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Abstract: The aim of this study was to provide an overview of the literature available on machine
learning (ML) algorithms applied to the Lung Image Database Consortium Image Collection
(LIDC-IDRI) database as a tool for the optimization of detecting lung nodules in thoracic CT scans.
This systematic review was compiled according to Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) guidelines. Only original research articles concerning algorithms
applied to the LIDC-IDRI database were included. The initial search yielded 1972 publications after
removing duplicates, and 41 of these articles were included in this study. The articles were divided
into two subcategories describing their overall architecture. The majority of feature-based algorithms
achieved an accuracy >90% compared to the deep learning (DL) algorithms that achieved an accuracy
in the range of 82.2%–97.6%. In conclusion, ML and DL algorithms are able to detect lung nodules
with a high level of accuracy, sensitivity, and specificity using ML, when applied to an annotated
archive of CT scans of the lung. However, there is no consensus on the method applied to determine
the efficiency of ML algorithms.

Keywords: deep learning; machine learning; nodule detection

1. Introduction

Machine learning (ML) and deep learning (DL) are becoming established disciplines in the broad
field of applying artificial intelligence in analyzing and utilizing patterns in datasets. As the complexity
and shear amount of data increase, applying these patterns for the benefit of, e.g., clinical decision
making, becomes increasingly nontrivial [1]. Extraordinary advancements in areas of technology
such as high-performance computing have made it possible to attempt solving these problems
algorithmically. The purpose of various ML and DL algorithms may be to improve quality, consistency,
and/or capacity of data interpretation in diagnostics, thus improving diagnostics and treatment
decisions to the benefit of clinical outcomes. Considering the implications this may have for the practice
of medicine and healthcare, it is important to engage in this area of research from many perspectives.
ML is already being applied to the practice of radiology, and the systems being developed today are
showing to be robust in real-world conditions [2]. Several reviews have been published reviewing
these techniques [3]. The Cancer Imaging Archive (TCIA) has the largest annotated public database,
known as the Lung Image Database Consortium Image Collection (LIDC-IDRI), containing 1018
cases [4]. Since 2014, there have not been any systematic reviews published concerning the application
of ML for the optimization of detecting pulmonary nodules in CT scans from the LIDC-IDRI database.
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The database is created with the intent to further the development of the training and evaluation of
computer-assisted diagnostic (CAD) methods for lung cancer detection and diagnosis. The aim of this
systematic review is, therefore, to provide an overview of the published literature, in order to evaluate
the algorithm’s ability to detect lung nodules in CT scans released by the LIDC-IDRI database.

2. Materials and Methods

The eligibility criteria and analysis in this review were performed according to the PRISMA
guidelines 2009 (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) [5].
The literature search was completed on 22 November 2018. The literary search was performed
in PubMed, Web of Science, Scopus, The Institute of Electrical and Electronics Engineers, Inc. (IEEE),
and the association for computing machinery library database. This was done to identify publications
that apply ML or DL algorithms to the LIDC-IDRI database for optimizing lung nodule detection.
The selection criteria for the publications included are articles written in English and published since
the 1 January 2014. To perform the search, the following expressions were used:

Search string number 1: (“3D” OR “3-dimensional” OR “three-dimensional”) AND (“detection”
OR “segmentation” OR “cad” OR “cade”) AND (“lung” OR “lungs” OR “pulmonary” OR “chest”)
AND (“nodule” OR “nodules” OR “cancer” OR “tumor” OR “tumors”).

Search string number 2: (“deep learning” OR “machine learning”) AND (“detection” OR
“segmentation” OR “feature” OR “feature extraction” OR “features” OR “classification”) AND (“The
lung image database consortium” OR “LIDC”) AND (“Lung nodule” OR “nodule detection”).

The first search expression is inspired by a previous review from 2014 [3]. The second search is
presented by the author, and has been applied to the databases to identify publications that apply the
latest technology related to lung nodule detection. By applying two search strings, we were able to
include a larger number of articles. After removal of duplicates, all studies included in the search
result were screened by title and abstract by two authors (L.M.P. and C.A.L.). Original research articles
concerning algorithms applied to the LIDC-IDRI database were included. The LIDC-IDRI is the largest
annotated database on thoracic CT scans [4]. The articles were subsequently retrieved and read by
the same authors. Consensus was reached through discussion. All reference lists of the included
articles were manually searched for further references. The articles were divided into two groups
based on the type of algorithm presented in the articles. Table 1 presents 19 articles that apply a
feature-based learning algorithm. Table 2 presents 22 articles that apply DL algorithms in order to
detect lung nodules. The inclusion criteria for articles included all apply a type of ML algorithm
to the LIDC-IDRI database and present results that showcase the algorithm’s accuracy, sensitivity,
and specificity, and ability to obtain area under the curve (AUC) results; and were published from 1
January 2014. The articles that did not present at least one of these criteria and applied the LIDC-IDRI
database were excluded. After removal of duplicates, the initial search yielded 1972 publications,
1792 of which were excluded. A total of 180 full-text articles were assessed for eligibility and 139
of these articles were excluded because of lacking data requirements, leaving 41 articles that were
included in this systematic review. The study selection is summarized in Figure 1.

The LIDC-IDRI is the largest publicly available annotated CT database. It consists of 7371 lesions
marked as a nodule by at least one radiologist. Of these lesions, 2669 were at least 3 mm or larger,
and annotated by, at minimum, one radiologist. Out of the 2669 lesions, 928 (34.7%) received the same
mark by four radiologists. The 2669 lesions are outlined and subjective nodule characteristics are all
annotated. The LIDC-IDRI required the four radiologists to independently review each scan and mark
lesions identified with respect to specific criteria described in Armato et al. 2014 [4].
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Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart
of the literature search and study selection.

The following is an acknowledged definition of ML: The algorithm is applied to a dataset, in this
case, the LIDC-IDRI database. The annotations of nodules and the estimated malignancy of the nodule
in the training data are learned by the algorithm. The knowledge obtained from the training set allows
the algorithm to learn to make predictions. The prediction, in this case, could be whether there is a
nodule located on the slice or whether the nodule is benign or malignant. Altering the features that are
given can lead to an improvement in diagnosis. If the algorithm is able to optimize the parameters,
it is considered to be learning the task. There are several differences between DL algorithms and
algorithms based on hand-engineered features: the structure of the algorithm differs—the DL algorithm
usually consists of several hidden layers; the two approaches require different input information;
the algorithms based on hand-engineered features require proper segmentation of the nodule from a
radiologist, or a segmentation algorithm and further quantitative image feature extraction; and the
DL approach does not need the same elaborative segmentation process as the algorithms are able to
make predictions from one marked point per nodule [6]. The data extracted from the articles are the
results presented by the authors. These results showcase the algorithm’s ability to achieve the highest
accuracy, sensitivity, and specificity, and derive AUC values.
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Table 1. Feature-based algorithms applied to the Lung Image Database Consortium Image Collection (LIDC-IDRI) database.

Author Year CT Scans Incl. Accuracy (%) Sensitivity (%) Specificity (%) AUC Classifier Nodule Type Selected Features

Akram et al. * [7] 2015 84 96.6 96.9 96.3 0.980 SVM All types 2D and 3D geometric and intensity
statistical features

Alilou et al. * [8] 2014 60 NA 80.0 NA NA SVM Solid 2D and 3D subset of features

Bai et al. [9] 2015 99 NA 80.0 NA NA NA All types Local shape analysis and data-driven local
contextual feature learning

Choi et al. * [10] 2014 84 99.0 97.5 97.5 0.998 SVM-r All types CAD system for different dimensions of
AHSN features

El Regaily et al. [11] 2017 400 70.5 77.7 69.5 NA The simple rule classifier All types Geometric and intensity statistical features

Firmino et al. * [12] 2016 420 NA 94.4 NA NA SVM All types HOG; watershed; features of texture, shape,
and appearance

Gonçalves et al. * [13] 2018 NA 68.4 55.0 87.5 0.905 SVM Solid nodules Intensity-, texture-, and shape-based features

Gong et al. * [14] 2016 100 91.5 90.2 91.5 0.960 FLDA Not GGO 11 selected image features

Gupta et al. [15] 2017 899 NA 90.0 NA 0.980 softmax Large nodules Feature mapping: stacked sparse
autoencoder (SSAE)

Hancock et al. * [16] 2017 619 88.0 84.6 NA 0.949 Nonlinear All types Nonlinear classifier, diameter, and volume
features included

Jaffar et al. [17] 2018 59 98.8 98.4 98.7 0.999 Random forest All types Novel ensemble shape gradient features (NESGF)

Liu et al. [18] 2017 107 NA 89.4 NA NA NA All types Geometric and statistical features

Lu et al. [19] 2015 98 NA 85.2 NA NA Regression tree All types Hybrid scheme based on 16 features

Naqi et al. * [20] 2018 250 99.0 98.6 98.2 0.990 SVM All types Geometric texture features descriptor (GTFD)

Shaukat et al. * [21] 2017 850 97.1 98.1 96.0 0.995 SVM-Gaussian All types Intensity, shape (2D and 3D), and texture features

Taşcı et al.* [22] 2015 24 92.9 NA NA 0.883 GLMR Juxtapleural Seven shape- and texture-based features

Wang et al. * [23] 2018 NA 95.9 95.6 95.0 0.961 SS-ELM All types Haralick features and morphological features

Zhang et al. * [24] 2018 71 NA 89.3 NA NA SVM Juxtavascular
nodules 3D skeletonization

Zhao et al. [25] 2017 NA 91.2 NA NA 0.970 softmax All types Global and local features

CAD: Computer-aided detection, AHSN: angular histograms of surface normal, HOG: Histogram of oriented Gradients, NA: not available. The studies marked with a star (“*”) presented
several types of alterations to the algorithm, producing different results. These results are not presented in the table.
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3. Results

3.1. Algorithms Applying a Feature-Based Framework

Table 1 shows the 19 studies that have applied a feature-based framework. This table
correspondingly showcases the best results the studies achieved using a specific algorithm. In the table,
the studies marked with a star (“*”) presented several types of alterations to the algorithm, producing
different results. These results are not presented in the table. Furthermore, if the data were unable to
be obtained from the publication, this is stated as Not Available (NA).

3.2. Support Vector Machine (Six Studies)

Eight out of 19 studies proposed an algorithm applying a type of Support-vector machine (SVM)
classifier [7,8,10,12,13,20,21,24]. These studies achieved some of the best results with regards to
accuracy, sensitivity, specificity, and AUC, and all applied an SVM classifier and a type of feature
extraction with focus on shape, intensity, or texture. The algorithms that applied an SVM classifier
reached a range of accuracy of 68.4%–99.0%, sensitivity of 55.0%–98.6%, specificity of 87.5%–98.2%,
and an AUC of 0.905–0.998.

The table displays 12 studies marked with a star [7,8,10,12–14,16,20–24]. These studies applied
several alternative combinations of features, classifiers, or validation methods. Eight of these
algorithms achieved the best results while applying an SVM type of classifier, and the best of all
the algorithms, except one, reached an accuracy range of 96.7%–99.0% [7,8,10,12,20,21,24].

3.3. Other Classifiers (Six Studies)

Gong et al. [14] tested the algorithms on an Fisher linear discriminant analysis (FLDA) and
naïve Bayes classifier. The FLDA classifier obtained the highest AUC and sensitivity compared to the
naïve Bayes classifier. Gupta et al. [15] applied a stacked autoencoder to acquire an unsupervised
neural network. A softmax layer was stacked with the autoencoder to perform the classification.
The softmax classifier was used to solve binary classification problems. Hancock et al. [16] tested linear
and nonlinear classifiers combined with either features included or excluded. The best performing
algorithm was the nonlinear classifier, including the diameter and volume features. The nonlinear
classifier with features excluded outperformed both the linear classifiers.

Lu et al. [19] presented an algorithm consisting of a hybrid method. The method integrated
existing and often-applied algorithms. Taşcı et al. [22] presented an algorithm for detection of
juxtrapleural nodules. The algorithm was initially tested on ten different classifiers. The best
performing classifier out of the ten tested was the generalized linear model regression (GLMR) classifier,
which utilized 22 out of 33 features and achieved an accuracy of 92.9%.

Liu et al. [18] presented a multilayer, fully connected network and consists of one input layer,
one hidden layer, and one linear output layer. Wang et al. proposed a new classifier, utilizing
semi-supervised extreme learning machine (SS-ELM). The proposed method achieved better results
compared to applying an extreme learning machine (ELM), SVM, probabilistic neural network (PNN),
and multilayer perceptron (MLP) classifier.

Bai et al. [9] combined a model-based local shape analysis and data-driven local contextual feature
learning to improve detection in low dose CT. The algorithm applied a random forest trained to learn
and combine a subset of these primitives into discriminative orientation invariant contextual features
and classify nodule candidates. By applying this method, the algorithm reached a sensitivity of 80%.
Liu et al. [18] proposed an ANN algorithm trained on the LIDC-IDRI database. The algorithm applied
3D geometric and statistical features to constitute a voting method. While applying this method the
algorithm reached a sensitivity of 89.4%. El Regaily [11] applied a simple rule classifier and achieved a
total accuracy of 70.53%. These results were satisfactory, taking into consideration the classifier applied
on the initial first step of the classification. The author proposed to apply a SVM classifier in order to
raise the accuracy and reduce the amounts of FP.
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Jaffar et al. [17] achieved the highest sensitivity, specificity, and AUC. This was done while
applying a random forest classifier. The study proposed a novel ensemble shape gradient features
(NESGF) descriptor for pulmonary nodule classification using the histogram of oriented surface normal
vectors and multi-coordinate histogram of gradient descriptor.

3.4. Algorithms Applying Deep Learning Architecture

Data presented in Table 2 showcase the 22 studies that applied DL algorithms [6,26–47]. Some of
the authors tested different types of algorithms; the results shown in Table 2 are the best performing
algorithms presented in the literature. Furthermore, if the data were unable to be obtained from the
publication, this is stated as Not Available (NA).

Table 2. Deep learning algorithms applied to the LIDC-IDRI database.

Author Year Malignant Benign Accuracy
(%)

Sensitivity
(%)

Specificity
(%) AUC Noduli Type Architecture

Chen et al. [26] 2018 NA NA NA 93.7 NA NA All types CNN

Sun et al. [33] 2017 47576 41372 NA NA NA 0.890 All types CNN

Wang et al. [34] 2017 NA NA NA 83.1 NA NA All types CNN

Da Silva et al. [29] 2018 3415 8742 97.6 92.2 98.2 0.955 All types CNN

Da silva et al. [28] 2017 1413 1830 94.75 94.7 95.1 0.940 All types CNN

Causey et al. [6] 2018 NA NA 94.6 94.8 94.3 0.984 All types CNN

Ramachandran et al. [31] 2018 3300 3300 93.0 89.0 NA NA All types CNN

Zhu et al. [36] 2018 450 554 90.4 NA NA NA All types CNN

Da Nóbrega et al. [27] 2018 NA NA 88.4 85.3 NA 0.931 All types CNN

Song et al. [32] 2017 2311 2265 84.2 84.0 84.3 0.910 All types CNN

Han et al. [30] 2018 538 622 82.5 96.6 71.4 NA GGO CNN

Zhao X. et al. [35] 2018 375 368 82.2 NA NA 0.877 All types CNN

Zhang et al. [37] 2017 40800 32000 95.0 93.5 90.2 0.930 > 30 mm DBN

Xie et al. [39] 2018 648 1324 89.53 84.2 92.0 0.960 All types DCNN

Li et al. [40] 2016 40772 21720 89.0 87.1 NA NA All types DCNN

Shaffie et al. [42] 2018 NA NA 91.2 85.0 95.8 0.95 All types Deep
autoencoder

Gruetzemacher et al. [43] 2018 NA NA NA 94.2 NA NA All types DNN

Abbas et al. [44] 2017 1300 1300 95.0 94.0 96.0 0.950 All types DNN

Hamidian et al. [45] 2017 NA NA NA 80.0 NA NA All types FCN +
CNN

Xie et al. [38] 2018 644 1301 91.6 86.5 94.0 0.95 All types MV-KBC

Nibali et al. [46] 2017 420 411 89.9 91.1 88.6 NA All types ResNet

Naqi et al. [47] 2018 NA NA 96.9 95.6 97.0 NA All types SA +
softmax

3.5. Convolutional Neural Network (Twelve Studies)

The convolution neural network architecture is the most frequently applied architecture in
Table 2 [6,26–36]. The CNN architecture reached an accuracy of 82.2%–97.6%, sensitivity of
83.1%–96.6%, specificity of 71.4%–98.2%, and an AUC of 0.87%–0.98%. Da Silva et al. increased
the number of nodules and achieved superlative results. The studies included in this review that
applied the PSO algorithm are all included in the top three best-achieving algorithms.

3.6. Deep Believe Network

Zhang et al. is the only study which applied a deep believe network [37]. The algorithm is
trained to detect large nodules >30 mm, and achieved results above 90% with regards to accuracy,
sensitivity and specificity. Two out of 14 articles applied a deep convolutional neural network (DCNN).
The articles reached an accuracy of 89.0%–89.5% and a sensitivity of 84.2%–87.1% [39,40].
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3.7. Other

Abbas et al. [44] chose deep neural network architecture and achieved results above 94% with
regards to accuracy, sensitivity and specificity. Gruetzemacher et al. [43] also applied a DNN
architecture and achieved above 94% in sensitivity. The study by Nibali et al. [46] is the only
study that applied a deep residual neural network and achieved accuracy, sensitivity, and specificity
above 88% [46]. Shaffie et al. [42] and Naqi et al. [47] both presented an architecture utilizing
autoencoders. Naqi et al. [47] presented results above 95% in accuracy, sensitivity, and specificity.
Shaffie et al. presented results above 85%. Xie et al. [38] proposed an algorithm utilizing the multiview
knowledge-based collaborative (MV-KBC) deep model to separate malignant from benign nodules
using limited chest CT data.

4. Discussion

The included studies all applied to the largest annotated image archive of CT scans of the
lungs [4]. All included articles were able to detect lung nodules with a high accuracy, sensitivity,
and specificity, using ML. The majority of the algorithms achieved results above 90% in one or more of
the four diagnostic performing parameters. However, there is no consensus on the methods applied to
determine the efficiency of ML algorithms, and the heterogeneity in the selection of included scans
and the different parameters for the algorithms makes it challenging to compare them.

Applying ML algorithms to medical images comes with several limitations, one of the most
profound being the lack of labeled training data. The lack of large training datasets is often mentioned
as an obstacle, therefore, databases such as LIDC-IDRI are greatly appreciated and applied for
training and validating algorithms. It should be noted that over the course of at least a decade,
most Western hospitals have used picture archiving and communication system (PACS) systems in
radiology. This magnitude of imaging data acquired for specific purposes in well-structured archives
is uncommon. The main challenge is, thus, not the availability of image data itself, but the acquisition
of relevant annotations/labeling for these images. Free-text reports on the radiologists’ findings are
stored on the PACS system. Turning these reports into accurate labeling of structures and findings
can be challenging and requires sophisticated text-mining methods, which is an important field of
study in itself, where deep learning is also widely used nowadays. Introducing a structured reporting
system would become very beneficial in an ML objective; this could potentially lead to improvement
of radiologic findings and, eventually, patient care.

The general architecture of feature-based and DL algorithms differ. The specific architecture within
the two groups also differs—the architectures and restrictions are set by the author. These are some of
the contributing factors for the difference in performance when applying the same general architecture.
This contributes to the difficulty in comparison. The algorithms applying feature-based architecture
generated, overall, better results compared to the algorithms applying a DL approach [29,47].
The feature-based algorithms consist of different steps; the first step is usually computing the image
features that will be of importance in the prediction process. The best combination of features is then
selected, and the features can be applied to classify the image. The features are often based on texture,
shape, or size of a nodule. The annotations given in the LIDC-IDRI dataset can be extracted, and the
algorithm is able to learn to make a prediction. When the author is training the algorithm, it is possible
to optimize the parameters when diagnosing correctly, thus improving the performance. The benefits
of applying a DL algorithm is that the algorithm does not need feature identification as the first step.
The algorithm identifies the features as a part of the learning process. The definition of DL is an
algorithm which applies neural networks with multiple layers, usually more than 20. This has become
possible because of the tools initially created for computer gaming and the massive parallel computing
power of a graphics processing unit.

One of the most beneficial reasons for applying a DL algorithm is the learning curve. The DL
algorithm is able to improve the performance over time, compared to a feature-based algorithm.
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The weight of the feature is set by the author and cannot be altered. The different types of DL
algorithms have different abilities.

Several larger companies have evolved image recognition algorithms, and these algorithms are
pre-trained on images that are not specific to the task. An example of this is Google’s GoogLeNet [48],
which is trained on more than a million images from the ImageNet database. GoogLeNet has a
rich feature representation and selection which can be incorporated into an algorithm made for
nodule detection.

Ramachandran et al. [31] incorporated this technique into the algorithm they presented.
The algorithm proposed a new object detection workflow, using a convolutional neural network
to detect nodules in images and define the bounding boxes around them. The system presented an
architecture based on DetectNet, which incorporates GoogLeNet inception layers without the fully
connected layers.

Several of the proposed techniques have the potential for building medical diagnosis tools.
Five of the feature-based and two of the DL algorithms presented an accuracy >95% [7,10,20,21,
29,47]. These contributions should move forward from the LIDC-IDRI database and be taken into
consideration with regard to implementing this technique for clinical practice. This could lead to an
increase in nodule detection. To our knowledge, there are no studies published concerning this topic.

5. Conclusions

In conclusion, studies on ML and DL algorithms are able to detect lung nodules at a high level of
accuracy, sensitivity, and specificity using ML when applied to an annotated archive of CT scans of
the lung. However, there is no consensus on the method applied to determine the efficiency of ML
algorithms. So far, there are no studies demonstrating in which clinical setting to ML could be used,
and whether or not this would lead to detection of a higher number of lung nodules.
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