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ABSTRACT Modulation of microRNAs (miRNAs), endogenous regulators of gene expression, is a
promising strategy for tackling inflammatory lung diseases. In this proof-of-concept study, we tested
delivery of miR-17 to bronchial epithelial cells (BECs) using nebulised lipid–polymer hybrid nanoparticles
(LPNs). The primary aim was to reduce the induced secretion of miR-17’s target, i.e. the pro-inflammatory
chemokine interleukin (IL)-8.

Synthetic miR-17 mimics were loaded into LPNs composed of poly(DL-lactic-co-glycolic acid) (PLGA)
and the cationic lipid 1,2-dioleoyloxy-3-(trimethylammonium)propane (DOTAP) using a double emulsion
solvent evaporation method and nebulised using the Aerogen Solo nebuliser. The physicochemical,
aerosol, inflammatory and cytotoxic properties of LPNs were characterised. The effect of LPNs on
lipopolysaccharide (LPS)-induced IL-8 production from human NuLi-1 BECs was tested by ELISA.

The z-average, polydispersity index and ζ-potential of the LPNs and the aerodynamic properties of
nebulised suspensions were in a range optimal for deposition in the bronchi and bronchioles post-
inhalation. Cytotoxic and pro-inflammatory effects were minimal for LPNs loaded with a model cargo.
Nebulisation did not affect the physicochemical or functional properties of the LPNs. Nebulised miR-17-
loaded LPNs downregulated LPS-induced IL-8 secretion by >40% in BECs.

This study suggests that DOTAP-modified PLGA LPNs are efficient and well-tolerated carriers for
delivery of miRNA mimics to BECs.
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Introduction
Localised inflammation of lung tissue is a normal physiological response to respiratory insult by pathogens
and airborne particles. However, if the inflammatory response becomes chronic, extensive invasion by
immune cells, remodelling of lung tissue over time and narrowing of the airways will eventually result in
obstructive lung disease and loss of lung function [1]. Such obstructive inflammatory lung diseases include,
for example, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), asthma and chronic
infectious lung diseases. All can display high baseline inflammation interjected by exacerbations [1].

The airway epithelium is the first line of defence against airborne challenges to the lungs. This epithelium,
which includes the bronchial epithelial lining, plays a critical role in the orchestration of the lung
inflammatory cascade through its ability to regulate innate and adaptive immune responses [2]. One of the
first of these responses is often Toll-like receptor 4-triggered secretion of interleukin (IL)-8 (also known as
CXC motif chemokine ligand-8), an important neutrophil chemokine in the lung [3]. Upregulation of IL-8
secretion causes neutrophil infiltration to the site of production [1, 4]. Chronic secretion of
neutrophil-derived proteases and oxidants can damage the lung epithelium and basal tissues, resulting in
significant tissue remodelling and a decline of lung function [1, 4]. This is an important feature of
inflammatory lung diseases [5].

Due to its critical role in lung inflammation, IL-8 has been investigated as a target for therapy in previous
studies that aimed to control chronic inflammatory lung disease [6]. Anti-IL-8 antibodies have been
investigated as a potentially effective treatment in induced lung injury models, but subsequent clinical
trials with these agents have not yet resulted in approved therapeutics (e.g. ABX-IL8: ClinicalTrials.gov
identifier NCT00035828).

Inhalable micro- and nanoparticles have emerged as promising carriers for the delivery of active
pharmaceutical ingredients (APIs) directly to the lung epithelium and its underlying basal layers [7]. These
APIs include, among others, antisense oligonucleotides that exert their therapeutic effect via the RNA
interference (RNAi) pathway by inhibiting the expression of specific proteins involved in disease pathways [7].
Although most efforts to date have been focused on particle-mediated delivery of small interfering
RNAs (siRNAs) to the airway epithelium [7–11], the use of microRNA (miRNA) mimics as cargoes may
also have significant therapeutic potential. miRNAs are small, endogenous, noncoding RNAs that
pleiotropically hybridise to target mRNAs for downregulation through the cell’s RNAi machinery, either by
target mRNA degradation or by translational repression [12]. Synthetic miRNA mimics have frequently
been employed for research purposes, while their possible use in medical treatment is a more recent
exploration [13].

We previously showed that miR-17 is a potent inhibitor of IL-8 and is downregulated in bronchial epithelial
cells (BECs) during long-term exposure to inflammatory mediators [14]. In this successive study, we test the
ability of nebulised lipid–polymer hybrid nanoparticles (LPNs) to deliver miR-17 to BECs and to knockdown
IL-8 expression. For this, we prepared miR-17-loaded LPNs composed of the biodegradable polymer poly-
(DL-lactic-co-glycolic acid) (PLGA) and the cationic lipid 1,2-dioleoyloxy-3-(trimethylammonium)propane
(DOTAP). Nanoparticles based on PLGA have previously been tested for the delivery and sustained release of
APIs to the lungs, including pharmaceuticals currently used for the treatment of inflammatory lung diseases
such as CF and COPD [15, 16].

In this proof-of-concept study, we show that nebulisation facilitates the aerosolisation of DOTAP-modified
PLGA LPN suspensions, producing aerosol droplets that are optimal for the delivery of their cargo to the
bronchial epithelium. Furthermore, we demonstrate that the LPNs cause minimal cytotoxicity and
pro-inflammatory effects. Finally, our data indicate that nebulised miR-17-loaded DOTAP-modified PLGA
LPNs can downregulate lipopolysaccharide (LPS)-induced IL-8 secretion in BECs.

Materials and methods
Preparation of miRNA mimic-loaded DOTAP-modified PLGA LPNs
Double emulsion solvent evaporation was used to encapsulate miR-17 mimics, NC#1 and double-stranded
DNA (dsDNA) oligonucleotides within DOTAP-modified PLGA LPNs as described previously [17, 18].
Additional details are given in the supplementary material.

Physicochemical characterisation
The z-average and polydispersity index (PDI) were measured by dynamic light scattering using photon
correlation spectroscopy. The ζ-potential was determined using laser Doppler micro-electrophoresis
(Zetasizer Nano ZS; Malvern Instruments, Malvern, UK). For additional details and the measurement of
yield, encapsulation efficiency and loading capacity, see the supplementary material.
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Nanoparticle nebulisation
Lyophilised LPN/trehalose cakes were reconstituted in RNase-free water in the absence or presence 0.9%
saline for 10 min at room temperature followed by gentle vortexing for 3 min. Nebulisation was conducted
with the Aerogen Solo vibrating mesh nebuliser (Aerogen, Galway, Ireland). The LPN dispersions were
nebulised into a 15 mL centrifuge tube fixed to the Aerogen Solo and collected after nebulisation by a brief
centrifugation for 10 s at <500×g. The z-average, PDI and ζ-potential before and after nebulisation were
measured.

Aerosol characterisation
The mass median aerodynamic diameter (MMAD) and the geometric standard deviation (GSD) of the
nebulised LPN dispersions were measured using the Next-Generation Impactor (NGI; Copley Scientific,
Nottingham, UK) at a flow rate of 15±0.5 L·min−1. Counting of the nanoparticle fractions was performed
with the Nanosight NS300 (Malvern). The volume median diameter (VMD) of the nebulised LPN
dispersions and 0.9% saline was measured using the Spraytec laser diffraction system (Malvern).
Additional details are provided in the supplementary material.

Cell culture and treatments
The human NuLi-1 BEC line (kind donation from Joseph Zabner, University of Iowa, Iowa City, IA, USA)
was cultured in collagen-coated plasticware in Bronchial Epithelial Growth Medium (Lonza, Basel,
Switzerland) as described previously [19]. In some experiments cells were stimulated for 24 h with
10 µg·mL−1 Pseudomonas aeruginosa LPS. Details of LPN transfections are provided in the supplementary
material.

IL-6 and IL-8 ELISA
IL-8 and IL-6 concentrations were measured by sandwich ELISA in media removed from cell cultures and
centrifuged for 5 min at 2000×g at 4°C as previously described [3].

Cell viability assay
Cell viability was determined using the CellTiter 96 Aqueous One Solution Cell Proliferation Assay
(Promega, Madison, WI, USA). Additional details are provided in the supplementary material.

Caspase-3 activity assay
Apoptotic activity was measured using a caspase-3 activity assay with 50 µM DEVD-AMC caspase-3
substrate in 1× Reaction Buffer (2 mM EDTA, 0.1% CHAPS (3-((3-cholamidopropyl)
dimethylammonio)-1-propanesulfonate), 5 mM dithiothreitol in 20 mM HEPES, pH 7.4) as previously
described [20].

RNA isolation and miRNA quantitative reverse transcription-PCR
Total RNA was isolated using the miRNeasy Mini kit (Qiagen, Hilden, Germany). Prior to RNA isolation,
special care was taken to exclude uninternalised miRNAs [21]. miR-17 and U6 were quantified with
pre-designed reverse transcription and stem–loop PCR primers for miR-17 (assay 002308; Thermo Fisher
Scientific) and U6 small nuclear RNA (assay 001973; Thermo Fisher Scientific); reverse transcription
(TaqMan MicroRNA Reverse Transcription kit; Thermo Fisher Scientific) and PCR (Universal Master Mix
II; Thermo Fisher Scientific) were carried out using the LightCycler 480 System (Roche, Basel,
Switzerland).

Statistical analysis
Continuous variables are presented as mean with standard deviation. Quantitative results were compared
using an unpaired or paired t-test, where appropriate. Where multiple hypotheses were tested, Bonferroni
correction was applied for multiple comparisons. For regression analysis, both linear and nonlinear
goodness-of-fit models were tested, yielding the R2 measure of correlation with testing for a significant
deviation from a nonzero slope.

Results
Physicochemical properties of miRNA mimic- and dsDNA oligonucleotide-loaded LPNs
DOTAP-modified PLGA LPNs loaded with miRNA mimics or dsDNA oligonucleotides were prepared
[17, 18]. Optimal particle size and colloidal stability in suspension is important for efficient delivery of
nucleic acid cargoes to the airway epithelium [22–24]. The z-average, PDI and ζ-potential were measured
immediately after preparation of independent LPN batches by photon correlation spectroscopy and laser
Doppler micro-electrophoresis, respectively (table 1). The z-average of LPNs loaded with miRNA mimics
(miR-17 and NC#1) was 208.0±16.7 nm and the PDI was 0.148±0.030, which are within target ranges for
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efficient mucus penetration and uptake by BECs while avoiding phagocytosis [22, 24]. The ζ-potential of
miRNA-loaded LPNs was 42.4±8.4 mV, which is within a desirable target range to ensure colloidal
stability in suspension, minimal toxicity and minimal pro-inflammatory effects [25]. No significant
differences between the z-average, PDI and ζ-potential were measured for LPNs loaded with miRNA
mimics or dsDNA oligonucleotides (table 1; n=8, paired t-test). Reconstitution of freeze-dried LPNs did
not affect these properties (table 1; n=3, paired t-test). The average loading capacity of the miRNA
mimic-loaded LPNs was 6.96±2.09 µg nucleic acid·mg−1 LPNs. The encapsulation efficiency and yield were
15.5±4.6% and 69±9%, respectively.

Nebulisation of LPNs does not influence their physicochemical properties
The aerodynamic properties of particles, once nebulised, determine their deposition pattern in the airways.
Nanometre-sized particles generally have low deposition efficiency as they fall below the 1–5 µm size range
that allows sufficient inertia for deposition in the bronchioles [26–28]. To endow LPNs with optimal
aerodynamic properties, the LPNs were nebulised in a liquid medium (0.9% saline), resulting in the
generation of nanoparticle-loaded liquid droplets of micrometre diameter that can be inhaled.

Independent batches of LPNs loaded with miRNA mimics or dsDNA oligonucleotides were aerosolised
with the Aerogen Solo nebuliser. This vibrating mesh nebuliser allows for the gentle dispersion of
therapeutics in a liquid medium without imposing significant stress on the formulation that might
otherwise compromise chemical and physical stability [29]. To test the quality of aerosolised LPNs their
physicochemical properties were compared prior to and after nebulisation. No significant changes in
z-average, PDI and ζ-potential were evident (table 1; n=3, paired t-test).

Aerodynamic properties of nebulised LPNs
To determine the aerosol properties of the nebulised LPNs, the MMAD, which describes the aerodynamic
particle size distribution of an aerosol by mass, and the VMD, which reflects the particle size distribution
of particles by volume, were measured. The GSD describes the spread of the aerodynamic particle
distribution. We first determined that counting LPNs with the Nanosight NS300 was an accurate method
for quantifying LPN suspensions collected from the NGI, as it allows for direct counting of the particles in
a solution without the need for reference standards (figure 1). The MMAD of LPNs nebulised in 0.9%
saline was 4.20±0.05 µm, while the GSD was 1.61±0.09. The fine particle fraction (FPF), also called the
respirable fraction, was 89.8±1.7% at FPF5.4 µm. The VMD of the LPNs in 0.9% saline was 3.71±0.07 µm,
which showed no significant difference with the VMD of nebulised 0.9% saline (3.84±0.19 µm; n=3,
paired t-test).

The PLGA:DOTAP component of LPNs is minimally cytotoxic and pro-inflammatory
The physicochemical properties (shape, size and charge) of LPNs influence cell viability, and
DOTAP-modified PLGA LPNs loaded with chemically modified siRNAs can exhibit cytotoxic and
pro-inflammatory effects at high concentrations [17, 30]. We investigated the impact of the PLGA:DOTAP
component of the LPNs on viability and inflammation in NuLi-1 BECs. For this part of the study dsDNA
oligonucleotides, which are nontoxic and noninflammatory to NuLi-1 BECs, were encapsulated in LPNs as
an alternative to expensive miRNA mimics. The physicochemical properties of dsDNA-loaded LPNs did
not differ from those of miRNA-loaded LPNs (table 1). In time-course and dose–response experiments no
significant effects on cell viability were observed (figure 2a–c). Caspase-3 activity, a marker for apoptosis,
was not increased in 1 mg·mL−1 LPN-treated BECs compared with unexposed control cultures (figure 2d).

TABLE 1 z-average, polydispersity index (PDI) and ζ-potential of lipid–polymer hybrid
nanoparticles (LPNs)

Formulation z-average
nm

PDI ζ-potential
mV

miRNA mimic LPNs (not freeze-dried) 208.0±16.7 0.148±0.030 42.4±8.4
dsDNA oligonucleotide LPNs (not freeze-dried) 200.1±32.6 0.164±0.063 35.3±11
Lyophilised miRNA mimic LPNs reconstituted# 218.5±5.8 0.195±0.005 32.6±6.8
Lyophilised miRNA mimic LPNs reconstituted# and
nebulised

232.1±12.9 0.173±0.007 28.3±4.4

Data are presented as mean±SD. miRNA: microRNA; dsDNA: double-stranded DNA. #: 0.9% saline was
used for LPN reconstitution.
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There was no significant correlation between secreted IL-6 or IL-8 concentrations and LPN concentrations
(R2=0.1441, p=0.120) (figure 3); however, small increases in cytokine secretion by NuLi-1 cells exposed to
1 mg·mL−1 LPNs were evident, but this was not statistically significant.

Increased intracellular miR-17 expression in BEC cultures treated with miR-17-loaded LPNs
Delivery of nanoparticles to epithelial cell cultures is frequently studied using subconfluent monolayers.
However, as the superficial layer of epithelia in vivo consists of tightly packed cells, fully confluent cell
cultures are also relevant. Hence, LPNs loaded with miR-17 mimics or NC#1 control were administered to
subconfluent (low density) and fully confluent NuLi-1 monolayers with a visible tight-junction phenotype
(high density), and miR-17 was measured by quantitative reverse transcription-PCR 48 h later. Inadequate
removal of uninternalised nanoparticles can lead to misleadingly high miRNA mimic expression values
due to their unintended inclusion in the cell lysates. To measure only intracellular miR-17, a method
designed to remove extracellular nanoparticles from the samples was used [21]. All BEC cultures had
significantly increased miR-17 when transfected with miR-17-loaded LPNs compared with cultures
transfected with NC#1-loaded LPNs, except for low-density cultures incubated with the highest dose
wherein miR-17 was substantially increased. The nebulised LPNs also effectively transfected NuLi BECs,
leading to significantly increased levels of intracellular miR-17 under all conditions tested (figure 4).

Knockdown of IL-8 in NuLi-1 BECs by miR-17-loaded LPNs
Previous studies have shown that miR-17 mimics can knockdown LPS-induced IL-8 by up to 50% in BECs
[14, 31]. Figure 5 shows the effect of miR-17-loaded LPNs on basal and LPS-induced IL-8 production
from NuLi cells. The miR-17-loaded LPNs almost exclusively significantly decreased basal and
LPS-stimulated IL-8 secretion compared with treatment with NC#1-loaded LPNs in both low-density and
high-density cultures. To test the effects of nebulisation on the efficacy of miR-17-loaded LPNs to
knockdown IL-8, NuLi-1 BECs were treated with LPNs that were collected following nebulisation with the
Aerogen Solo nebuliser. As before, significant decreases in basal and LPS-induced IL-8 production were
evident in almost all of the conditions tested (figure 6). These results show that after nebulisation, the
miR-17-loaded LPNs retain their ability to inhibit IL-8 secretion from BECs.

Discussion
The aims of this study were to engineer inhalable miR-17-loaded DOTAP-modified PLGA LPNs and to
test their ability to inhibit the induced secretion of IL-8, which is the target of miR-17, in BECs. This
follows our previous findings that miR-17 is downregulated in BECs upon long-term exposure to
pro-inflammatory stimuli, which contributes to the upregulation of IL-8 [14]. miR-17 is a member of the
miR-17–92 cluster. This is a cluster with a complex expression pattern in inflammation and it can be
contextually upregulated or downregulated in a cell type-dependent manner [14, 32]. A published protocol
was adapted to prepare nanoparticles with properties previously considered suitable for delivery of miRNA
mimics to the bronchial epithelium [17, 18, 22, 33]. Efficient delivery of nanoparticles to the airway
epithelium depends on several factors. It is known that the mucus permeability is almost completely
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inhibited for particles >300 nm [22, 33], while nanoparticle endocytosis is considered most efficient at the
50–500 nm range [34, 35]. Larger particles are usually phagocytosed by lung macrophages [24]. The size
of the LPNs prepared in this study was within the 200–250 nm range. Their ζ-potential was within the
15–45 mV range deemed optimal for nucleic acid delivery, and represents a compromise between maximal
colloidal stability and minimal inflammatory stimulation [9, 36]. The loading capacity, yield and
encapsulation efficiency measurements were comparable to those found in other studies [35].

The miR-17-loaded LPNs in this study successfully delivered miR-17 to the BECs. miR-17 levels were
substantially higher in all treated cultures; however, a linear dose–response relationship was not observed.
Endocytosis, intracellular trafficking, endosomal escape and cargo release of LPNs are complex processes
that may have an influence on dose kinetics, but examining this is beyond the scope of the current study.
The delivery of miR-17 led to knockdown of IL-8 under both basal and pro-inflammatory conditions in
subconfluent and confluent epithelial cell monolayers, exceeding the performance of previous cationic
lipid-based transfection reagents [14].

Cytotoxicity profiling of DOTAP-modified PLGA LPNs in cell cultures has previously resulted in
conflicting reports, showing that at high concentrations these LPNs can exert some toxicity [8, 17]. Based
on cell viability and apoptosis measurements we did not observe any significant cytotoxic effects induced
by the PLGA:DOTAP component of LPNs at the concentrations tested in NuLi-1 BECs, including the
highest LPN concentration. The LPNs did not induce IL-6 and IL-8 except at 1 mg·mL−1, a concentration
that exceeds the range used for further functional experiments and exceeds the expected physiological dose
for in vivo application. However, it is important to note that when loaded with miR-17 mimic, the basal
levels of IL-8 secreted by LPN-treated NuLi-1 cells was approximately 1.5–3.5-fold elevated compared with
when the LPNs were loaded with dsDNA cargo. This observation deserves greater scrutiny in future
studies.

Nebulisation of nanoparticles in 1–5 µm droplets has been demonstrated previously as an effective method
to deliver nanoparticles to the pulmonary epithelium in vivo [37]. From in vitro experiments, we found
that nebulisation of the miR-17-loaded LPNs reconstituted in 0.9% saline resulted in an aerosol with
aerodynamic properties that could allow successful deposition of the LPNs in the secondary bronchi and
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bronchioles upon inhalation. Future in vivo testing may confirm this. Shear forces from nebulisation may
affect the LPNs and their cargo. However, our study shows that nebulisation of miRNA mimic-loaded
PLGA LPNs does not affect their physicochemical properties or their transfection efficiency, indicating
that the Aerogen Solo nebuliser is a suitable device for LPN delivery to the lungs. This also corroborates
previous findings for the nebulisation of plasmid DNA-loaded PLGA LPNs [37]. Nonetheless differences
were evident in the transfection efficiencies of the nebulised versus native LPNs and further research
would be required in order to understand why this difference exists.

This study also presents nanoparticle counting using the Nanosight NS300 as a novel and effective method
to quantify nanoparticles directly by visualisation and counting after their retrieval from cascade
impactors. However, it is important that the nanoparticle concentrations in suspension be normalised to
within a range that can be quantified accurately using the Nanosight NS300. We propose that this method
is a valid complement to existing methods of reproducibly quantifying nanoparticles in suspension.

This study has some limitations. In the absence of in vivo testing, these results merely represent
proof-of-concept efficacy of miRNA-loaded LPNs in vitro and could only be performed in a single cell
line. Examination of the behaviour of the LPNs in mucus-producing air–liquid interface cultures or their
effects on other miR-17 targets, such as STAT3 (signal transducer and activator of transcription 3), Mcl-1
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(myeloid cell leukaemia 1) and TXNIP (thioredoxin interacting protein) [38, 39], was beyond the scope of
the current investigation.

Inflammatory lung diseases are among the most common lung pathologies. A chronic oversecretion of
IL-8 by airway epithelia and leukocytes and consequent neutrophilia are common symptoms of COPD,
CF, infection and certain types of asthma [5]. Neutrophilia in response to high IL-8 levels is a
compounding problem that results in progressive degeneration and remodelling of lung tissue. BECs are
important immune-modulating cells and represent the first line of defence against airway insult, but they
are particularly sensitive to upregulated neutrophil protease activity. Beyond IL-8, there are other validated
pro-inflammatory human targets of miR-17 that are expressed by BECs, e.g. ICAM1 (intercellular
adhesion molecule 1) and TGFβR2 (transforming growth factor-β type II serine/threonine kinase
receptor). These factors can contribute to infectious and inflammatory lung disease, including rhinovirus
infection, CF, asthma and COPD, and therefore the approach under investigation here could have
therapeutic potential for those conditions [40–42]. This proof-of-concept study provides evidence that
DOTAP-modified PLGA LPNs are suitable, nontoxic carriers for nebulised delivery of miR-17 to BECs
and forms a platform upon which future miRNA-based therapeutics could be developed for inflammatory
lung disease.
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