for this case, " SemiclassicalS-matrix theory, for collisions near
and to test the validity of Wannier theory wh&#q is close threshold £—0), only the partial wave for total gr!gular
to 1/4. In the following sections we study a model system of'0mentumL =0 need be calculated. It is also sufficient to
a nucleus of fractional chargg and two electrons. When confine the system to a collinear configuratiam interelec-
Z=1/4 (atomic units used here and throughatliis system tronic anglt—;- 0ft); o= 1890’ V.Vh'Ch is a fixed point of the clas-
is analogous to the above case. The system is describ&df@! equations of motion in a two-electron atom

within the semiclassiceb-matrix formalism[2,3]. A thresh- . The relevant Hamiltonian for collinear two-electron mo-
old law of the form expt\/\E) is found to fit the cross 10" 1S

section best; this is in agreement with the purely classical

result of Dimitrijevic et al. [6]. The functional form of the 2 2

L : X . p1 P> Z Z 1
cross section is also in agreement with a recent analytical He—+ —— —— — 4 . (4)
semiclassical prediction of lhret al. [7]. 2 2 1y rp rptrp
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This Hamiltonian is regularizedsee the Appendijxto re- —ionization
move the Coulomb singularities. }.excimn-o,, exchange
Semiclassicab-matrix theory incorporates two additional 16 —— —
effects over Wannier's model. First, Wannigl] assumed
that points in phase space in the “reaction zone” are equally 12
distributed. Semiclassic&® matrix theory drops this assump-
tion and incorporates the behavior within this zone. Second, 81 |
Wannier approximated the cés,=—1 line across the n
saddle on the potential surface, in hyperspherical coordi- o
nates, as an inverted oscillator potential. Semiclassical - ¢
S-matrix theory takes the exact line including singularities. v
4}
A. The semiclassicalS matrix 3
Semiclassically, for this system the cross section reduces
to a probability P, . that is directly proportional to the 12+ .
square modulus of th& matrix, given by 6 | | . | |
id v 15 20 25 30 35 40
Seer(E)=2, ¢7><s,s'>exp[7’—2;. (5 ro(au)

FIG. 1. Classical deflection function for final energyof the

The weight of thejth trajectory is determined by its prob- poiectile electron as a function of its initial position 4000 &t

ability for Z=0.25 at a total energy dd=0.1 eV. The intervals that cor-
1l ge|-1 respond to excitation, ionization, and exchange are marked.
&
Pi(e,e')==|—| , 6 . . . .
i« ) R ar]-’ o © the ratio of nuclear charge to wing particle charge is less than

one (Z/gq<1) the deflection function can become, in a suit-
whereR is the normalization constant, given by the sum ofable energy range, nonmonotonic. We shall return to this
all processes that can happen, a!ﬁdb the initial position of observation later. The normalization above holds whether or
the projectile on thejth trajectory. The classical action Not the deflection function is monotonic.
®;(e,e')=/q,dp,+q,dp, and a contribution from the Over the energy range we use to calculate the threshold
caustics and focal points along the trajectdwhere the €xponent the deflection function stays monotonic in the ion-
semiclassical approximation breaks dovef v;m/2 define ization interval. Because only one trajectory contributes to a
the accumulated phase of each trajectory. We sum over afinal projectile energy, the sum of Eq(5) has only one
classical trajectorieg that take the projectile from initial t€rm remaining with the consequence that the semiclassical
energye’ to final energye during the collision. result collapses to the classical cross section, without any

effects from the phase factor of E@), giving

B. The classical deflection function 1lor’
Ps,s’:P(SvSI)E ﬁ

de @)

The position of the initial free electron’ (the “impact
parameter’} and its energy after collisioa (the “final-state
observable’} are used to describe ionization. The initial dis- The total cross section is proportional to the intervals 'of
tance from the nucleus of the projectile is taken tore (which can be read off from the deflection functiofor
+r’, wherer is some arbitrary fixed distance large enoughwhich a certain process occurs. For ionization the cross sec-
so that the result is independent rgf (4000 a.u. is suitable tion is
for the system we investiggtandr’ is the parameter varied.

e/

The deflection functioriFig. 1) is periodic inr’ and has a P (E)= EJE o’ de = lf dr,:Ar’(lon)
period R’ that is the distance that the asymptotically free ton Rlo|de],, RJv cion R
projectile travels during a complete cycle on the Kepler el- (8
lipse of the bound electron. The parametéiis varied over
the distanc&r’ and a deflection function is formed that rep- IIl. RESULTS

resents all possible final states of the projectile electron. It

now becomes apparent that for our particular choice of vari- WhenZ=1/4 and the bound electron is in its ground state

ables the normalization constaRtthat appears in Eq6)  the total ionization cross section for electron impésg. 2)

above takes the same valueRls does not show an obvious power-law structure. Between
It has been seen previoudlg,3| that for the case where 0.01 eV, which is the lowest energy for which the cross

Z=1 the deflection functior (r’) is found to be monotonic section is obtained, and 0.08 eV the calculated points are

(it has only one intersection with a horizontal line &€, better fitted to an exponential law of the form

indicating the correct initial condition’), meaning that only A exp(—\/+E). Our best-fit value foA was 0.6430 and for

a singletrajectory contributes to each differential cross sec-\ it was 0.3056. We used a Runge-Kutta-Merson method for

tion with a final projectile energy. We find that whenever the numerical integration and set the accuracy to ten decimal
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FIG. 2. Total ionization cross section for electron impact on a
nucleus with charg&=1/4 and a bound electron with energy
=—Z7?/2n?, wheren=1. The filled circles are the calculated values
and the line isA exp(~\/+E), with A=0.6430 anch = 0.3056.

FIG. 4. lonization cross sections plotted on a log-log graph for
various values oF. Circles correspond to calculated values and the
lines are the power laWl) with exponent(2). The cross sections
are shifted for clarity.

vals were found to disappear below an energy of 0.0653 eV.

places. Even at the very low energy of 0.08 eV the calculate&uch an effect might be an artifact of their calculations and
cross section deviates away from the fitted line. If the crossvas not found here.

section is continued to higher energi€sg. 3, it is found to

An exponential threshold law was also obtained in a re-

become less steep and reach a maximum at approximatefgnt analytical semiclassical treatm¢n that is based on a
0.2 eV, at which point it begins to decrease.

In the purely classical work of Dimitrijeviet al. [6] us-

half-collision approach. The analytical threshold law derived
was in very good agreement with the numerical classical

ing classical trajectory Monte Carlo calculations in three di-Monte Carlo calculation§6]. The S-matrix theory employed

mensions, a threshold law of the fornexp(—\/\E) is also
the full-collision treatment values oA
=1.875 67 10° and \ =0.330 698 were obtained. The val-
ues forA compare favorablythe values forA are not the
same because of the different ways that the cross section h
been calculated It is found in[6] that inclusion of another

found. For

in this work is a more rigourous treatment in the sense that it
probes the sensitivity of the cross section on the initial state.
The full-collision S-matrix approach confirms the functional
behavior predicted by the half-collision approach.

Even though the threshold expondRj becomes infinite
Ahen Z/q=1/4, Wannier theory still predicts a power law
for the ionization cross section for &lq>1/4. This predic-

point atE=0.1088 eV resulted in a much worse fit. We se€jon, was tested by plotting the cross section between 0.01
now that the slope of the cross section lessens at this energy,4 0 08 eV on a logarithmic scale grafffig. 4).

(Fig. 3), so we are able to explain this fact. lonization inter-
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FIG. 3. Total ionization cross section of Fig. 2 plotted between
E=0 and 0.2 eV.

0.10
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A power law would give a straight line on this graph.
Rather than an abrupt change from an exponential law to a
power law occurring aZ=0.25 as would be expected from
Wannier theory(which is based on the saddle dynamics
only), the threshold behavior changes smoothly from an ex-
ponential behavior aZ=0.25 to what looks like behavior
that will give the expected power law at abotit=0.2865.
The behavior then again becomes different from a power law
(at this point the ionizing trajectories cross the=r, diag-
onal), but quickly converges to a power law with the Wan-
nier exponent2) whenzZ>0.3.

Even when a power law is not apparent it cannot be ex-
cluded that the power-law behavior predicted by Wannier
theory holds for even lower energies. Rather the cross sec-
tion displays behavior of a different form for the calculated
points (>0.01 eV}, which may not be the case &—0.
Numerical constraints meant that energies below 0.01 eV
could not be accurately studied.

A. Characteristics of the deflection function

Cross sections are produced by extracting the ionization
interval from the systems corresponding deflection function.
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FIG. 5. Deflection functions aE=0.02 eV for values ofZ FIG. 6. Classical deflection function at a total energy Eof

between 0.28 and 0.294. Each subsequent deflection function in the 0.3 eV, which displays nonmonotonic behavier.3, andy mark

direction of the bold arrows corresponds to an increasé& iof different trajectories that lead to the same final energy for the pro-

0.002.r{ is the initial value ofr’ for each deflection function. jectile electron(ground-state energy for the hydrogenic atom with
chargeZ=1/4).

The deflection functions were found to display some inter-apility for these types of deflection function, hence the ab-
esting properties. When they are plotted for different valuesence of cross sections betwegn 0.28 and 0.288 in Fig. 4.
of Z atE=0.02 eV(Fig. 5 the most noticeable effect is that

for values ofZ whose cross sections display a clear power B. lonizing trajectories

!aw the.deflectlon.functlons are “flipped.” The ex9|tat|on lonizing trajectories plotted over a contour plot of the
interval is on the right rather than the left. Another interest-pqantial surface are presented in Figs. 8—11. In FigZ 8,

ing feature is that the deflection functions on this plot for_g 4 and the cross section for this system follows very
0.28<7<0.288 are nonmonotonic within the exchange scatgjosely a power law with the Wannier exponent. Two ioniz-
tering interval with the possibility of three trajectories con- jng trajectories are plotted, one with a total eneBgy 0.03
tributing to the same final energy for the initially incoming ev and the other witf£=0.07 eV. The trajectories follow
electron. In general, the deflection functie(r') can, under very similar paths and move out onto and along the ridge
suitable conditions, become nonmonotonic wh&lg<1.  almost indistinguishably. These types of trajectories corre-
Usually this occurs at very low energy; however, as the
charge ratio decreases the energy at which this can happe 80 1=
increases. Figure 5 shows a nonmonotonic deflection func
tion atZ=0.286 forE=0.02 eV.

For the particular case of=1 andZ=1/4 we see that the
nonmonotonicity is apparent at energles 0.3 eV (Fig. 6).
WhenZ=0.24 the deflection functiofwhich is not plotted 40 -
displays a different form of nonmonotonicity; it is now con-
tinuous, oscillating between two positive values, i.e., only =
excitation can occur and only between two energies. =

When we plot(Fig. 7) the three trajectories that contribute ~
to e/E=3.125<10 2 a.u./0.3 eV ¢=—Z%2) we can see &
quite clearly the way the trajectories have been affected by
the potential. More than one trajectory contributes to a final
projectile energy so there will be an effect from the phase
factor in Eq.(5).

The deflection function for one particulZralso changes
in a similar manner to Fig. 5 when the energy is incredssd
opposed to increasing at constantE). So calculating a
cross section could, in practice, involve the use of different
types of deflection function. At the point where a flip occurs r, (au.)
the slope through the ionization interval is very steep indeed.

We were unable to calculate a cross section with any reli-  FIG. 7. Trajectories corresponding &g 8, andy in Fig. 6.

20




57 SEMICLASSICAL THRESHOLD LAW WHEN THE . .. 3587

3 3
0r Ki)S
R 5 . A
g 20 g 01
15} N 15¢
10+ 10+
5¢ 5L
0 : : : ' : ' 0 : ' ' : : :
0 5 10 1% 2 5 3N B 0 5 10 1B 2 5 N B
r(au) r ()
FIG. 8. Contour plot of the potential faZ=0.4. The contour FIG. 10. Contour plot of potential and ionization trajectories for

plot begins at; (i=1,2)~2 to allow incremental contours without Z=0.286.
too much bunching. Trajectories leading to ionization with equal
energy sharing between the electrorgE=0.5) are plotted for

different values of total energy. potential in different ways. Ultimately the potential tends to

spond to the orbits that Wannier obsenfdd that do not “focus” trgjectories with diffe_rent energies to different ex-
differ in the reaction and Coulomb zones when they havdents, pulling th_em onto the ridge. The e_ffect c_)f the potential
zero energy or small energy. All trajectories that led toiS no_longer uniform(as it is when the trajectories are nearly
double escape at zero energy will continue to do so at finitédentica). o , . _
energy; however, other trajectories leading to double escape Figure 10 shows ionizing trajectories that clearly differ
will also be possible because the energy is finite. This is idfoM each othetalthough this difference is not greafThey
agreement with Wannier and for cases like this Wannie@re plotted for the case whet=0.286. Figure 4 shows the
theory is valid. cross section flattening out &increases from 0.25. AY
Figure 9 is for theZ=0.25 case where the cross section =0-2865 it would be logical to extrapolate this evolution to

follows an exponential law. There is no longer such a simple? Cross section that was near the expected power law. The
difference in trajectories in this plot is less than tHAe

=0.25 case, so a threshold law closer to that predicted by

3 T Wannier is not unreasonable.
ST In Fig. 11,Z=0.288 and the trajectories have crossed the
0+ Pl - r,=r, diagonal and clearly follow different paths. The dif-
D ference is greater than the previous plot and the cross section
25l SO .0008 i also differs from the Wannier power law to a greater extent.
i i 00
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FIG. 9. Contour plot of potential and ionization trajectories for o 4 L L I I w
Z=0.25. 0 5 0 1 2 2 3 B

relationship between higher energies and more orbits leading nau)

to double gscape. Bfecause the. f[rajectorles begin to move out FIG. 11. Contour plot of potential and ionization trajectories for
along the ridge at different positions they are affected by the, _ 5gg°



3588 P. CHOCIAN, W. IHRA, AND P. F. O'MAHONY 57

IV. CONCLUSION gies and for this small range the trajectories would be indis-
tinguishable and it would seem, objectively, that the Wannier
law should be regained. Figure 4 shows that at lower ener-
gies for systems that do not give a power law the cross sec-

int the Wanni ¢ di Th tion h tion has a slope that gets closer to that calculated using the
point Ine vvannier exponent diverges. The cross section annier exponent. Due to numerical constraints the region

been found not to follow a power Iawlfor a range of values ofof very low energy could not be studied with confidence.
Z andE. It cannot be stated categorically, however, that the

cross section does not follow a power law at energies lower
than those studied. At the point where the Wannier exponent ACKNOWLEDGMENTS
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ment[7]. In the Coulombic system studied we have demon-
strated the existence of interference effects with the possibil-
ity of more than one trajectory contributing to the same final

state so that the semi-classic@lmatrix must be summed APPENDIX: REGULARIZATION
coherently. OF THE COULOMB SINGULARITIES

It has been shown that when ionizing trajectories for dif-  \yq can regularize two of the three possible binary colli-
ferent Iovv_ energies are |nd|st_|ngmshable a power law _W't_hsions ¢,=0, r,=0) in the Hamiltoniar(4) by introducing a
the Wannier exponent is obtained. Systems where the ionizssint yransformation to oscillatorlike coordinates where
ing trajectories are different give rise to behavior that at th ~ Q2. The conjugate momenta ape=P,/2Q; , whereP; are

[ | 1 I

low energies studied here does not follow a power law. Th(?he new momenta that remain finite B=0. So that the
dynamics within the near zone can become crucial, particu; L : . -

. . . ' rF ingularity i in small tim with r real
larly where interference is observed. Semiclass&atatrix singularity is passed in small time steps with respect to rea

theory incorporates the exact potential and includes all bet-lme' the time variable is changed to beco rara/(ry

havior within the near zone. These additions give rise to ,r2)dt. We work with a Hamiltonian of zero value to keep

threshold cross section that differs from that predicted b%he_form of Hamllton_s equations invariant ur_1der th_e time-
. ariable transformation. The regularized, singularity free
Wannier theory.

Since different threshold laws are obtained because trajecH—am"toman reads

tories follow different paths for different energies we ques- 92 2o
tion whether at very low energidsiuch less than 0.01 eV H= P1Q; i P2Q1 Z(QiJng)jLQ%Q%

Using semiclassicaG-matrix theory for electron-impact
ionization of an atom of nuclear chargewe have studied
the form of the cross section @approaches 1/4, at which

1
& 5|

and for a very short energy range the threshold law calcu- 8 8

lated would coincide with the Wannier law. At these ener- (A1)
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