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ABSTRACT 

Purpose: Numerous daily tasks such as walking and rising from a chair involve bilateral 

lower limb movements. During such tasks lower extremity function (LEF) may be 

compromised among older adults. LEF may be further impaired due to high degrees of 

between-limb asymmetry. The present study investigated the prevalence of between-limb 

asymmetry in muscle mass, strength and power in a cohort of healthy older adults, and 

examined the influence of between-limb asymmetry on LEF.  

Methods: 208 healthy older adults (mean age 70.2±3.9 years) were tested for LEF (400 m 

walking and 30-s chair stand). Furthermore, maximal isometric and dynamic knee extensor 

strength, leg extensor power, and lower limb lean tissue mass (LTM) were obtained 

unilaterally.  
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Results: Mean between-limb asymmetry in maximal muscle strength and power ranged 

between 10-13%, whereas LTM asymmetry was 3±2.3%. Asymmetry in dynamic knee 

extensor strength was larger for women compared to men (15.0±11.8% vs 11.1±9.5%; 

P=0.005) Leg strength and power were positively correlated with LEF (r
2
=0.43-0.46, 

P<0.001). The weakest leg was not a stronger predictor of LEF than the strongest leg. 

Between-limb asymmetry in LTM and isometric strength were negatively associated with 

LEF (LTM; r
2
=0.12, P=0.005, isometric peak torque; r

2
 =0.40, P=0.03.) but dynamic strength 

and power were not.  

Conclusion: The present study supports the notion that in order to improve or maintain LEF, 

healthy older adults should participate in training interventions that increase muscle strength 

and power, whereas the effects of reducing between-limb asymmetry in these parameters 

might be of less importance. 

Keywords: lower extremity function, mobility, muscle strength, muscle power, asymmetry  

 

INTRODUCTION 

Age-related loss of muscle mass, which has been to reported begin around the 5
th

 decade of 

life
1,2

,can be responsible for an increased risk of metabolic disorders, functional impairment 

and frailty
1,3

. While muscle mass is progressively lost by ~0.5% annually
4
, the accompanying 

impairments in muscle strength and power are observed to occur at a faster rate of up to 3-4% 

annually
5–7

. Impairment in these factors has been shown to be a strong predictor of  current 

functional capacity
8,9

 as well as being associated with an elevated risk of developing future 

functional limitations
6,10

. However, in well-functioning older individuals the initial loss of 

muscle strength and power may not have strong impact on functional capacity, as the 
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relationship between muscle strength/power and functional capability appears to be 

plateauing (i.e. reach a ceiling region) at the upper end of this relationship
11

. 

  A vast number of physical activities of daily living (ADL) involve bilateral lower limb 

movements (walking, chair stand, stair climbing, etc.), and the ability to perform these 

activities will therefore be limited by bilateral lower limb muscle function. Thus, another 

possible determinant of functional capacity could be the degree of lower limb asymmetry in 

the aforementioned factors. Previous studies have observed that high between-limb 

asymmetry in leg extensor power is associated with impaired postural balance and an 

elevated incidence of falls
12,13

. These findings suggest that between-limb differences 

(asymmetry) in lower limb muscle size, strength and/or power can negatively ADL in old 

adults. Thus, the magnitude of between-limb asymmetry in lower limb muscle function may 

represent a separate and early detectable risk factor for impaired functional capacity even in 

healthy non-frail older adults. This hypothesis has only been sparsely investigated with 

inconclusive results
14–16

. The discrepancy between observations could potentially be due to 

differences in testing methods (testing of whole-leg vs. single-joint power), as well as lack of 

statistical adjustments for physical activity and levels of body fat
17

. Therefore, research using 

both whole-leg and single-joint testing methods to investigate the potential influence of 

between-limb asymmetry on functional capacity in older adults is warranted. Furthermore, as 

the risk of functional impairment seems to be higher in women compared to men
18–20

, 

investigations of sex specific differences in lower extremity asymmetry are of key interest.   

The aim of this study, therefore, was to quantify the magnitude of between-limb asymmetry 

in lower limb skeletal muscle mass, strength and power in a large cohort of healthy home-

dwelling Danish older men and women. Secondly, we aimed to investigate to which extent 

lower extremity function (LEF) would be determined (i.e regressionally predicted) by 
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selected measures of muscle mass, strength and power, and/or by the degree of between-limb 

asymmetry in these parameters.  

 

MATERIAL & METHODS 

This study was based on cross-sectional analyses of baseline data obtained in the Copenhagen 

CALM study
21

. A full description of the CALM protocol, as well as detailed exclusion 

criteria have been presented elsewhere
21

. A brief description of the experimental methods is 

provided below.  

Participants 

A total of 208 home-dwelling older adults with a mean age of 70 ± 4 (SD) years were 

recruited for the study (Women: 99, Men: 109). All participants gave their written consent in 

accordance with the declaration of Helsinki II, and the study was approved by the Danish 

Regional Ethics Committees of the Capital Region (H-4-2013-070). Anthropometric data of 

the included participants are listed in Table 1. Recruitment was conducted via advertisements 

in newspapers, magazines, and social media, as well as presentations at senior centers and 

public events. To be included in the study, participants were not allowed to participate in 

more than 1 hour of heavy resistance training per week, but were allowed to perform other 

forms of exercise. Participants were excluded if they possessed any medical condition 

potentially preventing them from safely completing a 1-year intervention including heavy 

resistance training and twice daily protein/carbohydrate supplementation. A full description 

of exclusion criteria can be found elsewhere
21

.  
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Physical performance assessment 

All physical performance tests were carried out by an experienced assessor on the same day 

in the order listed below. Measurement of body composition was done on a separate day. The 

entire test battery was typically completed within 1 hour, and rest periods between tests were 

administered as needed. Participants arrived to the Lab in clothes and shoes intended for 

physical activity. Prior to the test day participants had been carefully instructed not to 

perform any strenuous physical activities 2 days prior to the performance tests. Prior to the 

tests, the dominant leg of the participants was determined by asking them which leg they felt 

was the strongest.  

 

Lower extremity function 

The 400 m walk test and the 30-s chair stand test were chosen as objective measures of 

LEF
22,23

.  

The 400 m walk test was performed on a 20-m indoor course track marked by two colored 

cones. The participants were instructed to walk 400 m as fast as possible without running and 

without receiving personal assistance or sitting down during the test
22,24

. Data was reported as 

time to complete 400 m walk. For the later calculation of the composite LEF measure, walk 

time was converted into average walking speed as this parameter has been shown to be a 

strong predictor of mobility limitations in older adults
24

. 

The 30-s chair stand test was performed using a chair without armrest (seat height 44.5 cm). 

Participants completed as many sit-to-stands as possible in 30 s with their hands crossed over 

the chest. A repetition was defined as the participant rising from a seated position to reach 

full extension of the knees and hips. This test has previously been shown to be a valid and 

reproducible test of functional lower body strength in older adults
23

. 
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The composite sum of the Z-scores of each of the two test parameters (average 400 m walk 

speed and number of stands in the 30-s chair test) was calculated to provide a global index for 

LEF, which was used in the subsequent statistical analyses
16,25

.  

 

Maximal leg extensor power  

Unilateral leg extensor power (LEP) was measured using the Nottingham power rig (Queens 

Medical Center, Nottingham University, UK) as described in detail elsewhere
12,26

. In brief, 

participants were seated with their hands folded over the chest, and carefully instructed to 

press a pedal down as hard and fast as possible by extending the knee and hip joint, thereby 

accelerating a flywheel. Based on the rotational speed of the flywheel, a computer calculated 

the average power exerted in each single leg extension movement. The participants were 

familiarized to the procedure by performing two submaximal warm-up trials, followed by a 

minimum of five maximal trials each separated by 30 s of rest. The test ended when 

participants performed two consecutive results that were lower than their current peak 

average power value. The self-reported dominant leg was tested first, followed by the self- 

reported non-dominant leg.  

Maximal knee extensor strength 

Maximal concentric knee extensor strength (gravity corrected peak torque) was measured 

during slow (60°/s) maximal knee extension using an isokinetic dynamometer (Kinetic 

Communicator, model 500-11, Chattanooga, TN, USA) at a knee joint range of motion from 

90° to 10° knee flexion (0° = full knee extension). Following three warm-up trials at 

submaximal effort, participants performed a minimum of 4 maximal knee extension trials 

with strong verbal encouragement and visual online display of the exerted torque, separated 

by 30-45 s of rest. Subsequently, trials were repeated until participants were unable to 
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improve knee extensor peak torque any further. The self-reported dominant leg was tested 

first, followed by the non-dominant leg. For each leg the trial with the highest gravity-

corrected peak torque (calculated by multiplying the gravity-corrected dynamometer force by 

the length of the dynamometer lever arm) was selected for further analysis. 

Finally, participants performed three maximal isometric knee extensor contractions (MVIC) 

at 70° knee flexion separated by 30-45 s rest. Participants were instructed to contract as hard 

and fast as possible with strong verbal encouragement for approximately 4 s. The trial with 

the highest peak torque was selected for further analysis. Attempts containing an initial 

countermovement were disqualified, and a new trial was performed. 

 

Body composition 

Body composition was assessed using dual-energy X-ray absorptiometry (Lunar iDXA, GE 

Medical Systems, Pewaukee, WI, USA). Study participants refrained from strenuous 

activities for 48 hours prior to the test. They arrived fasting from 21:00 the night before, but 

were allowed to drink water as needed prior to the scansand. All scans were performed 

between 08:00 and 10:00. From these scans lean tissue mass (LTM) were obtained for the left 

and right lower limbs (Segmented at the femoral neck). Using these measures, appendicular 

skeletal muscle mass index (ASMI) was calculated as previously described
27

 by dividing the 

sum of LTM (subtracted by fat and bone mineral content) of arms and legs by height squared. 

Body fat percentage and visceral fat content were also assessed. Regions of interest (ROIs) 

for the extremities and visceral body parts were set based on the defaults definitions provided 

by the scanner software. The same examiner controlled the default positioning of all regions, 

which were adjusted slightly when appropriate.  
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Activity monitoring 

Daily activity levels were measured by mounting an accelerometer-based activity monitor 

(activPal 3
TM

, activPal 3c
TM

, or activPal micro; PAL technologies, Glasgow, UK) on the 

anterior surface of the thigh
28

. The activity monitor was worn for 96 continuous hours 

covering two weekdays and a full weekend. Data was reported as the average number of steps 

per day.  

 

Statistical analysis  

Group characteristics were compared using unpaired t-tests or Wilcoxon rank-sum tests for 

Gaussian and non-Gaussian distributed data, respectively. Unilateral strength and LTM for 

the strongest and weakest leg were analyzed using multiple linear regression with sex, 

strongest/weakest limb and age as independent variables. Relationships between dependent 

variables (Composite Z-score) and independent variables (various muscle mechanical 

parameters) including co-variables (sex, age, steps per day, fat percentage, and BMI) were 

performed using multiple linear regression analysis. Steps per day were used to control for daily 

activity levels, whereas the assessment of body fat was used to account for potential effects of 

differences in body composition. These specific co-variables were selected as they have previously 

been shown to affect LEF17,20  Co-variables with low weight in the model (P>0.1) were 

excluded using progressive step-wise regression. Robust standard errors were calculated 

when linear regression models showed heteroscedasticity. Percentage between-limb 

asymmetry was calculated as (([Strongest – Weakest]/Strongest)*100). 

Between sex comparisons for limb asymmetry were performed using Wilcoxon rank-sum 

tests (assuming non-Gaussian distributions). Results are reported as mean ± SD unless 

otherwise stated, and the level of significance was P < 0.05 (2-tailed testing). All statistical 

analyses were performed using STATA 15.1 (StataCorp, TX, USA). 
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RESULTS 

Characteristics of research participants 

Table 1 presents the characteristics of the included participants. Compared to female 

participants, male participants demonstrated higher (P < 0.0001) ASMI, lower body fat 

percentage, higher visceral fat content, and tended to have higher BMI (P = 0.07). 

Furthermore, male participants demonstrated faster 400 m gait speeds (P = 0.0001) and 

completed more repetitions on the 30-s chair stand test (P = 0.001). No sex differences were 

observed for age or daily activity level. 

 

Muscle strength and mass 

Data on maximal unilateral muscle strength and power, as well as muscle mass were grouped 

into the strongest and weakest limb (Presented in Table 2). Male participants exhibited 

greater LEP, dynamic knee extensor strength, and MVIC (all normalized to body mass) 

compared to female participants, along with larger leg LTM (all P < 0.001).  

 

Between-limb asymmetry 

Data on between-limb asymmetry are presented in Figure 1. The average between-limb 

asymmetry ranged between 10-13% for various strength and power measurements (LEP: 10.6 

± 7.9%; Dynamic peak torque: 13.0 ± 10.8%; MVIC: 11.2 ± 10.3%), whereas asymmetry in 

leg LTM averaged 3.0 ± 2.3%. Asymmetry was larger in women compared to men for 

dynamic peak torque (Men 11.1 ± 9.5%; Women: 15.0 ± 11.8%; P = 0.005). For all other 

measures, asymmetry did not differ between sexes. 
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Associations between strength, power and asymmetry and lower extremity function 

(LEF) 

LEF was positively correlated with LEP, MVIC, and dynamic peak torque (r
2
 = 0.43-0.47, P 

< 0.001) (Table 3). In addition, leg LTM was positively correlated with LEF (r
2
 = 0.38, P = 

0.02-0.03). Leg LTM was not associated with LEF using the non-adjusted regression model. 

Associations to LEF were comparable when correlating strength or power levels from either 

the strongest or weakest leg.  

Percentage between-limb asymmetry in MVIC was negatively associated with LEF when 

adjusted for steps per day and body fat percentage (r
2
 = 0.40, P = 0.025). Likewise, leg LTM 

asymmetry was negatively correlated with LEF when adjusted for steps per day, although 

demonstrating a weaker relationship (r
2
 = 0.12, P = 0.048). These associations disappeared 

when using non-adjusted regression analysis. Percentage between-limb asymmetry in LEP 

and dynamic peak torque were not associated with LEF. 

DISCUSSION 

The present study evaluated the degree of between-limb asymmetry in maximal leg muscle 

strength, power, and lower limb LTM in order to investigate its potential association with 

functional capacity among home dwelling older individuals.  

The data revealed that the mean magnitude of lower limb muscle strength and power 

asymmetry was in the range of 10-13%, whereas asymmetry in leg LTM was much lower 

(3%). At group level the magnitude of between-limb asymmetry was comparable to values 

previously reported in healthy older adults of similar age
13,14,16,29

. Notably however, a 

significant proportion (11-20%) of the participants demonstrated much greater (2-3 fold 

higher) levels of between-limb asymmetry in lower limb strength and power, which might 

predispose this subpopulation for future mobility limitations. Surprisingly, women 
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demonstrated higher degrees of between-limb asymmetry in dynamic knee extensor peak 

torque than men. To our best knowledge, this effect of sex on between-limb asymmetry has 

not been reported previously. This finding could, at least in part, help to explain previous 

observations of lower LEF and higher risk of developing frailty in older women compared to 

men
18,30

. However, since sex differences were not apparent for any other outcome measure 

obtained in the present study, this notion remains purely speculative. 

   The present study demonstrated moderate-to-strong associations between maximal leg 

extensor strength/power and LEF (Table 3). Comparable relationships have been observed in 

previous studies
14,15,31

 although these studies generally were performed in elderly with lower 

functional performance levels than the older adults examined in the present study. For 

instance, 90% of the participants in the present study completed the 400 m walk in a time that 

would place them in the fastest quartile reported by Newman and coworkers
24

. Importantly, 

the present associations suggest that even in healthy independently living and active older 

individuals, high levels of leg muscle strength and/or power are accompanied by high LEF 

and vice versa. Some measures of LEF seem to suffer from a ceiling effect when applied in 

healthy older adults
32

, underlining the importance of choosing sufficiently challenging tests 

when measuring LEF in this population. In contrast to previous reports
31,33–35

 we did not find 

LEP to be a stronger predictor of functional performance than isolated muscle strength 

parameters (dynamic or isometric knee extensor strength). It is possible that this apparent 

discrepancy arise as a result of the overall high strength and functional performance level of 

the present group of old adults.  

Leg LTM as a measure of lower limb muscle mass appeared to be a moderate predictor of 

LEF in our cohort when adjusted for age, daily activity level, and body fat percentage. In 

contrast, leg LTM failed to predict LEF when using a non-adjusted linear regression model. 

Previous investigations into the relationship between muscle mass and functional 
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performance levels in older adults have shown conflicting results, with some studies 

reporting positive correlations
1,27,36

 while absent in others
9,37–39

. Importantly, leg LTM failed 

to predict LEF when using a non-adjusted linear regression model. However, a clear positive 

relationship between leg LTM and LEF emerged when the effects of age, physical activity 

and body fat percentage were accounted for. In turn, the observed association between 

muscle mass (leg LTM) and lower extremity function may have been mainly driven by the 

positive relationships between lower limb strength and/or power levels and LTM. This can be 

considered an independent benefit of conserving muscle mass at old age regardless of other 

potential advantages hereof on metabolic health, systemic inflammatory state etc
40

.  

The present study revealed that when using an adjusted regression model, high levels of 

between-limb asymmetry in MVIC and leg LTM were associated with reduced LEF even 

when examined in well-functioning community-dwelling healthy older adults. In contrast, the 

degree of lower-limb asymmetry in LEP and dynamic peak torque failed to demonstrate any 

associations with LEF. These disparate trends are puzzling, as asymmetry in these measures 

would be expected to depend largely on the same physiological factors, and consequently 

should be similarly associated to LEF. Although speculative, the disparate trends could 

possibly be due to asymmetry in MVIC being dependent on differences in maximal force 

generation capacity of the lower limbs, and thus largely rely on skeletal muscle mass (size). 

In contrast, asymmetry in LEP and dynamic peak torque might to a greater extent depend on 

between-limb differences in neuromuscular activation and coordination due to the highly 

dynamic nature of the tests, which involved slow isokinetic to fast non-restricted movement 

speeds. Further, we intended to examine whether LEF were influenced directly by the 

strength/power performances of the strongest or weakest leg, respectively. Somewhat 

unexpectedly, however, neither the prevalence nor strength of associations to functional 

performance differed between the strongest or weakest limbs, suggesting that the 
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strength/power capacity of the weakest leg generally does not represent a separate limiting 

factor for lower extremity function, at least in healthy older individuals. Thus, in terms of 

lower limb muscle strength and power the present findings suggest the existence of a 

substantial physical reserve among healthy older individuals, whereby lower single-limb 

strength/power levels (and/or potential inter-limb asymmetries herein) may remain beyond 

any critical threshold below which it would start to negatively affect physical function
11

. 

Supporting the present observations, LaRoche and colleagues
14

 also reported the weakest leg 

to not be a better predictor of functional performance than the stronger leg in community 

dwelling older adults at risk of mobility limitation. 

Methodological considerations: Potential limitations may be observed with the present study. 

A low degree of between-limb asymmetry was observed in the lower limbs LTM (~3%). 

Given the inherent limitations of DXA scanning to detect subtle differences in lean segment 

mass
41

, future studies investigating between-limb asymmetry in healthy older adults would 

benefit from using more sensitive techniques such as magnetic resonance imaging or 

CT.
42

Furthermore, it would have been relevant to include measurements of postural balance , 

since elevated between-limb asymmetry in LEP has previously been observed in fallers 

compared to non-fallers
13

, although not consistently observed in all studies
29

. Also, given the 

cross-sectional nature of the present study, no direct causalities could be revealed from the 

present observations. Longitudinal follow-up on the long-term development in functional 

capabilities would, therefore, be of strong interest.  

In summary, between-limb asymmetry in maximal lower limb muscle strength and power 

production showed no systematic associations to LEF in a cohort of 208 healthy 

independently living and active adults aged 65 years and above. Yet, a number of lower limb 

strength (MVIC) and power (LEP) parameters were moderately-to-strongly associated with 

LEF.  
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Perspective: The present observations support previous notions that strength training 

intervention should be introduced in healthy older adults in order to preserve or even better 

increase maximal muscle strength and power
43,44

, whereas the potential benefits from 

reducing between-limb asymmetry in selected muscle strength/power or muscle mass 

parameters seems to remain of lesser importance. Future studies should investigate how 

specific types of unilateral and bilateral strength/power training will affect lower limb muscle 

mass, strength and power of well-functioning older adults, while concurrently assessing to 

which extent these changes can be translated into improvements in functional capacity. 
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Table 1. Characteristics of the research participants. 

 

 

Results are reported as mean ± SD. P-values derived using unpaired t-testing or Wilcoxon 

rank-sum comparison between sexes. BMI = Body mass index; ASMI = Appendicular 

skeletal muscle index.  

 

 

 

 

 

 

 

 

    

All Men Women P-value 

N =   208 109 99 - 

Age [y] 70.2 ± 3.9 70 ± 3.9 70.4 ± 3.9 0.52 

Weight [kg] 
75.7 

± 
12.8 

81.4 ± 
11.2 

69.4 ± 
11.4 

<0.000

1 

Height [m] 
1.72 

± 
0.08 

1.77 ± 
0.06 

1.67 ± 
0.06 

<0.000

1 

BMI 

[kg/m^2

] 
25.6 

± 
3.8 

26.0 ± 
3.4 

25.1 ± 
4.1 0.07 

ASMI 

[kg/m^2

] 
7.6 

± 
1.2 

8.3 ± 
0.9 

6.7 ± 
0.8 

<0.000

1 

Fat% [%] 
33.3 

± 
8.1 

29.0 ± 
6.4 

37.9 ± 
7.2 

<0.000

1 

Visceral fat [kg] 
1.3 

± 
0.9 

1.7 ± 
0.9 

0.9 ± 
0.7 

<0.000

1 

400 m gait 

time [s] 
245 

± 
34 

236 ± 
32 

255 ± 
33 0.0001 

30 s chair 

stands [reps] 
19.7 

± 
5.0 

20.7 ± 
4.8 

18.6 ± 
5.0 0.001 

Daily 

stepcount [steps] 10056 ± 3958 10040 ± 3877 10163 ± 4099 0.83 
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Table 2. Unilateral knee extensor strength, leg extensor power and fat-free mass (LTM). 

 

      Strongest limb Weakest limb 

Gender 

effect 

Leg extensor 

power 

[W/kg] All 2.63 ± 0.68 2.32 ± 0.63 

< 0.001 Men 3.00 ± 0.63 2.65 ± 0.60 

Women 2.23 ± 0.48 1.97 ± 0.47 

Dynamic peak 

torque 

[Nm/kg] All,  2.04 ± 0.45 1.78 ± 0.46 < 0.001 

Men 2.27 ± 0.39 2.02 ± 0.40   

Women 1.78 ± 0.38 1.51 ± 0.39   

MVIC [Nm/kg] All,  2.29 ± 0.54 2.04 ± 0.54 < 0.001 

Men 2.55 ± 0.47 2.30 ± 0.45   

Women 2.01 ± 0.46 1.76 ± 0.49   

LTM legs [kg] All,  8.66 ± 1.68 8.41 ± 1.66 < 0.001 

Men 9.88 ± 1.20 9.59 ± 1.21   

Women 7.31 ± 0.94 7.09 ± 0.94   

 

Notes: Results are reported as mean ± SD. Data on knee extensor dynamic peak torque, 

isometric peak torque (MVIC), and leg extensor power are reported normalized to body 

weight. Lean tissue mass (LTM) measures are reported in absolute values. P-values represent 

the outcome of linear regression analyses.  
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Table 3. Relationships between Lower extremity function (LEF) and lower body strength-

/power or fat free mass (LTM) of the strongest or weakest leg, or between-limb asymmetry 

(%ASYM).  

 

Associations to LEF 

Included covariables P-

value 
R

2
 

Gender Age Steps/day Fat-% BMI 

Leg extensor 

power 

Strongest leg ** ** * *** - <0.001 0.44 

Weakest leg ** ** ** *** - <0.001 0.45 

%ASYM - - - - - 0.36 0.004 

Dynamic peak 

torque 

Strongest leg *** * ** *** - <0.001 0.47 

Weakest leg ** ** ** *** - <0.001 0.45 

%ASYM - - - - - 0.07 0.02 

MVIC 

Strongest leg ** ** ** *** - <0.001 0.46 

Weakest leg ** ** ** *** - <0.001 0.47 

%ASYM - *** * *** - 0.03 0.40 

Leg LTM 

Strongest leg - *** * *** - 0.02 0.38 

Weakest leg - *** * *** - 0.03 0.38 

%ASYM - - *** - - 0.005 0.12 

 

Notes: “P-value” indicates the level of significance for the correlation. Levels of significance 

for covariables are shown as: * P<0.1, ** P<0.01, *** P<0.001. “-“ P>0.1.  
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LEGENDS 

Figure 1. Percentage between-limb asymmetry in power, strength, and muscle mass 

measures. Asymmetry was calculated as (((Strongest – Weakest)/Strongest)*100%). Results 

are shown as mean ± SD. * denotes significant difference between sexes (P < 0.05). MVIC; 

Maximal voluntary isometric contraction. Leg LTM; Leg lean tissue mass. 

 

 

 


