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Semiclassical threshold law when the Wannier exponent diverges
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~Received 1 October 1997!

Using semiclassical methods we investigate the threshold behavior for three-particle breakup of a system
with one particle of chargeZ and two other particles of charge2q. For the particular case where the ratio of
the charges of the third particle to the wing particles isZ/q51/4, the Wannier exponent for breakup diverges
and the threshold law changes from a power law to an exponential law of the form exp(2l/AE). The threshold
behavior is tested above the region of divergence and it is found that forZ/q,0.3 a power law does not hold.
Ionizing trajectories show that the dynamics within the near zone can become crucial to the energy dependence
of the cross section. Cases are found to arise where more than one trajectory contributes to the same final state
giving rise to semiclassical interference effects.@S1050-2947~98!05205-6#
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I. INTRODUCTION

Wannier’s picture of ridge propagation and Wann
theory@1# have been shown to give the correct threshold l
when the cross section is calculated semiclassically
electron-impact ionization of hydrogen@2,3#. Near the
thresholdE→01 Wannier theory predicts a power law

s;Ez ~1!

for the breakup cross section of three charged particles w
E is the total energy of the system andz is the threshold
exponent. In the case of a symmetric system where on
the particles has massM and chargeZ and the other two
wing ~outgoing! particles have equal massesm and charges
2q (Z andq have the same sign! one has for the exponen
@4,5#
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1

4
. ~2!

If m!M , q51, and Z51, the original Wannier resultz
51.127 is recovered for electron-impact ionization of hyd
gen.

When the ratio of charges of the third particle to the wi
particles isZ/q51/4, the Wannier exponent becomes in
nite. This case arises in the process

Be411Be31→Be411e21Be41. ~3!

We wish to find the semiclassical threshold law for this ca
and to test the validity of Wannier theory whenZ/q is close
to 1/4. In the following sections we study a model system
a nucleus of fractional chargeZ and two electrons. When
Z51/4 ~atomic units used here and throughout! this system
is analogous to the above case. The system is descr
within the semiclassicalS-matrix formalism@2,3#. A thresh-
old law of the form exp(2l/AE) is found to fit the cross
section best; this is in agreement with the purely class
result of Dimitrijević et al. @6#. The functional form of the
cross section is also in agreement with a recent analy
semiclassical prediction of Ihraet al. @7#.
571050-2947/98/57~5!/3583~6!/$15.00
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Cross sections are also calculated for a range of ener
and nuclear charges and it is found that they do not follow
power law for a range ofZ greater than 0.25, at least fo
energies greater than 0.01 eV. WhenZ,0.3 the cross section
does not fit a power law over the range of very low energ
that we investigate.

In addition, deflection functions are found that are no
monotonic where different trajectories lead to the same fi
state and interfere in the semiclassicalS matrix. This is a
surprising result that differs from previous results forZ51
@3#.

Ionizing trajectories that give a power law follow ver
similar paths in the reaction and Coulomb zones@1# for dif-
ferent small energies above threshold. These trajectories
respond to the orbits at small excess energy that Wan
showed are no different in these zones from orbits of z
energy. Ionizing trajectories that follow different path
within these zones~for the small energies used! give rise to a
different law. The differing near-zone trajectories demo
strate the requirement that for certain systems the behavio
the near zone must be included to correctly evaluate the c
section.

II. THEORY

We use a semiclassical formulation for inelastic electro
atom scattering. It is derived from the path-integral repres
tation of theS matrix and is especially designed to descri
the threshold region of ionization@2,3#.

In semiclassicalS-matrix theory, for collisions near
threshold (E→0), only the partial wave for total angula
momentumL50 need be calculated. It is also sufficient
confine the system to a collinear configuration~an interelec-
tronic angle ofu1,25180°, which is a fixed point of the clas
sical equations of motion in a two-electron atom!.

The relevant Hamiltonian for collinear two-electron m
tion is

H5
p1

2

2
1

p2
2

2
2

Z

r 1
2

Z

r 2
1

1

r 11r 2
. ~4!
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This Hamiltonian is regularized~see the Appendix! to re-
move the Coulomb singularities.

SemiclassicalS-matrix theory incorporates two additiona
effects over Wannier’s model. First, Wannier@1# assumed
that points in phase space in the ‘‘reaction zone’’ are equ
distributed. SemiclassicalS-matrix theory drops this assump
tion and incorporates the behavior within this zone. Seco
Wannier approximated the cosu1,2521 line across the
saddle on the potential surface, in hyperspherical coo
nates, as an inverted oscillator potential. Semiclass
S-matrix theory takes the exact line including singularitie

A. The semiclassicalS matrix

Semiclassically, for this system the cross section redu
to a probability P«,«8 that is directly proportional to the
square modulus of theS matrix, given by

S«,«8~E!5(
j

AP~«,«8!expF iF j

\
2

in jp

2 G . ~5!

The weight of thej th trajectory is determined by its prob
ability

Pj~«,«8!5
1

RU ]«

]r j8
U

«8

21

, ~6!

whereR is the normalization constant, given by the sum
all processes that can happen, andr j8 is the initial position of
the projectile on thej th trajectory. The classical actio
F j («,«8)5*q1dp11*q2dp2 and a contribution from the
caustics and focal points along the trajectory~where the
semiclassical approximation breaks down! of n jp/2 define
the accumulated phase of each trajectory. We sum ove
classical trajectoriesj that take the projectile from initia
energy«8 to final energy« during the collision.

B. The classical deflection function

The position of the initial free electronr 8 ~the ‘‘impact
parameter’’! and its energy after collision« ~the ‘‘final-state
observable’’! are used to describe ionization. The initial di
tance from the nucleus of the projectile is taken to ber 08
1r 8, wherer 08 is some arbitrary fixed distance large enou
so that the result is independent ofr 08 ~4000 a.u. is suitable
for the system we investigate! andr 8 is the parameter varied

The deflection function~Fig. 1! is periodic inr 8 and has a
period R8 that is the distance that the asymptotically fr
projectile travels during a complete cycle on the Kepler
lipse of the bound electron. The parameterr 8 is varied over
the distanceR8 and a deflection function is formed that re
resents all possible final states of the projectile electron
now becomes apparent that for our particular choice of v
ables the normalization constantR that appears in Eq.~6!
above takes the same value asR8.

It has been seen previously@2,3# that for the case where
Z51 the deflection function«(r 8) is found to be monotonic
~it has only one intersection with a horizontal line at«/E,
indicating the correct initial conditionr 8), meaning that only
a single trajectory contributes to each differential cross s
tion with a final projectile energy«. We find that whenever
ly
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-
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the ratio of nuclear charge to wing particle charge is less t
one (Z/q,1) the deflection function can become, in a su
able energy range, nonmonotonic. We shall return to
observation later. The normalization above holds whethe
not the deflection function is monotonic.

Over the energy range we use to calculate the thresh
exponent the deflection function stays monotonic in the i
ization interval. Because only one trajectory contributes t
final projectile energy«, the sum of Eq.~5! has only one
term remaining with the consequence that the semiclass
result collapses to the classical cross section, without
effects from the phase factor of Eq.~6!, giving

P«,«85P~«,«8![
1

RU]r 8

]« U
«8

. ~7!

The total cross section is proportional to the intervals ofr 8
~which can be read off from the deflection function! for
which a certain process occurs. For ionization the cross
tion is

Pion~E!5
1

RE0

EU]r 8

]« U
«8

d«5
1

REr 8P ion
dr85

Dr 8~ ion!

R
.

~8!

III. RESULTS

WhenZ51/4 and the bound electron is in its ground sta
the total ionization cross section for electron impact~Fig. 2!
does not show an obvious power-law structure. Betwe
0.01 eV, which is the lowest energy for which the cro
section is obtained, and 0.08 eV the calculated points
better fitted to an exponential law of the form
A exp(2l/AE). Our best-fit value forA was 0.6430 and for
l it was 0.3056. We used a Runge-Kutta-Merson method
the numerical integration and set the accuracy to ten dec

FIG. 1. Classical deflection function for final energy« of the
projectile electron as a function of its initial position 4000 a.u.1r 8
for Z50.25 at a total energy ofE50.1 eV. The intervals that cor
respond to excitation, ionization, and exchange are marked.
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57 3585SEMICLASSICAL THRESHOLD LAW WHEN THE . . .
places. Even at the very low energy of 0.08 eV the calcula
cross section deviates away from the fitted line. If the cr
section is continued to higher energies~Fig. 3!, it is found to
become less steep and reach a maximum at approxim
0.2 eV, at which point it begins to decrease.

In the purely classical work of Dimitrijevic´ et al. @6# us-
ing classical trajectory Monte Carlo calculations in three
mensions, a threshold law of the formA exp(2l/AE) is also
found. For the full-collision treatment values ofA
51.875 673103 andl50.330 698 were obtained. The va
ues forl compare favorably~the values forA are not the
same because of the different ways that the cross section
been calculated!. It is found in @6# that inclusion of another
point atE50.1088 eV resulted in a much worse fit. We s
now that the slope of the cross section lessens at this en
~Fig. 3!, so we are able to explain this fact. Ionization inte

FIG. 2. Total ionization cross section for electron impact on
nucleus with chargeZ51/4 and a bound electron with energy«8
52Z2/2n2, wheren51. The filled circles are the calculated valu
and the line isA exp(2l/AE), with A50.6430 andl50.3056.

FIG. 3. Total ionization cross section of Fig. 2 plotted betwe
E50 and 0.2 eV.
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vals were found to disappear below an energy of 0.0653
Such an effect might be an artifact of their calculations a
was not found here.

An exponential threshold law was also obtained in a
cent analytical semiclassical treatment@7# that is based on a
half-collision approach. The analytical threshold law deriv
was in very good agreement with the numerical class
Monte Carlo calculations@6#. TheS-matrix theory employed
in this work is a more rigourous treatment in the sense tha
probes the sensitivity of the cross section on the initial sta
The full-collision S-matrix approach confirms the functiona
behavior predicted by the half-collision approach.

Even though the threshold exponent~2! becomes infinite
when Z/q51/4, Wannier theory still predicts a power la
for the ionization cross section for allZ/q.1/4. This predic-
tion was tested by plotting the cross section between 0
and 0.08 eV on a logarithmic scale graph~Fig. 4!.

A power law would give a straight line on this grap
Rather than an abrupt change from an exponential law
power law occurring atZ50.25 as would be expected from
Wannier theory~which is based on the saddle dynami
only!, the threshold behavior changes smoothly from an
ponential behavior atZ50.25 to what looks like behavio
that will give the expected power law at aboutZ50.2865.
The behavior then again becomes different from a power
~at this point the ionizing trajectories cross ther 15r 2 diag-
onal!, but quickly converges to a power law with the Wa
nier exponent~2! whenZ.0.3.

Even when a power law is not apparent it cannot be
cluded that the power-law behavior predicted by Wann
theory holds for even lower energies. Rather the cross
tion displays behavior of a different form for the calculat
points (.0.01 eV!, which may not be the case asE→0.
Numerical constraints meant that energies below 0.01
could not be accurately studied.

A. Characteristics of the deflection function

Cross sections are produced by extracting the ioniza
interval from the systems corresponding deflection functi

FIG. 4. Ionization cross sections plotted on a log-log graph
various values ofZ. Circles correspond to calculated values and
lines are the power law~1! with exponent~2!. The cross sections
are shifted for clarity.
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The deflection functions were found to display some int
esting properties. When they are plotted for different valu
of Z at E50.02 eV~Fig. 5! the most noticeable effect is tha
for values ofZ whose cross sections display a clear pow
law the deflection functions are ‘‘flipped.’’ The excitatio
interval is on the right rather than the left. Another intere
ing feature is that the deflection functions on this plot
0.28<Z,0.288 are nonmonotonic within the exchange sc
tering interval with the possibility of three trajectories co
tributing to the same final energy for the initially incomin
electron. In general, the deflection function«(r 8) can, under
suitable conditions, become nonmonotonic whenZ/q,1.
Usually this occurs at very low energy; however, as
charge ratio decreases the energy at which this can ha
increases. Figure 5 shows a nonmonotonic deflection fu
tion at Z50.286 forE50.02 eV.

For the particular case ofq51 andZ51/4 we see that the
nonmonotonicity is apparent at energiesE50.3 eV ~Fig. 6!.
WhenZ50.24 the deflection function~which is not plotted!
displays a different form of nonmonotonicity; it is now co
tinuous, oscillating between two positive values, i.e., o
excitation can occur and only between two energies.

When we plot~Fig. 7! the three trajectories that contribu
to «/E53.12531022 a.u./0.3 eV («52Z2/2) we can see
quite clearly the way the trajectories have been affected
the potential. More than one trajectory contributes to a fi
projectile energy« so there will be an effect from the phas
factor in Eq.~5!.

The deflection function for one particularZ also changes
in a similar manner to Fig. 5 when the energy is increased~as
opposed to increasingZ at constantE). So calculating a
cross section could, in practice, involve the use of differ
types of deflection function. At the point where a flip occu
the slope through the ionization interval is very steep inde
We were unable to calculate a cross section with any r

FIG. 5. Deflection functions atE50.02 eV for values ofZ
between 0.28 and 0.294. Each subsequent deflection function i
direction of the bold arrows corresponds to an increase inZ of
0.002.r i8 is the initial value ofr 8 for each deflection function.
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ability for these types of deflection function, hence the a
sence of cross sections betweenZ50.28 and 0.288 in Fig. 4

B. Ionizing trajectories

Ionizing trajectories plotted over a contour plot of th
potential surface are presented in Figs. 8–11. In Fig. 8Z
50.4 and the cross section for this system follows ve
closely a power law with the Wannier exponent. Two ion
ing trajectories are plotted, one with a total energyE50.03
eV and the other withE50.07 eV. The trajectories follow
very similar paths and move out onto and along the rid
almost indistinguishably. These types of trajectories cor

the
FIG. 6. Classical deflection function at a total energy ofE

50.3 eV, which displays nonmonotonic behavior.a, b, andg mark
different trajectories that lead to the same final energy for the p
jectile electron~ground-state energy for the hydrogenic atom w
chargeZ51/4).

FIG. 7. Trajectories corresponding toa, b, andg in Fig. 6.
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spond to the orbits that Wannier observed@1# that do not
differ in the reaction and Coulomb zones when they ha
zero energy or small energy. All trajectories that led
double escape at zero energy will continue to do so at fi
energy; however, other trajectories leading to double esc
will also be possible because the energy is finite. This is
agreement with Wannier and for cases like this Wann
theory is valid.

Figure 9 is for theZ50.25 case where the cross secti
follows an exponential law. There is no longer such a sim

relationship between higher energies and more orbits lea
to double escape. Because the trajectories begin to move
along the ridge at different positions they are affected by

FIG. 8. Contour plot of the potential forZ50.4. The contour
plot begins atr i ( i 51,2)'2 to allow incremental contours withou
too much bunching. Trajectories leading to ionization with eq
energy sharing between the electrons («/E50.5) are plotted for
different values of total energyE.

FIG. 9. Contour plot of potential and ionization trajectories f
Z50.25.
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potential in different ways. Ultimately the potential tends
‘‘focus’’ trajectories with different energies to different ex
tents, pulling them onto the ridge. The effect of the poten
is no longer uniform~as it is when the trajectories are near
identical!.

Figure 10 shows ionizing trajectories that clearly diff
from each other~although this difference is not great!. They
are plotted for the case whenZ50.286. Figure 4 shows the
cross section flattening out asZ increases from 0.25. AtZ
50.2865 it would be logical to extrapolate this evolution
a cross section that was near the expected power law.
difference in trajectories in this plot is less than theZ
50.25 case, so a threshold law closer to that predicted
Wannier is not unreasonable.

In Fig. 11,Z50.288 and the trajectories have crossed
r 15r 2 diagonal and clearly follow different paths. The di
ference is greater than the previous plot and the cross se
also differs from the Wannier power law to a greater exte

l

FIG. 10. Contour plot of potential and ionization trajectories f
Z50.286.

FIG. 11. Contour plot of potential and ionization trajectories f
Z50.288.
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IV. CONCLUSION

Using semiclassicalS-matrix theory for electron-impac
ionization of an atom of nuclear chargeZ we have studied
the form of the cross section asZ approaches 1/4, at whic
point the Wannier exponent diverges. The cross section
been found not to follow a power law for a range of values
Z andE. It cannot be stated categorically, however, that
cross section does not follow a power law at energies lo
than those studied. At the point where the Wannier expon
diverges (Z51/4) the cross section is best fitted by an exp
nential function. The coefficient of this function agrees w
with that calculated in the full-collision purely classical trea
ment @6#. This S-matrix approach confirms the function
behavior obtained in a recent analytical semiclassical tr
ment@7#. In the Coulombic system studied we have demo
strated the existence of interference effects with the poss
ity of more than one trajectory contributing to the same fi
state so that the semi-classicalS matrix must be summed
coherently.

It has been shown that when ionizing trajectories for d
ferent low energies are indistinguishable a power law w
the Wannier exponent is obtained. Systems where the io
ing trajectories are different give rise to behavior that at
low energies studied here does not follow a power law. T
dynamics within the near zone can become crucial, part
larly where interference is observed. SemiclassicalS-matrix
theory incorporates the exact potential and includes all
havior within the near zone. These additions give rise t
threshold cross section that differs from that predicted
Wannier theory.

Since different threshold laws are obtained because tra
tories follow different paths for different energies we que
tion whether at very low energies~much less than 0.01 eV!
and for a very short energy range the threshold law ca
lated would coincide with the Wannier law. At these en
as
f
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gies and for this small range the trajectories would be ind
tinguishable and it would seem, objectively, that the Wann
law should be regained. Figure 4 shows that at lower en
gies for systems that do not give a power law the cross s
tion has a slope that gets closer to that calculated using
Wannier exponent. Due to numerical constraints the reg
of very low energy could not be studied with confidence.
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APPENDIX: REGULARIZATION
OF THE COULOMB SINGULARITIES

We can regularize two of the three possible binary co
sions (r 150, r 250) in the Hamiltonian~4! by introducing a
point transformation to oscillatorlike coordinates wherer i

5Qi
2 . The conjugate momenta arepi5Pi /2Qi , wherePi are

the new momenta that remain finite atr i50. So that the
singularity is passed in small time steps with respect to r
time, the time variable is changed to becomedt5r 1r 2 /(r 1
1r 2)dt. We work with a Hamiltonian of zero value to kee
the form of Hamilton’s equations invariant under the tim
variable transformation. The regularized, singularity fr
Hamiltonian reads

H5
P1

2Q2
2

8
1

P2
2Q1

2

8
2Z~Q1

21Q2
2!1Q1

2Q2
2F 1

Q1
21Q2

2 2EG .
~A1!
A
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