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A Jackknife Estimator of Variance for a Random 
Tessellated Stratified Sampling Design
Steen Magnussen  and Thomas Nord-Larsen

Semisystematic sampling designs—in which a population area frame is tessellated into cells, and a randomly located sample is taken from each cell—affords random tessel-
lated stratified (RTS) Horvitz–Thompson-type estimators. Forest inventory applications with RTS estimators are rare, possibly because of computational complexities with the 
estimation of variance. To reduce this challenge, we propose a jackknife estimator of variance for RTS designs. We demonstrate an application with a model-assisted ratio of 
totals estimator and data from the Danish National Forest Inventory. RTS estimators of standard error were, as a rule, smaller than comparable estimates obtained under the 
assumption of simple random sampling. The proposed jackknife estimator performed well.

Keywords: semisystematic sampling, spatial balance, National Forest Inventory, model-assisted ratio of totals estimator, LiDAR, auxiliary variables

Horvitz–Thompson (HT)-type estimators of a population 
total and variance have been proposed for single-stage 
semisystematic sampling designs in which one or more 

sample locations are selected at random within each of N spatial 
units tessellating the sample frame of a population for which one or 
more study variables (Y) are the focus of our interest (Cordy 1993, 
Stevens and Olsen 2003). Published accounts of practical applica-
tions are still few, and in forestry they may be limited to an ex-
ample with two-stage sampling (Fattorini et al. 2009). When only 
one randomly located sample unit is selected in each spatial unit, 
the design goes under the name of random tessellated stratified 
(RTS) sampling design coined by Stevens and Olsen (2003). An 
example from the Danish National Forest Inventory is provided in 
Figures 1 and 2. The HT-type variance estimator for RTS involves 
complex spatial computations that may deter large-scale applica-
tions. Simpler, replicate estimators of variance (Wolter 2007, ch. 
4–5) have not yet emerged. In this study, we extend the HT-type 
estimators for an RTS design to a model-assisted ratio of totals, 
and we propose a jackknife RTS estimator of variance. An applica-
tion example from the Danish National Forest Inventory 2012–16 
(Magnussen et al. 2018) with data on wood volume and forestland 
is given.

Materials and Methods
National Forest Inventory Sampling Design

The Danish National Forest Inventory (NFI) is a continuous in-
ventory, with partial replacement of sample plots located at random 

within cells of a 2 × 2-km (400 hectares) grid covering the entire 
country. The sampling frame is the land surface of Denmark (Nord-
Larsen and Johansen 2016). Approximately one-third of the sample 
plots are permanent and re-measured in every cycle of the NFI, 
whereas two-thirds are temporary with a new (random) location 
chosen in advance of a measurement. Sample plots are geograph-
ically distributed into five nonoverlapping and spatially balanced 
interpenetrating panels (Kish 1998, Olsen et al. 1999, McDonald 
2003, Zhang et al. 2003). Each year, within a 5-year cycle, a dif-
ferent panel is measured. Each sample plot is composed of four 
circular subplots with a radius of 15 m and located in the corners 
of a 200 × 200 m square. Centers of subplots are all in the same cell 
as the plot center. The current inventory cycle includes n = 15,137 
sample locations in cells with a land surface area. Subplots with a 
center in open water (approximately 4 percent) are dropped.

Only plots likely to contain forest or other wooded land are 
subject to a field visit. This includes plots with forest in the most 
recent past field visit. The decision to visit or not is based on inter-
pretation of aerial photos by a trained interpreter. To avoid errors 
of omissions, the interpretation included a 15–20-m buffer zone 
around each subplot. Administrative records and other auxiliary 
information served to locate recent afforestation. In the current in-
ventory cycle, 7,185 subplots had a forest cover greater than 2 per-
cent of a subplot area (the minimum registered forest area). Field 
data from 487 subplots, predominantly in wetlands, were coded 
as missing (Magnussen et  al. 2018). They are treated as missing 
by design.
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Wood Volume
Data collected in a subplot and the calculations of wood volume 

(V, m3) are detailed in Nord-Larsen and Johansen (2016). The sum of 
subplot wood volumes and forest areas (fa) are the response variables 
of interest for a given sample plot. The forest area (fa) was determined 
geometrically. By definition, V and fa are zero in nonvisited plots.

Predictions of Wood Volume Density
With the aim to reduce the variance in estimators of wood 

volume density on forest land (VOL m3 ha–1), we employ a model-
assisted ratio of totals estimator with predictions of VOL in every 
sample plot and predictions of totals for the country and regions 
domains of interest.

The model was based on field data from 2,441 subplots and an 
airborne laser scanner survey of Denmark (2014–15) with a Riegl 
LMS-680i scanner in a fixed-wing aircraft (Nord-Larsen et  al. 
2017). The working model (sensu Särndal et al. 1992, ch. 6.7) was:

VÔL = 15.7277×Dz1.2254mean12 ×Dz−0.0138
p9512 × IR0.9049

1� (1)

where Dzmean12 is the mean height above ground of first returns (ex-
clusive returns from <1 m above ground), Dzp9512is the height above 
ground of the 95th percentile of first returns (exclusive returns from 
<1 m above ground), and IR1 is the interception ratio (ratio of pulses 
reflected from above ground [>1 m] of first return pulses to the total 
number of emitted pulses). The relative root mean squared error of 
the regression was 41 percent (Nord-Larsen et al. 2017, Table 4).

Country and domain totals of V and fa were obtained via a sum-
mation of wall-to-wall map predictions of VOL and forest area with 
25 × 25 m pixels (Nielsen et al. 2014, Nord-Larsen et al. 2017). The 
full area of a pixel (625 m2) was classified to forest or nonforest. The 
summation was over N for

25×25 = 10,196,844 forested pixels.

RTS Estimators
Following Cordy (1993) and Stevens (1997), an RTS HT type 

model-assisted estimator of VOL becomes

VÔL
RTS

= VÔLSYN +

Å
t̂wV
t̂wfa

−
t̂wV̂
t̂wfa

ã

=
tV̂
tfa

+

∑n
i=1 êi × wi∑n
i=1 tfai × wi

=
tV̂
tfa

+ R̂we

VÔLSYN =
tV̂
tfa

=

(
N for

25×25∑
p=1

VÔL×252
10,000

)(
N for

25×25∑
p=1

252
)−1

t̂wV =
n∑

i=1
VOLi × wi

t̂wV̂ =
n∑

i=1
VÔLi × wi

t̂wfa =
n∑

i=1
fai×wi

êi = VOLi − VÔLi

wi = min (land area in hectares in the ithinventory cell, 400)
�

(2)

Management and Policy Implications

Many national forest inventories continue to employ estimators for simple 
random sampling, even when the sampling design is semisystematic and allow-
ing for potentially more efficient estimators that may capture the variance 
lowering effects of a spatial covariance process operating at the scale of obser-
vation. The RTS HT-type estimators used in this study with data from the Danish 
National Forest Inventory are one such example. To reduce computational 
efforts required with RTS estimators, we propose a jackknife RTS estimator of 
variance that worked well in our case study and also easy to implement.

Figure 1. Example of RTS sampling design with 727 plot locations 
in the Danish Region 5 (Nordjylland). Note only plot locations with 
areas in forest are shown. The 2 × 2 km sampling grid is indi-
cated. The outline of the land surface in Region 5 is indicated by 
the grayed area.

Figure 2. Enlargement of the south-western corner of Region 5 (cf. 
Figure 1).
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where VÔLSYN is the model-based ratio of totals (tV and tfa) esti-
mator, ̂twV  an HT-type design-based estimator of the country total 
of VOL, t̂wV̂  the HT-type design-based estimator of the total of 
VÔL, and t̂wfa  the HT-type design-based estimator of the total 
forest area. The subscript w is for sampling intensity (weight), which 
(here) is the inverse of the land area in a 2 × 2 km cell (400 hect-
ares). In the second r.h.s. expression, ei is the difference (residual) 
between the observed plot value of VOL and the model-based pre-
diction VÔL, and tfai is the total forest area in the ith plot.

Land areas in a cell were computed by integration after overlay-
ing the 2 × 2 km national grid on land polygons at a scale of 1:2 × 
106 downloaded from Kortforsyningen (https://kortforsyningen.
dk/, accessed April 18, 2018).

The HT-type model-assisted RTS estimator of VOL is shown in 
Equation 3:

V̂ar
(
VÔL

RTS)
= V̂ar

Ç ∑n
i=1 êi × wi∑n
i=1 tfai × wi

å
∼=

n∑
i=1

n∑
j=1

∆̈ijwiwjêi êj

+ R̂we
n∑

i=1

n∑
j=1

∆̈ijwiwjtfai tfaj−

2R̂weCÔV
(∑n

i=1
wiêi,

∑n

i=1
witfai

)

∼=
n∑

i=1

n∑
j=1

∆̈ijwiwjêi êj + R̂ 2
we

n∑
i=1

n∑
j=1

∆̈ijwiwjtfai tfaj

−2R̂we
n∑

i=1
CÔV

(
wiêi,witfai

)

� (3)
where ∆̈ij = 1− wiwjw−1

ij , ∆̈ii = 1− wi, and wij  is the joint sam-
pling intensity for plots i and j. In finite populations, the concept 
of the joint sample inclusion probability of two population units is 
intuitive and easy to compute for most sampling designs relevant 
in forest inventories (Särndal et al. 1992, ch. 2.4). The joint sam-
pling intensity in RTS is the relative frequency with which two ran-
domly selected sample locations would occupy the same cell under 
all possible starting-points of the random sampling grid (i.e., points 
within a 2 × 2 km cell). Technically, the computations follow the 
same geometric principles used to compute the joint sample in-
clusion zone of two trees (Gregoire and Valentine 2008, ch. 10). 

To wit, wij  is computed as |Ai ∩ Ai| ×
(∣∣∣=A i,j

∣∣∣− |Ai ∩ Ai|
)−1

 

(Stevens 1997) where |Ai ∩ Ai| is the area of overlap between the 

land polygons—centered on their respective plot locations—in 
cells with the ith and jth plot. Overlap of land polygons in a regular 
grid is restricted to the eight adjoining neighbors to a 4 km2 cell. 
Figures 3 and 4 illustrate the geometric principles for computing 
overlap areas. In the above ratio of totals estimator, summations can 
be limited to cells with forestland.

A Jackknife RTS Estimator of Variance
The HT-type RTS variance estimator is complex with poten-

tially many taxing computations of overlapping areas. As an alter-
native, we propose a leave-one-out jackknife estimator of variance 
(Wolter 2007, ch. 4) for RTS sampling designs. First, we compute 
the n pseudovalues of the RTS estimator of VOL given in Equation 
2 without the plot totals from the ith plot, i = 1, …, n. The pseu-
dovalues are in Equation 4 where subscript –i indicates that data 
from the ith plot have been dropped, and w∗

i′ is an adjusted weight 
for the i′th plot.

VÔL
RTS
−i =

tV̂
tfa

+

∑
i′ �=i′ ei′ × w∗

i′∑
i′ �=i tfai′ × w∗

i′
=

tV̂
tfa

+ R̂w∗e, i′, i = 1, ..., n

� (4)
The adjusted weight given to the i′th plot is the inverse of the 

sum of the land area in the i′th grid cell and the part of the land 

Figure 3. Land area polygons of a focus plot (dark gray, full out-
line) and its four forested nearest neighbor plots (light gray and 
dashed outline). Random plot locations are indicated (black dots).

Figure 4. Land area polygons in Figure 3 following a centering on 
the respective plot locations. A single overlap area of the land area 
polygon of the focus plot and its northern neighbor is indicated.
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area in the dropped cell (i) closer to the i′th grid cell centroid than 
to any other grid cell j �= i. The reweighting followed the jack-
knife method for unequal probability sampling in finite popula-
tions (Wolter 2007, ch. 4.3.4, Valliant and Dever 2018, p. 83). In 
short, the cell area of a deleted plot is first divided into four equal 
parts (equilateral triangles) (Okabe et al. 2000), and subsequently 
the land area within each of the four triangles is added to the land 
area of the four first-order neighbors to the deleted plot. The reg-
ular grid, plus the fact that 84 percent of the cells covering a part 
of Denmark had the maximum possible land area of 4 km2, ac-
celerated the computation of adjusted weights. The mean of the n 
pseudovalues in Equation 4 is our jackknife model-assisted ratio of 
totals estimator of VOL.

The proposed standard jackknifed estimator of variance (Wolter 
2007, p. 166) was hereafter

V̂arJK
(
VÔL

RTS)
= n−1(n − 1)−1

n∑
i

Å
VÔL

RTS
−i − V ¯̂OL

RTS

−i

ã2

� (5)

where V ¯̂OL
RTS

−i  is the average of the n pseudovalues 

VÔL
RTS
−i , i = 1, ..., n.

Estimators 2–5 were computed for Denmark (DK) and five 
administrative regions (here: R1–R5) considered as poststrata. 
Regional estimates were, in each case, obtained by an evaluation 
over plots with a majority of subplots within the region of interest. 
The variance from the random number of sample plots in a region 
was ignored; it is an order of magnitude smaller than the sampling 
error (Cochran 1977, ch. 5A.9). Computations were carried out 
using Mathematica software version 11.3 (Wolfram 2016).

Results and Discussion
Estimates of wood volume densities and standard errors 

obtained with the RTS estimators and the jackknife RTS estimator 
of variance are listed in Table 1. The national RTS estimate of wood 
volume density was very similar to the estimate obtained with a 
model-assisted ratio of totals estimator for simple random sampling 
(SRS) (Magnussen et al. 2018). Regional RTS and SRS estimates 
of wood volume density also agreed to within 1 percent. Jackknife 
estimates of wood volume density were, to within 0.6 m3 ha–1, iden-
tical to the RTS estimates.

A close agreement between RTS and SRS estimates of volume 
density was not entirely expected because the sampling weights 
differ. With a correlation of weights of just 0.27, one could be jus-
tified to anticipate practically important differences in estimates of 
wood volume density. In RTS, the mean land surface area in a 4 
km2 square grid cell was 380 hectares, and the proportion of cells 

(plots) with the maximum possible surface area was 0.84. These 
statistics varied among regions from 370 to 386 hectares, and from 
0.77 to 0.89, respectively. The minimum land area was 0.6 hectares, 
and within regions the minima varied from 0.6 (R5) to 15.7 (R3).

The national RTS estimate of standard error was 1.7 m3 ha–1 
or just 6 percent below the MA estimate under the assumption of 
SRS with multiple imputation of missing values. A larger reduction 
was expected, given the spatial balance in the DNFI data, and the 
anticipated conservative nature of an SRS estimator (Fuller 1970, 
Matérn 1980, Sherman 1996, Fewster 2011). In populations with 
either a spatial covariance process with a range greater than the av-
erage interplot distance, or shared regional effects (Dalenius et al. 
1961, Bellhouse 1977), the RTS estimator will, in theory at least, 
generate a lower estimate of variance than an SRS estimator. This 
follows from the expression in Equation 4 where the covariance 
arising from the sum of products over neighboring cells is zero in 
the absence of an overlap among nearest-neighbor sample-location-
centered land area polygons. Combined, the small forest sizes, the 
fragmented nature of forest cover, and a high level of within-forest 
variation in wood volume densities sets the stage for the similarity 
of the RTS and SRS estimators of uncertainty. In our data, only 
9 percent of the sample plots had three or four nearest neighbors 
with forest areas in at least one subplot, and 24 percent had no 
nearest-neighbor plots with a nonzero forest area. To a plot with a 
forest area, the mean number of neighboring plots with forest was 
1.2. Our proposed jackknife estimator of error was 1.8 m3 ha–1 and 
matched the SRS estimator (Magnussen et al. 2018).

Regional estimates of error were more variable—as expected 
from the reduced sample sizes—but overall they support the notion 
that RTS and SRS estimates are, from a practical perspective, very 
similar (Table 1). The proposed jackknife estimator generated esti-
mates that were even closer to the SRS estimates of error.

Although we observed a correlation of forest areas of 0.07 
among forested first-order neighbor plots, and a correlation of 
0.26 for wood volume, these correlations—in combination with 
the low number of neighboring forested plots—did not trans-
late into a tangible lowering of the RTS estimate of variance in 
a model-assisted ratio of totals relative to the variance obtained 
with an SRS estimator for the same ratio. A  larger reduction is 
anticipated in estimators that do not exploit auxiliary variables 
(Opsomer et  al. 2012, Grafström et  al. 2014). The similarity of 
RTS and SRS estimates of uncertainty does not preclude that they 
are both overestimating uncertainty in replicated sampling with 
the RTS design. To obtain further insight on this issue, we would 
need to simulate replicated sampling from a population intended 
as a replica of the actual population (Bartolucci and Montanari 
2006, Opsomer et al. 2012).

Table 1. Summary of national (DK) and regional (R1–R5) wood volume density estimates and standard errors (all results in m3 ha−1).

 DK R1 R2 R3 R4 R5 Estimator

Plots with forest 4,390 304 668 1,223 1469 727

VÔL
RTS 211 290 286 162 199 206 2

…
V̂ar

(
VÔL

RTS) 1.7 5.5 4.6 2.5 2.6 5.5 3

VÔL
RTS
jk

211 290 286 162 199 206 Via 4

…
V̂ar jk

(
VÔL

RTS
jk

) 1.8 6.3 5.0 3.2 3.0 5.1 5
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Practical applications with RTS estimators are still few. Our ex-
perience with the DNFI data suggests that with a jackknife RTS 
estimator of variance, the computational complexities encountered 
with an RTS HT-type variance estimator become more manage-
able, even for much larger sampling frames. Applications with more 
complex tessellations, e.g., hexagons (Bechtold and Patterson 2005) 
or triangular grids (Mandallaz 2008, ch. 10), do not require new 
methods.

The use of cell-specific area weights in the HT-type RTS estima-
tors has intuitive appeal when the sample frame is the land surface 
area of a defined population. A discount for parts of a cell not in 
the frame is necessary. For countries with long and complex coastal 
outlines, many area weights may become small, which may lower 
the design efficiency. If we ignored the land area issue and used the 
nominal cell area of 4 km2 as weight, our estimates of standard error 
would have been 3–5 percent lower.

Our proposed jackknife RTS estimator of variance appears to 
perform as expected (Shao 1996). In addition to reducing the com-
putational burden, the distribution of n pseudovalues also provides 
valuable insights about the influence of individual samples on a 
final estimate, which may trigger changes to a sampling design and 
possibly the plot design.

Stevens and Olsen (2003) also proposed an RTS version of a 
local variance estimator based on the four first-order neighbors 
to a cell. The estimator shares many attributes with the localized 
model-based variance estimators (Matérn et  al. 1980, Sherman 
1996, Ekström and Sjöstedt-de Luna 2004). However, it is not 
suited for model-assisted ratio of totals estimators as pursued in 
this study.
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