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Chapter 1   Introduction 

 

 

 

 

 

 

 

 

 

 
 

 

1.1 Rolling contact fatigue in rails 

 

Railway is no doubt the backbone land transportation form and plays a key role in the global society and 

economic development. The Union Internationale des Chemins de fer (in English is International Union 

of Railways, UIC) commented railway as with unparalleled potential for achieving a sustainable 

development for the twenty-first century [1,2]. Besides the unique capability and efficiency in handling 

large passenger/freight flow, railway is eco-friendly, economical, safe and traffic congestion free. 

Furthermore, railway has become an irreplaceable transportation form and has been contributing 

significantly to the national and global economies. For example, the report published in 2014 [3] claimed 

that the UK has been benefiting a yearly £ 9.3bn Gross Value Added (GVA) from railway transportation. 

In addition to the direct economic contribution, the rail transport development has an indirect impact on 

the society and environment, e.g. increasing employment in rail supply chain industries and less CO2 

emission in comparison with other land transport means. 

The steel rail track is the critical component of the railway system and it is the direct carrier and the 

bearer of the loads from the running trains. The degradation of steel rail track is the main source for the 

railway maintenance and rail track replacement [4]. The interim rail track maintenance, especially when 

unexpectedly, may cause undesirable traffic interruptions and such maintenance is typically costly. 

Durable and maintainable rail tracks will thus be crucial in ensuring the sustainability of the rail 

infrastructure and the railway system.  
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The dominant damage form in the rails is the rolling contact fatigue (RCF) [4–6], the removal of which 

accounts for the majority of the rail track maintenance plans. The high loads from the trains and the 

tractive/braking force lead to plastic deformation in the rail surface [5,7]. Plastic strain accumulates 

during the subsequent wheel passages and cracks will consequently form. The cracks tend to propagate 

further toward the rail center and can lead to the catastrophic rail cross-section fracture, if not removed 

by maintenance work in time [5,7]. 

The dominance of plastic deformation in RCF formation can become secondary upon the presence of a 

superficial microstructure alternation in rail steels, classically named as white etching layer (WEL) [5,8–

11]. WEL is typically 2 – 3 times harder, e.g. up to 1100 HV, than the matrix pearlitic microstructure in 

the rail steels, typically in the range of 220 HV – 440 HV in literature. As a result, WEL is considered 

to be brittle. Laboratory twin-disc tests show that premature RCF initiates due to the fracture of WEL 

and cracks which formed in the pearlite area adjacent to WEL [12]. The subsequent Finite Element 

Method (FEM) simulation [13] reveals that RCF cracks form in the pearlite near the WEL is due to more 

extensive plastic strain accumulation in pearlite during the loading.   

The root causes for the WEL formation are usually proposed from the microstructure characterizations 

while a comprehensive hypothesis fails to be reached. A main controversy among the proposed 

hypotheses is regarding how the cementite can be dissolved during the WEL formation since the 

cementite in the initial pearlitic microstructure is not observed in WEL [9,11]. It is well known that the 

equilibrium carbon concentration in cementite is 6.7 wt% and is much higher than the carbon solubility 

in ferrite, e.g. maximum 0.025 wt% at 727 °C in Fe-C system. As a result, trapping sites for the amount 

of carbon from the dissolved cementite need to be provided and interpreted in the proposed hypotheses 

for WEL formation.  

One of the most widely accepted hypotheses is that the WEL consists of martensite because the rail 

surface is so significantly heated that the pearlite to austenite transformation occurs during the wheel/rail 

contact. The ultrafast quenching after wheel passages enables austenite to transform to martensite. This 

hypothesis can be supported by the recognition of lattice tetragonality from a body-centered cubic  (BCC) 

crystal structure and the identification of retained austenite from synchrotron XRD measurements 

[14,15]; the nano-twinning martensitic substructures recognized by TEM [11,14]. More importantly, 

identification of manganese diffusion in the WEL [11], compared with the manganese distribution in 

the bulk pearlite, is a convincing validation of significant temperature increases. It is well known that 

long distance manganese diffusion typically requires a high temperature, e.g. above 800 °C. Such high 

temperature is well above the eutectoid point for the given rail steel compositions, enabling fully 

transformation of the initial pearlitic microstructure to austenite. 

The other major hypothesis for WEL formation is the significant grain refinement due to severe plastic 

deformation from the train wheels. TEM works of Baumann [8] and Lojkowski et al. [16] identify WEL 

as a structure consisting of nanocrystalline ferrite and without the presence of cementite. The grain size 

in the WEL is measured to be less than 50 nm. Frictional temperature increase calculation by Baumann 



 
 

3 

 

[8] shows that the temperature increase up to austenitizing temperature under the loading condition of 

the characterized rail steel is impossible. Combined with the observation of deformation characteristics 

in the pearlite zones beneath the WEL, Baumann [8] proposed that the WEL forms via the severe plastic 

deformation. The carbon from the dissolved cementite is argued to be accommodated by the high-

density dislocations formed during the train loading. It is reported that carbon has a higher binding 

energy with dislocations in ferrite, 0.75 – 0.78 eV, than the binding energy of carbon in cementite, about 

0.5 eV, e.g. in [17].  As cited in [18], a dislocation density of 5 × 1012 - 1013 m-2 can accommodate a 

maximum carbon concentration of 4.5 at% and a similar dislocation density is quantified in WEL [14]. 

Furthermore, the severe plastic deformation will cause significant grain refinement, which can provide 

extra grain boundary areas to accommodate the carbon from the dissolved cementite. 

It can be seen that the origin of WEL formation depends on and can vary significantly with different 

loading conditions of the rail steels. Microstructure characterizations on the WEL are crucial for 

exploring its root cause. Based on the understanding from the microstructure study, it will be possible 

to simulate and consequently predict the formation of WEL. An insight for designing more 

WEL-resistant rail steels may be subsequently obtained.   

 

1.2 This thesis 

 

The aim of the thesis is to achieve a sound understanding of the WEL formation in the Dutch rail steels 

and to provide insight into the design of more WEL-resistant steels. WEL has been widely observed in 

the Dutch rail steels and metallurgy studies frequently report RCF crack initiation at the WEL [10,19,20]. 

Due to the very fine microstructures in the WEL, advanced characterization techniques are required to 

identify the microstructures in the WEL. The laboratory and theoretical simulations of WEL formation 

process, under known conditions, are able to provide supporting evidence and insight into the 

characteristics during WEL formation.  

The content of the thesis is arranged as follows: 

Chapter 2 gives a literature overview on the microstructural causes for the rolling contact fatigue (RCF) 

damage in rail steels. A general introduction of microstructure control of steels for railway application 

is first given and their performance in rail track and in laboratory tests are discussed. A subsequent 

discussion of the detrimental effects, due to the presence of the so-called ‘weak sites’, on the RCF 

performance of rail steels is further provided. The important role of so-called white etching layer (WEL) 

is specifically stressed. 

Chapter 3 describes the microstructures in an R260 Mn grade rail steel, showing surface damage after 

service, in addition to the principles and configurations of different techniques used for the experimental 

research presented in this thesis: microhardness; optical and scanning electron microscopy (OM and 

SEM); X-ray diffraction (XRD), electron backscatter diffraction (EBSD) and transmission Kikuchi 
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diffraction (TKD) in SEM; transmission electron microscopy (TEM); Atom Probe Tomography (APT). 

A thermo-mechanical simulator, for simulating the WEL phenomenon, is also introduced in the chapter. 

Chapter 4 presents a characterization work on the microstructures in the white etching layer (WEL) 

observed in an R260 Mn grade rail steel, from micrometer to nanometer scales. Retained austenite in 

WEL is identified by electron backscatter diffraction (EBSD), transmission Kikuchi diffraction (TKD) 

and X-ray diffraction (XRD). EBSD and TKD quantify grains in the WEL with a size range of the order 

of magnitude of 10-8 – 10-5 m. Transmission electron microscopy (TEM) identifies complex 

heterogeneous microstructure morphologies in the WEL: nano-twinning substructure with high 

dislocation density in WEL close to rail surface and untransformed cementite and dislocations in WEL 

close to the pearlite matrix. The study with atom probe tomography (APT) shows heterogeneous 

elemental distributions through the WEL thickness. Accordingly, WEL is considered to be martensite 

with gradually changing microstructure. The experimental findings are well supported by the 

temperature calculation from the shape analysis of the manganese profile from APT measurements. The 

deformation characteristics in WEL and the pearlite beneath are discussed based on the EBSD and TKD 

measurements. The WEL is consequently proposed to form via combined consequence of temperature 

increase and plastic deformation. 

In Chapter 5, WEL formation by martensitic transformation in R260Mn grade pearlitic rail steel was 

simulated by fast heating and quenching experiments. Simultaneous deformation and fast heating were 

performed in some of the tests to study the role of plastic deformation on the martensite formation. 

Microstructural characteristics of the simulated WEL and WEL observed in a field rail specimen are 

characterized by microhardness measurements, optical microscopy, scanning electron microscopy and 

electron backscatter diffraction. Microstructures of the two WELs are compared and similarities in 

morphology are identified. Plastic deformation is found to promote the formation of martensite in the 

simulated WEL, by comparing the fraction of martensite in the tests with and without deformation at 

the same temperature. Numerical simulation shows the possible temperature rise up to austenitizing 

temperatures. Combining comparisons of experimental simulation with the observation of WEL in the 

rail and the thermodynamic calculations, the hypothesis for WEL formation via martensitic 

transformation is supported.  

In Chapter 6 the pearlite – austenite transformation during (ultra-)fast heating is simulated by the multi-

phase-field approach, in order to study the white etching layer formation (WEL) in rail steels. The ferrite 

and cementite lamellae in the pearlite microstructure are individually resolved and artificial martensite 

is introduced to represent the conditions when austenite already forms in the previous wheel passage. 

The insight into the WEL formation is obtained by studying the pearlite to austenite transformation with 

heating rates of 10 °C/s and 2000 °C/s. It is indicated that pearlite to austenite transformation during 

continuous heating is the mixed mode of diffusion-controlled and interface-controlled characteristics. 

An increased heating rate from 10 °C/s to 2000 °C/s shifts the austenite formation towards the interface-
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controlled characteristics. The carbon concentration and the corresponding mechanical property of 

martensite in a single WEL block can be significantly different and depend on the loading condition.  

Finally, in Chapter 7, another type of WEL, named as brown etching layer (BEL) [20], was 

characterized by microhardness, optical microscopy (OM), scanning electron microscopy (SEM), and 

electron backscatter diffraction (EBSD). The BEL is named after its brownish color observed in the 

optical microscope after etching with 2-4%Nital. The observed BEL exhibits most of the morphological 

features as the classical WEL and is identified as another possible important source for RCF initiation. 

Moreover, cracks associated with BEL are found to grow considerably deeper towards the rail depth, 

comparing with the cracks caused by the WEL that mostly propagate at a limited depth only or cause 

spalling [12,21]. These results indicate the possibly more detrimental role of BEL in the RCF 

development in rails than WEL. Consequently, more extensive rail grinding is needed to completely 

remove the cracks caused by BEL, leading to possible premature rail removals and more frequent new 

rail replacements. Therefore, the study of the formation mechanism of the BEL is of practical concern 

and importance. 

The characterized BEL is compared with WEL reported in the literature and also WEL studied in the 

current thesis. The following conclusions can be drawn: (i) BEL consists of white and brown sublayers 

with distinctly different mechanical properties; (ii) BEL forms via combined martensite phase 

transformation and plastic deformation; (iii) The white sublayer is proposed as martensite and the brown 

sublayer is the tempered martensite due to temperature rise below the austenite transformation 

temperature.  
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Chapter 2 Microstructural damage in 

rails: a literature review 

 

 

 

 

 

 

 

Abstract:  

This chapter addresses a literature overview on the microstructural causes for the rolling contact fatigue 

(RCF) damage in rail steels. A general introduction of microstructure control of steels for railway 

application is first given and their performance in rail track and in laboratory tests are discussed. A 

subsequent discussion of the detrimental effects, due to the presence of the so-called ‘weak sites’, on 

the RCF performance of rail steels is further provided. The important role of white etching layer is 

specifically stressed. 
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 2.1 Introduction 

 
The rolling contact fatigue (RCF) damage in rail steels is significantly affected by the loading conditions, 

imposed by the running trains. The passing trains exert complicated and dynamic stresses on the 

underneath rails and RCF cracks will occur at sites where suffer maximum stresses, e.g. [1,2]. The RCF 

crack initiation and propagation are, meanwhile, determined by the microstructures in the rail steel and 

the corresponding mechanical properties [3–7]. It is specifically pointed out that microstructure study is 

essential in understanding the root cause of RCF and the subsequent design of more RCF-resistant rail 

steels [8,9].  

There are mainly three types of microstructures used in the rail steels: pearlite [5,7,8,10–14], austenite 

[13,19–21] and bainite [5,7,8,10–18]. The pearlite consisting of alternating ferrite and cementite 

lamellae, Fig. 2.1(a), is the microstructure in the rail steels covering the major rail track network. The 

combination of soft ferrite and hard cementite ensures the good combination of wear and fatigue 

performance of the rails. Steels with an austenite microstructure are used in steels for railway switches 

and crossings, Fig. 2.1(b), and is mainly referred to as the Hadfield high manganese steel [13,19–25]. 

This type of steel has an excellent combination of wear resistance, rapid work hardening, high ductility 

and good weldability [13,19,21,26]. More recently, a ‘carbide-free’ bainite microstructure has been 

shown to be a promising alternative to the pearlite and austenite steels [27]. The carbide-free bainite 

typically consists of nanometer-sized ferrite laths, Fig. 2.1(c), contributing to a tensile strength of 1320 

– 2500 MPa [18,28–30]. In addition, the fracture toughness of the carbide-free bainite, 150 MPam1/2, is 

also much higher than that of pearlite, which barely exceeds 95 MPam1/2 [31]. The concept of alloy 

design of the carbide-free bainite will be not illustrated here and can be referred to e.g. [17,28,32,33].  

Besides the promising development of new steels for railway applications, the current understanding of 

RCF damage in pearlitic rails remains insufficient [8,9]. The subsequent improvements in predicting the 

RCF damage evolution in rails will be essential to optimize the rail track maintenance plans. Such 

progress requires an exploration into the damage mechanisms in the microstructure aspect. The literature 

review in this chapter will focus on the pearlite microstructure in the rail steels and its related damage 

characteristics. A review of the microstructure control for producing the pearlite microstructure for rails 

will be first given. The subsequent sections explain the RCF damage evolution in this type of rail steel 

and the negative role of the microstructural ‘weak sites’ in the rail steels will be illustrated. 
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Fig. 2.1: (a) An SE-SEM image of a full pearlite microstructure in a Dutch R260Mn grade rail steel 

from this thesis work; (b) an optical micrograph of high manganese austenite steel from [25];(c) TEM 

micrograph of a carbide-free bainite in [17]. γ refers to retained austenite and α is ferrite. 

 

2.2 Pearlite in rail steels 

 
A general overview of pearlite microstructure formation can be explained by the equilibrium iron-carbon 

phase diagram in Fig. 2.2, calculated by the Thermo – Calc® software package [34]. The carbon 

concentration at the vertical dotted line in the same figure is randomly chosen for illustration purpose. 

According to Fig. 2.2, there are three stages for the phase transformations for the selected carbon 

concentration within the plotted temperature range: (1) At temperatures higher than the A3, the steel has 

a fully austenitic microstructure, γ; (2) Austenite (γ) transforms to ferrite (α) between A1 and A3. The 

Gibbs free energy of the α phase (𝐺𝛼) is lower than that of the γ (𝐺𝛾), providing a driving force for the 

phase transformation to occur. The ferrite forms at the austenite grain boundaries, classically named as 

pro-eutectoid (PE) ferrite. The changes of the fractions of austenite and ferrite can be estimated by the 

lever rule, e.g. in [35]; (3) When the temperature reaches A1, namely the eutectoid temperature, the 

simultaneous eutectoid decomposition of γ → α + θ occurs, in which θ is the cementite phase. The mixed 

pearlite and PE ferrite microstructure will remain at temperatures below the A1 temperature, since no 
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other equilibrium phase transformations will occur. For steels with a eutectoid carbon concentration, the 

PE ferrite is not expected. The schematic drawings in Fig. 2.2 illustrate the microstructure evolution 

together with temperature changes along the dotted line.   

 

 
Fig. 2.2: Equilibrium iron-carbon phase diagram simulated by Thermo-Calc [34] 

 

Table 2.1 is a reproduced table of the compositional ranges and the mechanical properties of the rail 

steels in the European Norm En13674 -1, 2011 [36]. It can be seen that carbon, manganese and silicon 

are the major alloying elements in the steels. The carbon varies from 0.38 wt% in the low R220 grade 

to 1.07 wt% for the high R400 HT grade. The additions of silicon and manganese are beneficial for 

strengthening the pearlite microstructure and also for refining the pearlite cementite spacing [12,37]. 

The impurity elements, such as sulfur and phosphor, are minimized, to ensure the optimal mechanical 

properties. The ‘HT’ and ‘LHT’ refer to heat treated and low alloy heat treated respectively, which 

requires a controlled cooling procedure to produce the refined microstructure [36]. It is worthwhile 

mentioning that steel grades R370 CrHT and R400 HT are newly added in the norm in [36], indicating 

the composition design trend of the pearlitic rail steels. 

The strength of the pearlite steel is mainly determined by the cementite interlamellar distance, d, which 

is a measure of the distance between adjacent cementite lamellae. A Hall-Petch equation is frequently 

used to predict the yield strength from the interlamellar distance [38]:  

𝜎 = 𝜎0 + 𝑘𝑑−0.5                                                                     (2.1) 

 in which σ is the yield strength of the pearlitic steel, and 𝜎0 and k are constants.  

 Taleff et al. [39] identify the complementary contributions of solid solution strengthening by alloying 

elements and pearlite colony size to the total strength of the pearlite steel, besides 𝑑 . A modified 

equation from equation (2.1) is proposed as: 
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𝜎 = (𝜎0)𝑠𝑠 + 460𝑑𝑝
−0.5 + 145(√2𝑑)−0.5                  (2.2) 

The subscript ss refers to the contribution of solid solution hardening; the term 𝑑𝑝 is the pearlite colony 

size and d is again the cementite interlamellar distance. The √2𝑑 term is introduced to account for the 

average distance between cementite spheroidites. The unit of the included microstructural features in 

equation (2.1) and (2.2) is μm and the unit for the strength is MPa. 

 

Table 2.1 The chemical compositions of different rail grades, reproduced from [36] 

Steel 

grade 

in mass % min 

Rm, 

MPa 

min 

elongation 

% 

Centerline 

running 

surface 

hardness, 

HV 

C Si Mn Cr P 

max 

S 

max 

V 

max 

R200 0.38/0.62 0.13/0.60 0.65/1.25 0.15 max 0.04 0.04 0.03 680 14 200/240 

R220 0.50/0.60 0.20/0.60 1.00/1.25 0.15 max 0.025 0.03 0.03 770 12 220/260 

R260 0.53/0.82 0.13/0.62 0.65/1.75 0.15 max 0.03 0.03 0.03 880 10 260/300 

R260 

Mn 

0.53/0.77 0.13/0.62 1.25/1.75 0.15 max 0.03 0.03 0.03 880 10 260/300 

R320 

Cr 

0.58/0.82 0.48/1.12 0.75/1.25 0.75/1.25 0.025 0.03 0.20 1080 9 320/360 

350 HT 0.70/0.82 0.13/0.60 0.65/1.25 0.15 max 0.025 0.03 0.03 1175 9 350/390 

R350 

LHT 

0.70/0.82 0.13/0.60 0.65/1.25 0.30 max 0.025 0.03 0.03 1175 9 350/390 

R370 

CrHT 

0.68/0.84 0.38/1.02 0.65/1.15 0.35/0.65 0.025 0.025 0.03 1280 9 370/410 

R400 

HT 

0.88/1.07 0.18/0.62 0.95/1.35 0.3 max 0.025 0.025 0.03 1280 9 400/440 

 

2.3 RCF damage in pearlite rail steels  

 
The rail steel fails due to repeated alternating stresses from the running trains. The response of the rail 

steels to the load from passing train wheels can be illustrated in Fig. 2.3 [40]. When the local load is 

lower than the yield strength of the rail steel, no plastic strain will occur in the material. Plastic material 

flow will start and the steel is strain-hardened when stress exceeds the yield strength. Meanwhile, a 

protective residual stress is generated. The combined work hardening and the residual stress can 

suppress the further plastic material flow and the rail materials will behave alike elastically during the 

subsequent cycles. These processes are called the elastic shakedown. A further increase in stress to 

above the elastic shakedown limit can cause repeated cyclic plastic strain during each wheel rolling, 

leading to the forming of the so-called plastic shakedown. When the stress exceeds the plastic 

shakedown limit, plastic strain continues to increase and the so-called ratchetting occurs, causing a net 

change of plastic strain after each wheel passage. The local rail material will fail when its plasticity 
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exhausts, leading to the formation of RCF defects in the rail surface. The plastic shakedown and 

ratcheting are the two common responses in the rail steels [40].  

 
Fig. 2.3: The principal material response to the external cyclic loadings in rail steels [40] 

  

 
Fig. 2.4:  Optical micrographs of microstructure on the surface (a) and the rail core (b) in the cross-

section of a loaded rail piece[10]. The hardness measurements in (c) reveal work-hardening in the 

surface region. The “steel D” and “steel F” is equivalent to the R200 and R260 grade rail steels in the 

Table. 2.1 respectively. 
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The loads from the train wheels have their consequence on the microstructure in the underneath rail 

steels. Figs. 2.4(a) and (b) show the optical micrographs of the cross-sections of a loaded rail piece, at 

rail surface and rail center respectively [10]. The studied rail steel is a British BS11 grade with a carbon 

concentration of 0.4/0.5 wt%. As a result, grain boundary ferrite is expected according to Fig. 2.2 and 

can be well identified by the light/white appearance in the optical micrographs in Figs. 2.4(a) and (b). 

By comparing the two regions, it can be seen that the rail surface has been plastically deformed and the 

grain in the region become flattened. The hardness measurements in Fig. 2.4(c) identify an increased 

hardness in the surface region due to work hardening. Cracks eventually form in the surface zones. 

The formation of RCF damage will be facilitated if the below undesirable microstructural ‘weak sites’ 

present in the rail steel, compared with the RCF formed in steels with a fully pearlitic microstructure. 

These ‘weak sites’ assist crack formation in the pearlite steel, leading to premature crack initiation.   

 

2.4 The microstructural ‘weak sites’ in rail steels 

2.4.1 Pro-eutectoid ferrite 

Pro-eutectoid (PE) ferrite presents in steels with carbon concentration less than the eutectoid point in 

Fig. 2.2, and is usually used in rail steels for less severely loaded tracks, e.g. for trams. A close 

correlation between RCF cracks and PE ferrite is revealed in the metallographic studies on a field loaded 

rail pieces by Eden et al. [41]. The nanoindentation measurements identify up to 33% increased hardness 

in PE ferrite while the hardness increase in the adjacent pearlite is less than 8% when compared to the 

original material. This indicates that the PE ferrite is more extensively deformed and consequently 

accumulates more strain during the train passages. Accordingly, premature cracks can form in the PE 

ferrite. A supportive twin-disc test was done on a BS11 grade rail steel [42], in which specimens 

corresponding to different RCF development stages were characterized. Again, they confirm the crack 

initiation at PE and indicate an improved RCF lifetime in the specimen with less FE.   

  
 

Fig. 2.5: (a) Crack initiation in a pro-eutectoid ferrite, as indicated by the white arrow; (b) cracks 

jumping between the subsurface cracks, formed in the pro-eutectoid ferrite [10] 

2.4.2 Intermetallic inclusions 

The detrimental effect of intermetallic inclusions on the fatigue behavior of engineering components has 

been well-recognized, see e.g. [43–46]. The intermetallic inclusions form during solidification and are 
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very difficult to be completely excluded during the casting. The inclusions have a significant difference 

in the thermal expansion coefficient with the steel matrix, and the intermetallic inclusions do not have a 

coherent connection with steel matrix. The incoherent boundary can hinder the dislocation movement 

during deformation, causing stress concentration. As loading continues, the inclusions or the 

inclusion/matrix boundaries will break and cavities form, which further leads to an earlier fatigue crack 

initiation. In some cases, the bearing components, for example [47,48] the brittle aluminum oxide (Al2O3 

type), can even cause a structural change in the surrounding matrix, being typically 30 – 50 % harder 

than the matrix. The structure change is considered to embrittle the material and its premature fracture 

can cause surface flaking.     

2.4.3 White etching layer (WEL) 

White etching layer (WEL) is the most mysterious phenomenon in rail surface, comparing with the 

above discussed PE ferrite and intermetallic inclusions. The latter two can be well expected from the 

steel chemistry while WEL forms only during rail service time. The detrimental role of WEL will 

become more important if the PE and intermetallic inclusions are eliminated/minimized, via the 

metallurgical route. Furthermore, there are no clear correlations of WEL to any steel chemical 

compositions, i.e. with a ferrite-pearlite [49] or a fully lamellar pearlitic microstructure [50–52], nor to 

track sites, e.g. normal rail tracks or underground rails [53]. In short, WEL is a common observation in 

all pearlitic rails. 

WEL causes premature RCF damage initiation. WEL can be well recognized by to its white color 

appearance under the optical microscope, Figs. 2.6(a) – (c), or gray color appearance under SEM, Fig. 

2.6(d), after etching by 2 – 10 % Nital (solution of Nitric acid in ethanol) [11,49–51,54–56]. The Vickers 

hardness measurements typically reveal a hardness of 650 HV – 1200 HV in WEL, which corresponds 

to two to three times the hardness of the matrix pearlite (typical hardness of pearlite is between 220 – 

440 HV). Cracks associating with WEL are frequently observed in loaded rail pieces. In addition, cracks 

can occur in the pearlite zones near the WEL, e.g. in Fig. 2.6(c) from the current study and Ref [57]. 

The simulations in [58,59] show shortened crack initiation time in rail steels when WEL is present, 

compared with the ones without WEL. Due to fact that WEL forms at the very early stage of the rail 

lifetime, the RCF damage initiation can be consequently facilitated due to the presence and the fracture 

of WEL. The worldwide observations of crack initiation by WEL [60–63] indicate that WEL is a 

universal issue. 
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Fig. 2.6: Optical micrograph of (a) a WEL observed in a Dutch R260 Mn grade rail steel; (b) RCF 

crack initiation at the WEL/base boundary; (c) RCF crack initiation in the pearlite adjacent to the 

WEL; (d) a SEM image of RCF crack formed inside WEL from [58]. 

 

Extensive characterization studies on WEL have been done, in order to trace its origin [8,51,55,64–68]. 

Generally, two formation mechanisms are assumed possible for WEL: (i) severe plastic deformation 

leading to strain-induced cementite dissolution and grain refinement, e.g. nanocrystalline ferrite with 

carbon supersaturation [69] and (ii) high-temperature increase and subsequent fast cooling causing a 

martensitic phase transformation. 

The first hypothesis for the WEL formation is related to severe plastic deformation of the pearlite. TEM 

results of Newcomb and Stobbs [49] show that WEL is a severely deformed ferrite, in which cementite 

is absent. Their transient temperature calculation indicates that the high temperature needed for austenite 

formation and subsequent martensite transformation to occur cannot be reached, from the loading history 

of the studied rail piece. They propose the WEL formation in analogy to mechanical alloying that is well 

known as a low-temperature process [70]. Based on investigations of the microstructure of the WEL 

using TEM and X-ray diffraction and on discussions of the nanostructure formation mechanism, 

Lojkowski et al. [56] conclude that the WEL is a nanocrystalline ferrite produced by cyclic heavy plastic 

deformation far below the austenitization temperature. Baumann et al. [54] investigated the WEL in 

corrugated rails and observed the WEL at corrugation crests, with a hardness of 1000 HV to 1200 HV. 
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TEM analysis revealed a nanocrystalline structure with a grain size of less than 50 nm. Based on these 

observations, they claimed that WEL formation due to a temperature increase alone does not seem 

possible and indicated the possibility of the dissolution of cementite due to severe plastic deformation 

[54]. 

Critical questions in the theory that WEL forms by plastic deformation are why the cementite dissolves 

and where the carbon from the dissolved cementite is accommodated. First, at temperatures lower than 

the austenitizing temperature, cementite is expected to be stable. Second, cementite has a much higher 

carbon centration, 6.7 wt%, than that in the ferrite, less than 0.001 wt% at room temperature. This means 

that during the severe plastic deformation, a higher density of sites to accommodate the carbon must be 

generated. 

Meanwhile, similar nanocrystalline ferrite white layers as WEL are commonly observed in pearlite after 

applying severe plastic deformation, e.g. [56,71]. The extremely high nanohardness of 12 GPa and the 

nanometer size grains in the WEL [56] can be well reproduced by severe plastic deformation routes. A 

certain degree of strain seems to be necessary for the final nanometer size grains and the full cementite 

dissolution. It is commonly argued that the severe plastic deformation in pearlite produces high 

dislocation density and can refine grains down to tens of nanometers, both of which provide trapping 

sites for the carbon from the dissolved cementite. Calculations show that carbon has a higher affinity to 

dislocations in ferrite, 0.75-0.78 eV, than dislocation in cementite, 0.5 eV [72]. As a result, the driving 

force for cementite to dissolve exists during severe plastic deformation. With a dislocation density in 

the order of 1013 m-2, a concentration of approximately 1 wt% of carbon can be accommodated. 

Theoretical modeling of cementite dissolution into ferrite during plastic deformation remains difficult, 

despite the numerous experimental studies. 

The other hypothesis is that WEL is martensite, formed due to phase transformations. Österle et al. [55] 

study a WEL in field-loaded rail steels using a cross-sectional transmission electron microscopy (XTEM) 

and synchrotron X-ray diffraction (XRD). A martensite-like microstructure, e.g. high dislocation density, 

twinning substructure, is identified. Comparing the microstructure and the hardness of WEL with the 

martensite, formed by laser heating on the same steel grade, they conclude that the WEL is martensite 

with high dislocation density. Wild et al. [64] analyzed WEL observed in a corrugated rail track. Their 

SEM results show cementite particles within the WEL, which are mainly close to the WEL/pearlite 

boundary. The carbon concentration in the WEL in the rail surface is identified to be heterogeneous, by 

analyzing the lattice parameter changes in the ferrite phase using the same synchrotron XRD peak. Based 

on the results, they conclude that the characterized WEL is a martensite of nano-scale grain size 

containing cementite particles. Research by Wang et al. [65] detected retained austenite via X-ray 

diffraction (XRD) and further confirmed the martensitic nature of the WEL. Takahashi et al. [51] 

analyzed the WEL with atom probe tomography (APT) and found that lamella thinning had not occurred 

in the WEL. As a result, they conclude that the WEL region did not undergo severe plastic deformation. 

Together with the prediction of the increased temperature via frictional heat and from the shape analysis 
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of manganese profiles from APT, they conclude that the WEL is formed by martensitic transformation. 

Furthermore, a similar white martensite layer is observed in the wheel steels, which originally have a 

similar pearlitic microstructure [73–76]. Finally, a white layer is also commonly observed in steel 

components, whose working condition suffers significant temperature increases, e.g. in machining 

surface [77], hard turning [78,79]. 

The hypothesis that WEL is martensite indicates that a significant temperature rise occurs in the rail 

surface due to the contribution of frictional heat generated by wheel/rail contact. The pearlite must first 

transform to austenite and subsequently to martensite. The former process requires a significant 

temperature increase, e.g. 725 °C in Fig. 2.2. The rapid cooling after the wheel passed will transform 

austenite to martensite. 

It can be well expected that the pearlite to austenite transformation can be incomplete during a single 

wheel passage. The transformation from ferrite and cementite to austenite requires reconstruction of 

crystal lattice structures, e.g. body-centered cubic ferrite to face-centered cubic austenite. The 

transformation requires also partitioning of carbon between cementite/austenite and ferrite/austenite, 

which is again temperature and time-dependent. Due to fact that the duration of a single wheel/rail 

contact time is typically in the magnitude of 10-3 second, there is very limited time for the pearlite to 

austenite transformation to complete and a carbon gradient can be expected due to its limited diffusion 

distance. Accordingly, a mixed microstructure of martensite, untransformed ferrite and cementite can 

occur, explaining the observations of cementite in WEL and the carbon gradient in [64]. 

A quantitative insight into the WEL formation via phase transformation may be obtained from the phase 

field modeling approach (PFM). Savran [80] and Militzer [81] performed separate PFM modeling of 

austenite formation in a pearlitic type microstructure under isothermal conditions and good agreement 

with experimental results is reached. Martensite is known to be a nonequilibrium phase and there is 

limited information about the kinetic data of martensite to austenite transformation. By treating 

martensite as a carbon-supersaturated ferrite, nevertheless, Thiessen [82] successfully established a 

reasonable match between the simulation and experimental results. This indicates that PFM can be a 

very promising approach to simulate the WEL formation via the phase transformation mechanism. A 

detailed study of WEL formation with PFM can be found in Chapter 6. 

 

2.5 Summary and conclusions 

 
This chapter reviews the literature regarding the microstructures in rail steels and the subsequent RCF 

damage formation. The RCF damage in steel with a fully pearlitic microstructure is due to plastic strain 

accumulation and plasticity exhaustion in the pearlite, via the plastic shakedown and ratcheting.  

Premature damage initiation in pearlite steel will occur in the presence of PE ferrite, intermetallic 

inclusions, and WEL, which act as the microstructural weak sites. They serve as preferential stress/strain 



 
 

19 

 

accumulation sites, leading to an early failure in the surrounding matrix or their own fracture. Both lead 

to fatigue crack formation. 

WEL is the most mysterious structural alteration in rail surface and the most important weak 

microstructure site. Comparing with PE ferrite and intermetallic inclusions, WEL is more difficult to be 

eliminated via metallurgic routes and its influence can only be distinguished through a sound 

understanding of its formation mechanism. The complicated wheel/rail contact conditions and the 

different loading histories of the studied rail steels in the literature fail to reach a universal hypothesis 

for the WEL formation. As a result, the origin of the WEL in the studied rails can vary significantly 

from track site to site due to loading conditions and microstructure characterizations are essential to 

achieve a sound understanding of WEL formation on the specific rail tracks/network. 
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Chapter 3 Materials and Characterization 

techniques 

 

 

 

 

 

 

 

 

 

3.1 Introduction 

 
In this chapter, details about the studied materials and the performed characterization techniques will be 

given. Rail specimens, showing rolling contact fatigue (RCF) damage, were investigated. On the one 

hand, RCF is usually observed in areas within several millimeters from the contact surface [1], so the 

microstructural characteristics in these affected areas are of major interest for this thesis. On the other 

hand, microstructures in zones free of deformation, e.g. the rail center, are used as a reference for the 

surface counterpart. The assumption is that the microstructure on the as-manufactured rail surface is 

identical to the microstructure in the center of the rail cross-section.  

The microstructures in the rail steels were characterized by techniques at different resolution levels and 

aspects. Optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron 

microscopy (TEM) were used to study the microstructure morphology at different scales and for the 

subsequent quantifications. The crystallographic characteristics, in addition to the phase components, in 

the specimens were studied using X-Ray diffraction (XRD), electron backscatter diffraction (EBSD) 

and transmission Kikuchi diffraction (TKD) in SEM and the electron diffraction method in TEM. The 

atom probe tomography (APT), currently the technique with the highest spatial resolution, is used to 

characterize the compositional characteristics in the WEL in this thesis. The main principles of the 

above-mentioned methods, in addition to the experimental settings, will be explained in the subsequent 

sections. 
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3.2 Rail steels  

 
The rail steels, investigated in this thesis, was originally located on a straight track site between 

Steenwijk and Meppel in the Netherlands and had been in service during 1989 - 2007. The rail track is 

mainly a passenger line with a maximum operation speed of 140 km/h and an approximate annual 

3,650,000 tons of loads are expected. This entails approximately 1.2 million wheel passages under the 

assumption of an average load of 3 tons per wheel passage. The rail track suffered from the squat 

problem at the rail crown, showing a typical two lung shape as in [5]. A well-developed squat in the 

studied rail, before removal, is shown and indicated by the white arrow in Fig. 3.1(a). The darkened 

surface areas, within the yellow dotted loop in Fig. 3.1(a), are shallow depressions produced by plastic 

deformation of materials above the subsurface crack by train wheels. These were subsequently corroded. 

The accumulated yearly loading was around 4.1 million tons. The notations RD, TD and ND in Fig. 

3.1(a) refer to the train/rolling direction (RD), transverse direction (TD) and the direction perpendicular 

to the surface (ND). 

 

  

 

 

Fig. 3.1: (a) A photo of the rail track used for this study before removal. A mature squat defect, with 

representative two lung shape and surface darkening, can be observed; (b) A representative lamellar 

pearlitic microstructure in the rail surface and rail center; (c) A lamellar pearlite with a small fraction 

of pro-eutectoid ferrite in the specimen from rail web. The microstructures were revealed by 2% Nital. 
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The studied rail is a R260 Mn grade with a composition of 0.67%C, 1.51%Mn, 0.25%Si, 0.02%P and 

0.02%S (in mass %). A nearly fully lamellar pearlite, Fig. 3.1(b), represents the microstructures in both 

rail surface and the rail center, ~ 25 mm beneath the contact surface. MnS intermetallic inclusions are 

frequently observed and one example is indicated by the arrows in Fig. 3.1(b). The MnS area density in 

rail surface and center zones were measured and averaged from pictures taken from minimum of six 

randomly selected areas. A magnification of 100 x is selected to ensure a sufficiently big area for a 

representative quantification. The number density of MnS particles in the surface area is 23 ± 9 × 106 

m-2 and is slightly higher than that in the central zones, which is 17 ± 9 × 106 m-2. 

A small fraction of pro-eutectoid ferrite is observed at the prior-austenite grain boundaries in 

specimens taken from rail web, e.g. indicated by arrows in Fig. 3.1(c). The presence of pro-eutectoid 

ferrite must be due to the cooling conditions or possibly due to decarburization at the studied rail part 

during the manufacturing process. 

 

3.3 Characterization techniques and analyzing procedures 

 
Whether a technique is suitable for the characterization work depends on many factors, e.g. the fineness 

of the microstructure, and the purpose of the investigation etc. On the one hand, the viewing field in the 

facility should be large enough to have sufficient representativeness. Otherwise, characterization of 

multiple specimens from a similar area is required. On the other hand, the required microstructure details 

must be adequately resolved, e.g. with sufficient spatial or angular resolution. A smaller spatial and 

angular resolution means the more advanced capability of the facility. 

3.3.1 Microhardness 

Hardness can be an indicative measure of material strength [6]. An empirical correlation between the 

Vickers hardness, HV, to the strength of steels can be given as [6]: 

𝜎 = 𝑎 + 𝑎𝑖𝐻𝑉                                        (3.1) 

in which a is a constant and 𝑎𝑖 is the regression constant for correlating the Vickers hardness HV, in 

kgf/mm2, to the yield strength of the steel 𝜎, in MPa. This equation is valid for steels with the strength 

of 325 - 2350 MPa, irrespective of the microstructures, e.g. bainite, pearlite, ferrite-pearlite, martensite. 

 Consequently, the differences in material strength can be reflected by the variation in the measured 

hardness. In loaded rails, a surface work-hardened area can form due to plastic deformation by the 

wheel/rail contact [7]. WEL can form in rail surface as well,  but is much harder than the nondeformed 

pearlite matrix and the work-hardened pearlite in rail surface [3,4,9,10]. In this study, Vickers hardness 

is used to identify the changes in mechanical properties across the cross-section of the rail specimen due 

to the past train passages. The measurements were done in a Durascan 70 (STRUERS) hardness tester. 

The selected loads for the HV measurements vary with microstructures. A load of 0.49 N was considered 

to be large enough to give accurate measurements and is sufficient to reveal the hardness distribution in: 

(1) the WEL; (2) the possible surface work-hardened zone. A 2.94 N load was used to measure the 
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hardness of the undeformed pearlite area. The loading time is 10 s for all measurements. The hardness 

of the undeformed area of 290 HV, averaged from measurements from ten areas, is used as the reference 

throughout the thesis. 

3.3.2 Optical and Scanning Electron Microscopy (OM and SEM) 

Optical microscopy (OM) is one of the oldest and simplest characterization techniques, used for initial 

microstructure characterizations or preparations for further characterization with more advanced 

techniques. The classical sample preparation route before OM characterization includes mechanical 

grinding with SiC paper and polishing till 1 μm suspension. The as-polished specimens can then be 

immediately used for quantifications of intermetallic inclusions, e.g. size, number density etc. 

Chemical etching, by 2-4 vol% HNO3 in ethanol (Nital), is required to reveal the microstructures in the 

pearlitic steels. This etchant attacks the ferrite/cementite phase boundary and the pearlite colony or prior-

austenite grain boundaries and the as-etched specimens can be characterized by OM and scanning 

electron microscopy (SEM). The revealed cementite and ferrite appear dark and bright respectively in 

the OM micrograph, e.g. in Figs. 3.1(b) and (c). Due to the very small lamellae distance in pearlite, OM 

can perform only partially the characterization task and SEM is a suitable alternative due to the improved 

spatial resolution in comparison to the OM.  

Fig.3.2 (b) is an illustration of the signals generated due to beam/sample interactions in SEM, which can 

subsequently be collected by detectors for imaging or mapping. The secondary electrons (SE) are formed 

in multiple inelastic scattering processes from atoms in the specimen after interaction with the incident 

beam. The energy of the SE is a few electron-volts (eV), so only specimen volume within tens of 

nanometers from the surface can emit SE signals. Consequently, SE images show the topographical 

features on the specimen surface. In this thesis, SE is used to characterize the pearlite microstructure 

and WEL in the rail specimen and a typical SE-SEM image of the lamellar pearlite is shown in Fig. 

3.2(c). A dedicated introduction of generation and application of other signals in SEM, Fig. 3.2(b), can 

be found elsewhere [12] and will not be discussed here. 
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Fig. 3.2: (a) A schematic drawing of typical configurations of SEM; (b) Sketch of signals commonly 

used for imaging or mapping in most of the SEM; (c) A representative SE-SEM image of lamellar 

cementite and ferrite in the rail center. 

 

In this thesis, a FEI Quanta 450 and a Jeol JEF 6500F SEM were used for sample characterization. Both 

microscopes are equipped with field emission electron guns (FEG) and the characterizations were done 

with an accelerating voltage of 10 or 15 kV. The observed cementite lamellar distance in the SEM 

micrographs can vary due to different orientations of the pearlite colonies to the intersected specimen 

surface. This makes a direct measurement of the true cementite interlamellar distance difficult. 

Therefore, the average value of more than 40 measurements was used to represent the true cementite 

interlamellar distance. The average cementite interlamellar distance in the reference zone is used as a 

parameter input for the initial microstructure in the phase field modeling in Chapter 6.                           

3.3.3 X-Ray Diffraction (XRD) 

X-ray diffraction is a conventional technique for microstructure investigations. A schematic drawing of 

the common geometry of XRD equipment is shown in Fig. 3.3(a). The X-ray photons are generated and 

aligned in the X-ray tube. The X-ray photons interact with the specimen and are subsequently scattered 

or diffracted. A detector, with an identical angle to the horizontal plane as the X-ray tube, is positioned 

 

 

 

 



 
 

29 

 

on the other side of the specimen to collect the scattered X-ray photons. A spectrum like the one in Fig. 

3.3(b) then appears on the computer screen. The intensity maxima in Fig. 3.3(b), i.e. the peaks, carry the 

crystal characteristic of the diffracting crystal planes {h k l} via Bragg’s law: 

𝑛𝜆 = 2𝑑ℎ𝑘𝑙 𝑠𝑖𝑛 𝜃                                                  (3.2) 

in which λ is the wavelength of the incoming beam, dhkl is the inter-planar distance between the crystal 

planes, with Miller indices (h k l), n is an integer and is the order of the reflection, θ is the angle between 

the incident or the reflected X-ray beams with the diffracted crystal plane.  

 

 
 

Fig.3.3: (a) Simplified schematic drawing of normal XRD configurations; (b) An example of two 

XRD spectra of the studied rail. 

 

 XRD was used to analyze the phase constituents in the WEL formed on the surface of the studied rail 

piece. Due to the massive corrosion and oxidation on the rail surface, a careful grinding, with grinding 

paper number 2000#, was done to remove the unwanted surface layer. A subsequent etching with 2 % 

Nital for 2 – 3 s was applied and the sample was cleaned with ethanol and dried by warm air. After the 

etching, the WEL clusters appeared lighter in color than the surrounding matrix due to the etching, for 

example, the white arrows in Fig. 3.4. Two areas on the rail surface were scanned: (i) areas including 

the WEL patch within the white loops in Fig. 3.4; (ii) areas without WEL, i.e. outside the running band. 

Another specimen was further cut from the rail center and was ground and polished till 1 μm diamond 

suspension. This specimen served as an additional reference sample for comparison with the above-

mentioned surface regions. Scans were done in a Bruker D8 XRD machine with parallel beam geometry, 

and the scanned areas are approximately 11.8 × 5 mm2. A cobalt source with a wavelength of 0.179 nm 

was used to generate the X-rays, at 45 kV and 25 mA respectively. The scanning step size (2θ) was set 

to be 0.03º with a time per step of 1 s.  
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Fig. 3.4: Overview of rail surface after careful grinding and slight etching with 2% Nital. The WEL 

can be identified by color and part of WEL is indicated by arrows in the photo. 

3.3.4 Transmission Electron Microscopy (TEM) 

Transmission electron microscopy (TEM) is one of the most advanced characterization techniques, 

capable of resolving details down to crystal atomic planes. The configuration of TEM can be briefly 

explained by the simplified sketch in Fig. 3.5(a). The electron beam is generated by applying a high 

electrical field, 80 – 300 kV, which produces electron waves with a shorter wavelength than that in SEM 

and consequently result in improved spatial resolution. The spatial resolution will, however, be reduced 

due to beam broadening by the occurrence of both chromatic and spherical aberrations from the lens. 

The size and the parallelism of the electron beam are controlled before the beam reaches the specimen 

by adjusting the condenser lenses, the condenser aperture and the objective lens. The electron-

transparent specimen for TEM analysis reduces the beam/specimen interaction volume, comparing with 

SEM, thus further improves the spatial resolution. A retractable objective aperture, with holes of 

different diameters, is located at the back focal plane of the image and can form either bright or dark 

field images. A selected area aperture, also with different diameters, can be located at the image plane 

of the objective lens and can choose the area of interest to form the selected area diffraction (SAD) 

patterns. The image or diffraction pattern is magnified by the underneath projective lens and is finally 

recorded by the detecting system. It should be noted the above-mentioned methods are part of the 

capacity of TEM and a comprehensive introduction of characterization methods in TEM can be found 

in the classic textbook of TEM by William & Carter [13].  

The drawing in Fig. 3.5(b) illustrates how the bright field (BF) and dark field (DF) images form. When 

there is no aperture and in the diffraction mode in TEM, a diffraction pattern from a single grain or phase 

forms as the one at the bottom in Fig. 3.5 (b). The diffraction pattern carries crystal information of the 

diffracting volume by the Bragg’s law in equation (3.2) and can be resolved by sequential indexing 

procedures. BF forms by allowing the directing beam in Fig. 3.5(b) passing through the objective 
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aperture, while DF is formed by using one of the diffracted beams. The DF is very useful for studying 

the distribution, size of the second phase or precipitates. In order to do so, one of the reflections from 

the phase must be chosen by the objective aperture.  

In this thesis, the morphology and phase component in the WEL were characterized in a Jeol JEM 2200 

FS with a Cs corrector, which corrects the spherical aberration, for the objective lens. All operations 

were done with accelerating voltage of 200 kV. The selected area diffraction patterns were formed by 

using the minimum aperture size of 100 nm.   

 

 

 

Fig. 3.5: (a) Simplified sketch of configuration in TEM; (b) Illustration of formation of BF and DF in 

the TEM. 

3.3.5 Automated crystal orientation mapping techniques 

3.3.5.1 Electron Backscatter Diffraction (EBSD) 

Electron Backscatter Diffraction (EBSD) is one of the most widely used techniques for crystallographic 

study in materials science. The high accuracy of crystallographic orientation determination from EBSD 

enables the precise identification of orientation relationship between phases [14,15], the local 

misorientation, which can change due to deformation [16] etc. The crystal orientation information is 

extracted by analyzing the so-called Kikuchi bands, which form due to diffraction events in the specimen.  

A traditional configuration for EBSD measurements is shown in Fig. 3.6 (a). The specimen is tilted 20 ° 

away of the incident beam and Kikuchi bands form due to diffraction events in the specimen, 

corresponding to Bragg conditions as in equation (3.2). The generation of a Kikuchi band can be 

interpreted as shown in the drawing in Fig. 3.6(b). In this figure, the diffraction event at one of the {110} 

planes of a body-centered cubic (BCC) crystal structure is shown as an example. The two cones (green 

and blue) are due to diffracting of the incident beam at the {110} planes and the angles between the two 
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cones are two times the Bragg angles for the diffracting crystal planes. Kikuchi bands form if the two 

cones are intercepted and collected by the detector (phosphorous screen) placed close to the specimen 

and they are further processed by the commercial software for indexation.  

 

 

 

    

Fig.3.6: (a) A drawing of the common configuration of EBSD; (b) generation of Kikuchi band due to 

diffraction in the specimen.  Fig (b) is by virtue of Oxford instruments [17] 

 

The width of the Kikuchi bands can be geometrically related to the specific crystal plane distance, as 

shown in Fig. 3.6(b) and accurate measurements of crystal interplane angle and crystal plane spacing 

are essential for the automatic crystal orientation indexing [18]. As a result, accurate determination of 

the positions of the Kikuchi bands, collected by the EBSD detector, is crucial for a precise orientation 

indexation. However, the Kikuchi bands are usually broad diffuse lines with non-uniform intensities, 

especially in deformed specimens which contain high dislocation densities. As a result, the accurate 

Kikuchi band indexing becomes challenging and the subsequent automated crystal orientation 

identification [18], since the edges of the Kikuchi lines cannot be unambiguously identified. A Hough 

transformation, a simple mathematic algorithm, is introduced to solve the problem. The Hough 

transformation translates the Kikuchi band position from the EBSD camera into separate points in the 

Hough space: 

𝜌 = 𝑥 cos 𝜃 + 𝑦 sin 𝜃                           (3.3) 

(x, y) is the coordinate of one pixel in the Kikuchi line in an EBSD map, for example, the filled red circle 

in Fig. 3.7(a); 𝜌 and 𝜃 are coordinates of lines that pass through the pixel. The filled red circle in Fig. 

3.7(a) is subsequently translated to the red sinusoid curve in Fig. 3.7(b) by equation (3.3). After the 

transformation, all points in the Kikuchi line are translated into sea ries of sinusoid curves, which 

coincide at a single point, Fig. 3.7(b). After such translation, one Kikuchi band is translated into a bright 

point in the Hough space, e.g. translation from Fig. 3.7(c) to Fig. 3.7(d). The colors in both Figs. 3.7(c) 

and (d) are for demonstration purpose and the same color between the Kikuchi lines and the spot is to 

indicate the consequence after the Hough transform. The bright point in the Hough space can be well 

detected and the original position of the corresponding Kikuchi bands can be precisely determined and 
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used for the subsequent automated indexing in the software. The angular resolution of normal EBSD is 

typically smaller than 1° [19] . 

  

 

Fig.3.7:   The Hough transformation from a real space in (a) into Hough space; An example of Hough 

transformation of Kikuchi bands in (c) into points in (d). Image (c) and (d) are by virtue of Oxford 

instruments [17]. 

In the work of this thesis, EBSD was used to characterize the WEL and the pearlite. A careful specimen 

preparation was required for such measurements. The specimens were ground and polished following 

classical metallographic sample preparation route till 1 μm diamond suspension. A further careful 40 

minutes OPS polishing is applied with low pressure to remove the deformation layer caused by previous 

preparation steps. 

The EBSD measurements were carried out in a FEI Quanta-450 SEM equipped with a field emission 

gun (FEG) and Hikari-Pro, EBSD detector. EDAX-TSL OIM® Data Collections v.6.2 was used for data 

acquisition. All measurements were performed with accelerating voltage of 20 kV, FEI-spot size of 5, a 

40 µm final aperture, a step size of 50 nm and a hexagonal scan grid mode. With these settings, ~90% 

of the orientation data points were correctly indexed with confidence index higher than 0.06. The 

orientation data were analyzed by means of TSL OIM® Data analysis v. 7.3. The grains were defined 
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as regions containing minimum of 4 pixels with an internal misorientation less than 5° unless specifically 

mentioned. Otherwise, a specific explanation will be given. 

3.3.5.2 Transmission Kikuchi Diffraction in SEM (TKD) 

A great improvement in the spatial resolution from conventional EBSD is achieved by using thin 

electron-transparent foils, without sacrificing the angular resolution [20–23]. The relatively new method 

is named as transmission Kikuchi diffraction in SEM (TKD) or transmission EBSD and the indication 

of TKD will be applied throughout this thesis. A representative experimental configuration of TKD 

measurements is shown in Fig. 3.7 [25]. The thin TEM foils allow generation of Kikuchi bands via 

electrons that penetrate the specimen. Due to the significantly reduced sample thickness with respect to 

EBSD, the spatial resolution is greatly improved due to reduced sample volume interacting with the 

electron beam. Spatial resolution down to 10 nm was reported in [22] and a spatial resolution of 3 nm is 

reported in ref [24]. 

The TKD measurements were done in a FEI Quanta-450 SEM equipped with a field emission gun (FEG). 

The customized sample holder in Fig. 3.8, also in [25], was used for the measurements, and a total 

sample tilt of -10° was used to achieve the best results. An acceleration voltage of 30 kV, spot size #5 

(aperture 40 µm) and a working distance of 5 mm were used for the scans. The step size is 12 nm. 

 

 

Fig. 3.8:  Experimental configuration of TKD measurement in the current thesis and also in [25]. 

 

3.3.6 Dual Beam Focus Ion Beam milling (FIB) 

A dual beam microscope with a Focus Ion Beam (FIB) is a single integrated system with both focus ion 

beam column and SEM column with field emission gun. A typical configuration of such a system is 

shown in Fig. 3.9(a) [26]. The SEM column is set to be vertical and the FIB column is tilted 52° from 

the horizontal plane. The ion beam (Ga+) and electron beam interact simultaneously with the specimen 

at the so-called coincident point [27]. The gallium source in the FIB column sputters away the surface 

material while the SEM system offers complimentary monitoring of the milling process, using high-

resolution SEM. Such a combination enables precise site-specific sample extractions and failure 

prevention during preparing very thin specimens, for example for TEM characterization [27]. A dual 
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beam is usually equipped with EBSD attachment as conventional SEM and the sample stage is rotatable. 

This enables a three-dimensional characterization such as damage morphology [16,28] and also 

combined with 3-D EBSD [29,30], with sequential milling process and the subsequent reconstruction.   

 A FEI Nova 600 Nanolab DualBeam was used to prepare the TEM lamellae from WEL, at different 

locations relating rail depth: (i) surface WEL, ~ 3 μm beneath the rail surface; (ii) central WEL, ~ 12 

μm below the rail surface and approximately in the center of the WEL; (iii) interface WEL, in the WEL 

and ~ 1 μm above the WEL/pearlite boundary. 

 

  
Fig. 3.9: (a) A sketch of configuration settings in a dual beam FIB [26]. (b) An SE-SEM snapshot of 

a to-be-prepared TEM lamella in the FIB. 

 

3.3.7 Atom probe tomography (APT) 

Atom probe tomography (APT) is currently the characterization technique with the highest spatial 

resolution. The advantage of APT can be the quick data collection rate, 3-D compositional 

reconstruction and the capability to characterize a large number of atoms with sufficient accuracy. The 

configuration of a local electrode atom probe (LEAP) is schematically represented in Fig. 3.10 [31]. 

Three main components form the LEAP system: (1) the specimen and the stage; (2) the local electrode; 

(3) the detector. The specimen for atom probe analysis is a sharp tip, with a radius of around 20 – 100 

nm. The sample also serves as the positive electrode and a voltage is applied to ionize the atoms in the 

specimen at cryogenic temperatures. A local electrode is located concentrically close to the sample tip, 

enabling generation of the high electric field with a low voltage. This setting enables high data collecting 

rate, up to 107 atoms/hour, and also the enlarged field of view. Laser pulse was applied periodically to 

the sample tip to enhance and shorten the ionization process. A position sensitive detector is located to 

collect the ions. The ions reach the detector and their corresponding positions of origin in the sample tip 

are calculated based on the very accurate measurement of the time of flight (in ps), enabling the element 

identifications. The information along the z-axis is achieved by considering the difference of time of 
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flight from different evaporation sequences. The compositional profile, in three dimensions, can then be 

reconstructed by means of a dedicated software.   

In this thesis, a Cameca LEAP-4000x HR 3D atom probe microscope, with a collecting efficiency of 

42 %, was used to characterize the compositions in the WEL and the matrix pearlite. The APT needles 

were prepared by FIB and measured in voltage mode, with a pulse repetition of 200 kHz, a pulse fraction 

of 0.2 and a sample temperature of 20 K. The data was analyzed with Imago IVAS software, v3.6. 

 

 

Fig. 3.10: Representative configuration of a LEAP [31]. 

3.3.8 Thermo-mechanical simulator 

Gleeble 1500 was used to simulate fast heating and cooling cycles and to estimate the possibility for 

WEL formation via phase transformation. Cylindrical specimens, with a diameter of 6 mm and 75 mm 

in length, were recommended for combined fast heating and loading treatments. The specimens were 

quickly heated to temperatures between 730 °C and 930 °C, see Fig. 3.11 [3]. Heating rates of 20 °C/s 

and 200 °C/s were used to carry out the experiments. After heating to the selected temperature, the 

specimens were immediately quenched at a rate of 67 °C/s, using helium gas, to transform austenite to 

martensite. Such a cooling rate is shown to be sufficient to transform austenite to martensite. In order to 

study the role of deformation in the formation of martensite and also to be closer to the real condition, 

a compressive strain of 3 % was simultaneously applied during the heat treatment to 730 °C with a 

heating rate of 200 °C/s. The magnitude of the compressive strain was estimated by the numerical 

simulation in [3] and a Von-Mises strain of 0.3 % was used to represent the effective strain in the rails 

during the passage of one single wheel.  
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Fig. 3.11: Design of heat treatments for simulation of WEL microstructure formation only by fast 

heating and quenching. VH is the heating rate. 
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Chapter 4 Characterization of WEL using 

advanced techniques: microstructural 

insight 

 

 

 

Abstract: 

Micro- to nano-scale characterizations were done to investigate the microstructures in the white etching 

layer (WEL), observed in a Dutch R260 Mn grade rail steel. Retained austenite in WEL is identified by 

electron backscatter diffraction (EBSD), transmission Kikuchi diffraction (TKD) and X-ray diffraction 

(XRD). EBSD and TKD methods quantify grains in the WEL with a size range of 20 nm – 4 μm. 

Transmission electron microscopy (TEM) identifies complex heterogeneous microstructure 

morphologies in the WEL: nano-twinning substructure with high dislocation density in WEL close to 

rail surface and untransformed cementite and dislocations in WEL close to the pearlite matrix. The study 

with atom probe tomography (APT) shows heterogeneous alloying element distribution through the 

WEL thickness. Accordingly, WEL is considered to be martensite with multi-layered microstructure. 

These findings are supported by the temperature calculations from the shape analysis of the manganese 

profile from APT measurements, related to manganese diffusion. The deformation characteristics in 

WEL and the pearlite beneath the WEL are discussed based on the EBSD and TKD measurements. The 

role of deformation in the martensitic phase transformation for WEL formation is discussed. 

Keyword:  white etching layer; rails; martensite; temperature; phase transformation; plastic 

deformation1. 

 

 

                                                           
1 The chapter is based on a scientific paper: 

J Wu, R H Petrov, S Kölling, P Koenraad, L Malet, S Godet, J Sietsma. Micro and Nanoscale Characterization of 

Complex Multilayer-Structured White Etching Layer in Rails. Met  2018;8 
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4.1 Introduction 

 
White etching layer (WEL) [1–8] is a common microstructure alteration on rail surface formed due to 

rail/wheel contact and is frequently associated with rolling contact fatigue (RCF) damage. During train 

passages, part of the initial pearlitic microstructure in the rail surface changes into a different structure. 

The new structure is typically revealed as a 10 – 20 µm featureless layer which appears in white color 

in the optical microscope, after etching with a nitric acid solution in ethanol. Furthermore, WEL is a 

common problem in rails with pearlite microstructure as it occurs: (1) with different initial 

microstructural components, i.e. ferrite-pearlite [8] or fully lamellar pearlite [1,5,6], (2) at various track 

sites, e.g. tangential tracks or curved rails. The presence of WEL is considered to cause crack initiation 

following brittle fracture of the WEL due to its high hardness, up to 1200 HV [5]. Worldwide 

observations of crack initiation at WEL are reported in the metallographic studies of loaded rails, e.g. 

Japan [9], the Netherlands [10], Australia [11], Great Britain [12]. Carrol et al. [13,14] performed 

laboratory twin disc tests to study the influence of WEL on RCF behavior in rails and they propose that 

WEL facilitates both wear and RCF processes in rails. In their subsequent numerical analysis, 

stress/strain concentration at WEL is identified and is considered to be consistent with their experimental 

observations.  

Microstructure in the WEL is usually exploited by combined advanced characterization methods to trace 

its origin. Detection of tetragonal deviation from the body-centered cubic (BCC) lattice and retained 

austenite with (synchrotron) X-ray diffraction (XRD) is a commonly strong proof of martensite in the 

WEL [3,15]. Additional supportive evidence can be martensite twinning substructure observed by 

transmission electron microscopy (TEM) [3]. Using TEM, Takahashi et al. [6] determine WEL to consist 

of grains of a few hundred nanometers with high dislocation density, which is much finer than the 

pearlite beneath the WEL. Combined with atom probe tomography (APT) analysis, they identify 

manganese diffusion in the WEL, the quantification of which leads to the conclusion that the rail 

temperature has risen at least to 900 °C. Accordingly, the hypothesis that martensitic phase 

transformation leads to the WEL formation is proposed. 

The other hypothesis is that WEL consists of nanocrystalline ferrite grains, which is a consequence of 

accumulated strain from passing train wheels. The original pearlite/ferrite structure is proposed to be 

significantly refined down to near ten nanometers grain size, and the cementite dissolves in it due to the 

plastic deformation. The extremely high hardness [7,16] is considered to be abnormal for a martensite 

microstructure produced by standard heat treatments, while it can be interpreted to be caused by 

strengthening from the ultra-fine ferrite grains. In some cases, WEL is considered to form according to 

this hypothesis despite the observation of martensitic-like characteristics. In the TEM work of Baumann 

[2] for example, a fully martensitic microstructure is identified and no retained austenite identification 

is reported in the analyzed WEL. In addition, their temperature calculations fail to support the required 
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temperature for pearlite to austenite transformation to occur. As a result, they propose that WEL forms 

due to the repeated deformation. 

Formations of WELs according to the above hypotheses are well supported by separate laboratory 

simulations. For example, (ultra)fast heat treatments can produce martensite with hardness and grain 

sizes comparable to the studied WEL in rails [17], or with hardness and a twinning substructure for 

martensite [18]. A similar white layer is also commonly observed in the surface of loaded components, 

operating under conditions of significant temperature increase, e.g. in surface machining [19], hard 

turning [20,21]. On the other hand, nanocrystalline ferrite white layers are observed in pearlite after 

applying severe plastic deformation, e.g. [7,22]. The extremely high hardness and the nanometer-sized 

grains in the WEL [7], can be well reproduced by severe plastic deformation. A certain strain threshold 

seems to be necessary for the formation of nanometer size grains and complete cementite dissolution. 

Consequently, the microstructure in the WEL must be related to the loading conditions of the studied 

rail specimen. Relating to the wheel/rail contact, it will be realistic to assume that WEL forms via 

combined plastic deformation and temperature increase and the separate contributions depend on the 

loading history from wheels. 

Among the above-mentioned works, few used automatic orientation mapping methods, e.g. electron 

backscattered diffraction (EBSD) and the recently developed transmission Kikuchi diffraction (TKD) 

with an improved spatial resolution [23,24]. The EBSD and TKD methods provide accurate crystal 

orientation and misorientation measurements and are inherently useful in revealing the deformation 

structures in the WEL [17] and the strain gradient in the rails [25,26]. Such structures are difficult to be 

characterized and quantified by other methods such as TEM and APT. In addition, EBSD can scan over 

a large bulk specimen, including the WEL and the surrounding matrix, offering a wider overview of 

differences between WEL and the pearlite beneath it in the grain size, deformation scale etc. The EBSD 

spatial resolution, typically 50 – 100 nm,  may limit the identification of very fine grains in the WEL 

[26], while complementary information can be provided by TKD method, for which a spatial resolution 

down to 10 nm is reported [23,24]. As a result, EBSD and TKD will be useful to characterize the WEL 

and extra information might be extracted from the crystallographic aspects. 

In this work, we perform a comprehensive characterization of the WEL, observed in an R260 Mn grade 

rail, by using methods at different resolution levels and from different aspects. We aim to explore an 

extensive insight into the formation mechanism of WEL via investigations on crystallographic, 

morphological and compositional characteristics. For such purpose, XRD, EBSD and TKD will identify 

the phase components in the WEL, while the EBSD and TKD also have the advantages of mapping the 

phase distribution and revealing the local misorientation changes caused during the train passages. TEM 

will be used to characterize the morphological and phase constituents in WEL at a higher resolution 

level. The APT is able to reveal the compositional variations in the WEL. Finally, the formation 

mechanism will be discussed based on the obtained results. 
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4.2 Materials and methods 

 
The studied WELs were taken from an R260Mn grade rail track with a composition of Fe-0.67 wt% C-

1.51 wt% Mn-0.21 wt% Si. The rail track was originally implemented in a straight track site between 

Meppel and Steenwijk in the Netherlands between 1989 and 2007 [17] and the loading conditions on 

the studied rail steel are described in section 3.2 in Chapter 3. The corroded and oxidized products in 

the rail surface, due to unprotected lab storage in the air after removal, was carefully ground away by 

using Struers #2000 grinding paper. The freshly revealed steel surface was first cleaned with ethanol 

and subsequently etched by 2 % Nital. The rail surface shows areas with noticeably different colors, e.g. 

the photo in Fig. 4.1(a). After etching, isolated blocks of light color areas can be identified close to the 

two edges of the running band. The surrounding areas were etched in gray shade and can be well 

recognized by the naked eye. The empty dashed white loops in the photo in Fig. 4.1(a) are for indication 

of shapes and distribution of the light blocks. The notations of RD, TD and ND refer to directions parallel 

with the traffic/rolling direction (RD), transverse direction (TD) and the direction perpendicular to the 

rail surface (ND) respectively. 

An enlarged view of a light color block area, within the right-hand loop in Fig. 4.1(a), is shown in Fig. 

4.1(b). It can be seen that the light color blocks are not continuous and there are smaller, separated light 

blocks beside the major one. These tiny light blocks are difficult to see in Fig. 4.1(a). Fig. 4.1(c) is a 

further magnified view of the largest light block in Fig. 4.1(b). Again, the structure in the main light 

zone is inhomogeneous and consists of light and dark gray areas. The hardness of the light blocks in Fig. 

4.1(c) is measured to be ~ 820 HV and is much harder than the gray areas, which has a hardness close 

to the pearlite matrix reported 290 HV in [17]. The black portions in Fig. 4.1(c) are probably unremoved 

oxide layers. Finally, Fig. 4.1(d) is an optical micrograph of a cross-sectional specimen, cut through one 

of the light blocks.  WEL with classic morphology and the pearlite beneath are well recognized. 

Consequently, the light portions in Fig. 4.1(a-c) are considered to be WELs. Fig. 4.1(e) is an indicative 

drawing to show the positions where APT tips and TEM lamellae were extracted. 

XRD scans were first done on the WEL zones in the rail piece in Fig. 4.1(a), after final polishing with 

1 μm diamond suspension. The scanned area including WEL was approximately 11.8 × 5 mm2 and part 

of the surrounding matrix areas were inevitably included in the XRD scans, due to the erratic distribution 

of WELs in the rail surface. The scans were done in a Bruker D8 XRD machine with a parallel beam 

geometry, using Co Kα radiation. All scans were done at 45 kV acceleration voltage and 25 mA current. 

The scanning step size (2θ) was set to be 0.03º and the 40 –95° 2θ angular range was scanned with a 

speed of 1 s per step. For reference, one sample, cut from the rail center so not containing WEL, was 

scanned under identical settings and serves as a reference. Phase components in both WEL and pearlite 

areas were identified by comparing the 2θ positions of the diffraction peaks with the phase data in the 

ICDD database [27].  
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Fig. 4.1: (a) An overview of rail surface after careful grinding and subsequent etching with 2 % Nital; 

(b) the enlarged view of the downright light block; (c) A representative micrograph in the main light 

area in (b); (d) optical micrograph of a cross-sectional specimen, cut cross one of the WEL blocks in 

(a); (e) the enlarged view in the black rectangle in (d), with schematic indications of positions where 

the APT pillars and the TEM lamellae were extracted. 

 

The cross-sectional WEL specimen in Fig. 4.1(d) was subsequently characterized by electron 

backscatter diffraction (EBSD), after following the sample preparation described in [17]. An FEI Quanta 

– 450 field emission gun scanning electron microscope (FEG-SEM), equipped with Hikari-Pro EBSD 

detector, was used for the scans. The orientation data was collected under 20 kV, FEI spot size 5, a final 
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aperture size of 40 μm and a working distance of 16 mm. The data was collected with EDAX-TSL OIM 

Data Collections v6.2 software, on a hexagonal scan grid mode with a step size of 50 nm.  

Three TEM lamellae were subsequently extracted from the specimen for EBSD scans. The lamellae 

were prepared by the Focused Ion Beam and lift-out method in a FIB-SEM, FEI Nova 600 Nanolab 

DualBeam. In the subsequent sections, the three TEM lamellae were named after their relative original 

positions in the WEL, schematically shown in Fig. 4.1(e): (i) surface WEL, ~ 3 μm beneath the rail 

surface; (ii) center WEL, ~ 12 μm below the rail surface and approximately in the center of the WEL; 

(iii) interface WEL, in the WEL and ~ 1 - 2 μm above the WEL/pearlite boundary. TKD measurements 

on the three lamellae were first done in the same SEM used for EBSD measurements in this chapter. 

The specimen holder configuration described in [28] was used for the study. The scans were done with 

a 5 mm working distance, 30 kV voltage and 12 nm step size. All orientation data was analyzed by the 

OIM post-processing software, version 7.30. 

The following cleanup procedures were applied to the EBSD and TKD data scans, before the comparison 

and quantification: (i) grain confidence index (CI) standardization with a grain definition of a threshold 

angle of 5° and minimum grain size of 6 pixels. This does not change the orientations but associates the 

CI of all pixels in the defined grains to the highest CI of the defined grain; (ii) neighbor orientation 

correlation. After this step, orientations of pixels with low CI, less than 0.1, will be reassigned to the 

neighbor grain orientation, based on the selected parameters in the OIM software. In this study, a clean-

up level 3 was used for the neighbor orientation correlation. The grains were defined to have a minimum 

5° misorientation with the neighbor grain and a minimum 4 and 8 pixels were defined for grains in 

EBSD and TKD respectively. After the cleanup procedures, the remaining pixels with CI<0.1 were 

removed from the EBSD scan as dubious and they appear as black pixels in the scans. 

The same TEM lamellae were further characterized by a Jeol JEM-2200FS FEG-TEM with a Cs 

corrector for the objective lens. The experiments were done at 200 kV. A minimum objective aperture 

size of 100 nm was used for performing selected area diffraction (SAD). 

For compositional analysis, the sharp needles along WEL depth were prepared from the same main 

WEL block, which is schematically shown in Fig. 4.1(e). The APT tips were carefully extracted in a 

FEI Nova 600 FIB/SEM Dual Beam set-up. The APT measurements were done in a Cameca LEAP-

4000x HR 3D atom probe microscopy in voltage mode, with a pulse repetition of 200 kHz, a pulse 

fraction of 0.2 and a sample temperature of 20 K. The APT data was analyzed with Imago Visualization 

and Analysis Software (IVAS) version 3.6. 

 

4.3 Results 

4.3.1. X-Ray Diffraction (XRD) results 

Fig. 4.2 shows the XRD spectra of scans on surface WEL and the central reference specimen, which has 

a fully pearlitic microstructure. The central reference specimen is identified to indeed consist of 
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cementite and ferrite. A similar phase composition is recognized in the spectrum of surface WEL 

specimen, while additionally {2 0 0} and{2 2 0} peaks of austenite are identified. The cementite peak 

intensity in the surface WEL spectrum is very weak, compared with the reference pearlite sample. In 

addition, the {1 1 0} and {2 0 0} peaks of ferrite in the surface WEL specimen are broader than that of 

the reference sample and are slightly asymmetric. This can be due to peak broadening caused by small 

grains or due to high dislocation densities. The unexpected peaks in the WEL specimen, at 42° in Fig. 

4.2, are from the unground oxide, since excessive grinding was avoided not to remove WEL in the rail 

surface during sample preparation for XRD measurements. 

 

 

Fig. 4.2: XRD spectra of the WEL zone at rail surface and the reference pearlitic specimen 

from the rail center 

4.3.2. Electron Backscatter Diffraction (EBSD) results 

Fig. 4.3(a) shows the grayscale image quality (IQ) map of ferrite, from the EBSD scan on the WEL 

specimen. Superimposed is the color-coded inverse pole figure (IPF) of austenite. No pixels were 

discarded for the mapping. The WEL can be differentiated from the pearlite area by areas with lower 

IQ.  It appears in dark gray shades, indicating higher dislocation density and/or very fine grains in the 

WEL. The grains within the WEL are heterogeneous both in size and morphology. The WEL close to 

the rail surface, e.g. within the zone 2 in the empty dashed rectangle in Fig. 4.3(a), show random 

morphology, while the subsurface WEL has elongated grains, e.g. in zone 1 in Fig. 4.3(a). Furthermore, 

individual WELs in the pearlite zone, identified by the low IQ, are observed and are partly indicated by 

solid black arrows in Fig. 4.3(a). Isolated WELs in the pearlite region, and separated from the main big 

WEL block, are so frequently observed that it can be used to indicate the propagating characteristics of 

WEL during the loading history.  
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Austenite is frequently identified in the WEL, e.g. the superimposed IPF in Fig. 4.3(a). There is no clear 

trend of austenite distribution relating to the WEL depth position and austenite grains are located both 

close to the rail surface and close to the WEL/pearlite boundary.      

                                              

   

Fig. 4.3: (a) The image quality map of WEL imposed with the inverse pole figure of austenite. Part of 

the pearlite beneath the WEL was also included for the mapping; (b) comparison of grain diameter of 

the zone 1 and zone 2 in (a) and also pearlite area. 

 

Fig. 4.3(b) shows the martensite grain size distribution, quantified from the zone 1 and zone 2 in Fig. 

4.3(a). The grain size distribution of pearlite area beneath the WEL is included for comparison. It can 

be seen that the grain size ranges of zone 1 and 2 are different. The grains in ‘zone 1’ are 110 nm – 4 

µm, which is wider than the grain size distribution in zone 2, 112 nm – 2 µm. Grain size of the pearlite 

ferrite underneath is bigger than in the WEL zones, with 113 nm – 10 µm. The average grain size of 

zone 1, zone 2 and pearlite ferrite are 323 ± 236 nm, 302 ± 314 nm and 798 ± 320 nm respectively. It 

should be noted that most of the grains are with sub-micron size while only a few grains exceed 1 micron.    

Fig. 4.4(a) shows the kernel average misorientation (KAM) map of the BCC ferrite phase in WEL, Fig. 

4.3(a), using a threshold of 5° and the 1st neighbor. The dark zones are due to the applied threshold of 

5° and 4 pixels for grain definition. The fraction of green and yellow, misorientation of 1 – 3°, in WEL 

indicate the deformation history in the rails. Such zones are much less in the pearlite area in Fig. 4.4(a) 

and are mainly located at the grain boundaries and the cementite/ferrite phase boundaries. Fig. 4.4(b) is 

the plot of BCC KAM distribution, mapped from the whole WEL and the pearlite underneath the WEL. 

The KAM plot of a reference area, 500 μm beneath the rail surface and deformation-free, is added as a 

reference. It can be seen that the WEL has distinctly higher KAM than the subsurface pearlite and 

reference pearlite and the latter two areas have similar KAM distributions.   
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Fig. 4.4: KAM map of the WEL specimen, using 5 ° and 1st neighbor in (a); and KAM plot of ferrite in 

WEL and pearlite underneath the WEL respectively (b). 

4.3.3. Transmission Kikuchi Diffraction (TKD) results 

Figs. 4.5(a) – (c) show the TKD-IQ maps, superimposed with the color-coded IPF of austenite, of the 

three TEM foils extracted from the WEL. The martensite-like morphology can be seen in the IQ map of 

surface WEL and center WEL, Figs. 4.5(a) and (b). The grains in both lamellae can be observed to be 

heterogeneous and grains in central WEL appear to be finer than the surface ones. The microstructure 

in the interface WEL in Fig. 4.5(c) is different from those in Figs. 4.5(a) and (b). Dark parallel rod-like 

particles, which fail to be indexed, are observed in this TEM lamella. The white line boundaries, with 

angle/axis rotation of 90° <1 1 2>, are to show the boundaries character between austenite and bcc 

matrix. Among the three TEM foils, the central specimen shows the highest fraction of retained austenite 

and austenite grains are frequently observed at the recognized grain boundaries. 

Fig. 4.6(a) shows the ferrite equivalent grain diameter distribution in the surface WEL, center WEL, and 

interface WEL. Grain size in the surface and interface WEL are comparable in the size range while 

central WEL has the finest grain size range, below 800 nm. The surface and the interface WELs have 

larger grain size, exceeding 1 µm. The average grain size of surface WEL, central WEL and interface 

WEL are 640 ± 116 nm, 370 ± 119 nm and 887 ± 146 nm respectively. Fig. 4.6(b) shows the KAM 

distribution measured in the three TEM foils. The interface WEL has the lowest KAM whereas the 

central and the surface zone of the WEL have practically the same KAM distribution. 
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Fig. 4.5: The IQ map superimposed with the IPF of austenite of (a) surface WEL; (b) central WEL; (c) 

interface WEL. Colored regions indicate austenite grains, according to the oriental scheme. 

 

  

Fig. 4.6: (a) Plot of grain diameter vs area fraction of the characterized TEM foils; (b) Plot of KAM of 

the characterized TEM foils, using 4th neighbor. 

4.3.4. Transmission Electron Microscopy (TEM) results 

Fig. 4.7(a) is a representative bright field (BF) TEM image of the surface WEL specimen. The high 

dislocation density and the twinning-like structures are frequently observed through the whole TEM foil. 

Fig 4.7(b) shows the selected area diffraction (SAD) pattern of the area within the yellow circle in Fig. 

4.7(a). The indexing identifies a {1 1 2} type twinning and the simulated pattern of Fig. 4.7(b) is shown 

in Fig. 4.7(d). The black arrow indicates the {1 1 2} twinning planes. Fig. 4.7(c) is a dark field (DF) 
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image, using the reflection (2 1 1) of the twinning plane. Due to the high dislocation density in the 

characterized TEM foil, an accurate quantification of the dislocation density is impossible.  

Fig. 4.8 is a typical BF image of the center WEL TEM foil. In this specimen, the twinned structures and 

high dislocation density regions are also observed, although they are less common in this zone 

(subsurface WEL) than in the surface WEL.  

 

  

  

Fig. 4.7: (a) The bright field image of surface WEL in the TEM foil. The yellow circle is for forming 

the selected area diffraction pattern in (b), from zone axis [1 0 2]matrix; (c) The dark field image formed 

using reflection (-2 1 1) of the twinning plane; (d) The simulated diffraction pattern corresponding to 

(b). 
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Fig. 4.8: (a) A representative BF micrograph of microstructure in the central WEL; (b) The enlarged 

view of the rectangle in (a). 

 

Figs. 4.9(a)-(d) and Figs. 4.10(a)-(d) are two examples of microstructures in the interface WEL. In this 

specimen, the twinning structure is not as obvious as in the surface and subsurface WEL while a lamellar 

morphology is observed in the BF image in Fig. 4.9(a). The lamellae appear to be parallel and they look 

fragmented. A SAD pattern was taken in the yellow circle in Fig. 4.9(a) and is shown in Fig. 4.9(b). The 

indexing of pattern in Fig. 4.9(b) is presented in Fig. 4.9(d), revealing the following orientation 

relationship: 

(112)𝛼//(2̅3̅3)𝜃  

[6̅ 4 ̅̅ ̅1]𝛼//[6̅ 9 5]𝜃 

This orientation relationship is in accordance with the Bagaryatsky orientation relationship between 

cementite (θ) and ferrite (α) [29], hence the elongated dark structures are most probably remaining or 

partially dissolved cementite. 

The dark field (DF) image in Fig. 4.9(c) is formed using the reflection of (21̅1)𝜃. 

Figs. 4.10(a)-(d) is another example of the microstructure in the interface WEL TEM foil, where the 

lamellar structure as in Fig. 4.9(a) is not observed. The indexing of the SAD pattern in Fig. 4.10(b) 

reveals the orientation relationship: 

 (01̅1)𝛼//(022)𝜃 

[100]𝛼//[01̅1]𝜃 

The DF image in Fig. 4.10(c) is formed using the reflection of (2 1 1)θ. High dislocation density is visible 

in Fig. 4.9(a) and Fig. 4.10(a).  
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Fig. 4.9: (a) The BF image of interface WEL- TEM specimen; the SAD pattern of the area in the 

empty circle in (a) is shown in (b) and the indexed pattern is presented in (d). The DF image in (c) is 

formed by using (21̅1) reflection of cementite. 
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Fig. 4.10:  (a) The BF image of another area in WEL-interface TEM specimen; the SAD pattern of the 

area in the empty circle in (a) is shown in (b) and the indexed pattern is presented in (d). The DF 

image in (c) is formed by using (211) reflection of cementite. 

4.3.5 Atom Probe Tomography (APT) results 

Fig. 4.11(a) shows the atomic distribution of carbon, manganese and silicon in an APT needle, extracted 

~ 28 µm beneath the rail surface and ~ 3 μm beneath the WEL. A particle which is enriched of carbon 

and manganese, and depleted of silicon, is observed. The quantification of the atomic concentration in 

an area across the particle is shown in Fig. 4.11(b). The carbon concentration of the particle is 25 at%, 

indicating the particle to be cementite. The manganese significantly enriches in the cementite, ~ 6.7 at%, 

and is close to the equilibrium concentration at low temperature, e.g. 200 °C, from Thermo-Calc 

estimation. The silicon is enriched in the ferrite, which also accords to the equilibrium concentration in 

the pearlitic ferrite. 
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Fig. 4.11: The 3D element maps in the APT needle taken from pearlite ~3 μm beneath WEL (a) and 

the composition quantifications of volumes in the empty rectangle is shown in (b). 

 

Fig. 4.12 shows the analysis of an APT needle extracted about 2 μm beneath the rail surface, equivalent 

to the surface WEL. Manganese and silicon are homogeneously distributed while carbon segregation 

can be observed. The carbon content that corresponds to the segregation site can be up to ~ 9.5 at%, 

while the matrix has a carbon concentration of around 2 at%.  
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Fig. 4.12: The 3D element maps of APT needle taken in WEL, ~2 μm beneath the rail surface (a) and 

the composition quantifications of volumes in the empty rectangle in (b). 

 

  

 

 

Fig. 4.13: The 3D element maps of APT needle taken in WEL, ~10 μm beneath rail surface (a) and the 

composition quantifications of volumes in the solid rectangle, in (b), and the dotted rectangle in (c) 

respectively. 
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Fig. 4.13 shows the analysis of an APT needle extracted about 10 μm beneath the rail surface, equivalent 

to the central WEL. The manganese-rich and silicon-poor zones indicate locations of previous cementite. 

However, the carbon segregation at the manganese-rich zone is not pronounced and the carbon 

distribution through the whole APT tip appears to be more homogeneous than that of manganese and 

silicon. The composition profiles in the manganese-rich zones show a carbon concentration of ~ 5 at%. 

Such concentration is higher than the average 3 at% (0.67 wt%) for the overall carbon concentration for 

the studied R260 Mn grade rail steel but is significantly lower than the 25 at% for cementite. The 

composition profile of an area without the manganese-rich zone is shown in Fig. 4.13(c). A carbon 

concentration spike of 10 at% is identified. Both quantifications indicate that carbon enrichment occurs 

in areas at and outside the original cementite locations. 

Fig. 4.14 shows the carbon, manganese and silicon profiles of a needle in the WEL near the 

WEL/pearlite boundary, equivalent to the interface WEL. A lamella, enriched in carbon and manganese 

and depleted in silicon, is identified. The quantification within the red rectangle in Fig. 4.14(a) is shown 

in Fig. 4.14(b). A carbon concentration of 25 at% for cementite is quantified, whereas the cementite 

border is more diffuse than of cementite in the matrix in Fig. 4.11(b). 

 

   

Fig. 4.14: The 3D element maps of APT needle taken in WEL and close to the WEL/pearlite boundary 

(a) and the composition quantifications of volumes in the solid empty rectangle (b). 

 

4.4. Discussion 

4.4.1. The complex microstructure in the WEL  

The applied methods consistently identify the characterized WEL as a martensite microstructure. First, 

the common detection of retained austenite by XRD in Fig. 4.2, EBSD in Fig. 4.3(a) and TKD in Fig. 

4.5(a) – (c) is strong evidence of martensite nature of WEL, e.g. [3]. The slight asymmetric profiles at 

{2 0 0}𝛼  and {1 1 0}𝛼  peaks in Fig. 4.2 indicate minor lattice tetragonality, expected from martensite 

with the average ~ 0.67 wt% carbon in the studied rail steel. Secondly, the identified nano-twinning in 

the WEL, Figs. 4.7(a) and (b) and Fig. 4.8, can be well expected in martensite, as is shown in martensite 
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produced by applying heat treatment to rail steels with a similar rail composition as in this study, e.g. 

by laser treatment in [17,18]. Finally, the redistribution of manganese is an important indication of high 

temperature increase in rails,  possibly up to 1400 °C [6]. The similar procedures of temperature 

calculation from the manganese profile in ref [6]is used in this chapter and will be explained in detail in 

section 4.2.  

The martensite in WEL shows heterogeneous morphology and complex compositional characteristics 

along rail depth, as revealed by TEM and APT. The martensite in the topmost surface WEL lamellae 

consists of nano-twinned substructures with a very high dislocation density, Fig. 4.8(a). No cementite is 

identified during indexing the selected area diffraction pattern. The manganese and silicon profiles in 

the APT needles from this region, Fig. 4.12, are homogeneous while the carbon profile shows nano-

segregation, with a maximum C content up to 9 at%. This is significantly different from the APT map 

in the pearlite regions underneath the WEL in Fig. 4.11, indicating a redistribution of manganese and 

silicon during wheel passages. The carbon spikes in Fig. 4.12 can be up to 9.5 at% and are frequently 

identified in other areas in the same APT needle. Such high carbon concentration is difficult to be 

accommodated by dislocations only but can also be accommodated by grain boundaries, twins [30] and 

retained austenite [31]. The distance between the carbon spikes is typically 5 – 30 nm, which is much 

smaller than the measured martensite grain size in TKD, Fig. 4.7(a), or EBSD, Fig. 4.3(b). In addition, 

retained austenite may also accommodate carbon, but its low fraction, no more than 6%, could not 

explain the so frequent observations of the carbon spikes. Consequently, the most significant carbon 

spikes are considered to be accommodated at martensite twins. 

The martensite morphology in the center of WEL thickness, Fig. 4.8, is similar to that in surface WEL 

in Fig. 4.7, i.e. with nanotwinning and dislocations. However, the compositional profile is different in 

the central WEL. The manganese-rich and silicon-poor zones remain observable in the APT needle, Fig. 

4.13, while the carbon concentration at the identical zones is much less than the equilibrium 25 at% for 

cementite. Consequently, these zones are likely to correspond to the original cementite sites. 

Furthermore, there is absence of clear correlation between the carbon spikes and the manganese-rich 

zones, e.g. Fig. 4.13 (b) and (c), indicating carbon redistribution in the WEL. Finally, the microstructure 

morphology in the bottom of WEL is totally different from the one observed in the center and surface 

WEL. Untransformed cementite is recognized, both by electron diffraction and APT, and appears 

fragmented. This probably corresponds to the observed lamellar traces in the TKD map at the similar 

depth (Fig. 4.5(c)), in which cementite is unidentified due to the fact it was not included in the phase list 

for indexation with TKD.  

The characterized WEL is different from the ones reported in [5,6], in which the WEL was studied by a 

combination of APT and TEM, like in this study. First, the identified nano-twinning substructure in this 

work, e.g. Fig. 4.7, is not reported in [5,6]. Secondly, the grain structure is different. Zhang et al. [5] 

identify nano-size grains in the top part of the WEL by recognizing a ring diffraction pattern and in the 

dark field TEM image. In the bottom of the WEL, they recognize fragmented cementite by electron 
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diffraction. Such fragmented cementite is also observed in the bottom of the investigated WEL, Figs. 

4.9(a–d). However, the nano-sized grains are not observed in the topmost WEL in Figs. 4.7(a) and (b), 

since the ring pattern is not observed. Referring to the proposed hypothesis of WEL formation by phase 

transformation in this study, the fragmented cementite can be due to heterogeneous nucleation and 

growth of austenite at the ferrite/cementite phase boundaries.  

The APT analysis of WEL in Figs. 4.12 – 4.15 is similar to the observation in [6]. Takahashi et al. [6] 

recognize zones with homogeneous manganese distribution and carbon enriched zones without 

manganese clustering in a WEL, which they conclude to be martensite formed via phase transformation. 

Such observations are made in the current APT work in Figs. 4.12 and 4.13, and the same conclusion 

regarding WEL can be more convincing with the additional observations of martensite morphology and 

the detected austenite phase in the WEL by TEM, EBSD and TKD. It should be noted that the TEM 

images in [6] do not show cementite lamellae in the WEL as the ones observed in the current study in 

Figs. 4.9 and 4.10. Zhang et al. [5] recognize a heterogeneous carbon distribution in the APT tip, without 

showing the profile of manganese. Consequently, it is impossible to correlate the carbon clusters to the 

sites of the original cementite. In short, the characterized WEL is different in both microstructure 

morphology and the compositional characteristics from the literature. 

The combined characterization work, using EBSD and TKD, offers extra insight into the formation of 

the studied WEL. First, EBSD enables a larger overview of the WEL than for example TEM, considering 

the difference in sample size and the scanned area. It reveals coarse grains in the WEL, up to 4 μm. 

Complimentary to the EBSD scans, the TKD measurements also quantify micron size grains. Such grain 

size is much larger than those measured in other studies by TEM [5,6] or XRD [7], in which the grain 

size hardly exceeds 700 nm. Secondly, the KAM measured in the matrix beneath the WEL shows 

comparable misorientation profile as that of pearlite in an undeformed area. This indicates negligible 

deformation in the zones and is in accordance with the absence of transient work-hardened zone below 

the WEL as was shown by hardness measurement in [17]. As a result, the EBSD and TKD analyses 

support the hypothesis of WEL formation via martensite phase transformation.  
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4.4.2. Temperature estimation by shape analysis 

 

Fig. 4.15: Schematic drawing of shape analysis of manganese profile. The C and C0 represent the 

manganese concentrations in both WEL and pearlite cementite. The x/h is the ratio of manganese 

diffusion distance to the original cementite width and the numbering, m, represents the ratio of 

diffusion length to the zone width. Details see main text. 

 

The temperature changes in the studied rails can be estimated via the shape analysis of the manganese 

profile in the WEL, e.g. [4]. The manganese diffusion can be described by Fick’s law, using error 

functions: 

𝐶

𝐶0
= 0.5 {erf (

1 −
𝑥
ℎ

√𝐷𝑡
ℎ

) + erf (
1 +

𝑥
ℎ

√𝐷𝑡
ℎ

)} 

in which C and C0 are the manganese concentration after diffusion and at the initial stage. x is the 

distance, D is the diffusion coefficient of manganese in austenite, t is the diffusion time and h is the 

thickness of the cementite lamella.  

  Due to the elevated temperature and the contact time, the original steep manganese profile in pearlite 

can become diffusive due to Mn diffusion in austenite. The Mn diffusivity depends on the temperature 

and the time allowed for the diffusion to occur. Fig. 4.15 schematically shows the changes of manganese 

profile, with an initial composition C0 and a width of 2h, due to diffusion. The variable m for each line 

corresponds to 
√𝐷𝑡

ℎ
 . The Mn diffusion co-efficient in austenite is calculated by 𝐷 = 𝐷0 × exp(−

𝑄

𝑅𝑇
), in 

which 𝐷0 is the prefactor, 2.34 × 10-5 m2/s, and Q is the activation energy, 2.61 × 105 J/mol [4]. The 

time, t, specifically refers to the duration when Mn diffuses in the austenite, i.e. when the temperature 

is above the A1, and is estimated by (𝑇 − 𝐴1)/𝑣 , in which A1 is 700 °C (973 K) and the heating rate v 

is 1.5 × 106 °C/s [3]. The estimated manganese concentrations from APT tips are shown in table 2.  
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It is worthwhile to point out that the reference manganese peak concentration, used for calculating the 

manganese diffusion distance, is chosen from the measured cementite only. The manganese 

concentration in cementite can differ among lamellae due to different forming conditions and the 

manganese diffusion distance in the WEL, thus the subsequently required temperature for the diffusion 

distance, can be affected. The value of m for the surface WEL is approximately ½, which corresponds 

to a maximum temperature of approximately 1400 °C.  

It is further worthwhile to point out that the temperature estimation from the shape analysis in this section 

is indicative. First, the Mn profile of cementite in the matrix pearlite, Fig. 4.11(b), is used as the starting 

profile in Fig. 4.15, i.e. when m is 0. However, the Mn profile in Fig. 4.11(b) does not show the identical 

rectangle shape for 𝑚 = 0 in Fig. 4.15. Instead, the determined value m corresponding to the Mn profiles 

at a different depth within the WEL is an approximation, by comparing the degree of changes in the Mn 

profile to the one in the matrix pearlite. Second, current calculation only considers a single wheel 

passage. The WEL in rails are expected to form after multiple wheel passage, during which the Mn 

diffusion distance in austenite can accumulate as well. For example, the Mn can diffuse ~ 8.8 nm at 

1400 °C, calculated by following the approach used in this section. The same diffusion distance requires 

~ 2500 wheel passes, assuming that an identical temperature of 730 °C is reached during each wheel 

passage. Note that 730°C should be regarded as a lower limit, since at lower maximum temperatures no 

austenite would form, which is in contradiction with the experimental evidence of retained austenite. 

The calculated 2500 wheel passages is not comparable with the 1.2 million wheel passages, imposed on 

the studied rail track. However, not each wheel passage necessarily contributes to the temperature 

increase above the austenitization temperature at the rail surface due to the differences in the loading 

conditions during the individual wheel/rail contact. In addition, the evolution of the WEL during the 

train wheel passages can be complex since it may be worn away as wear debris and new WEL forms 

during the subsequent wheel passages As a result, the calculated temperature in Table. 2 is to indicate 

the significant temperature increase at the rail surface during the wheel/rail contact.   

 

Table.2 Quantified manganese concentration from needles at different depth in the WEL and in the 

pearlite matrix 

Region Position, μm Mn peak 

concentration, at% 

Shape Estimated T (°C) 

Surface WEL 5 4.10 Diffuse ~ 1400 

Interface WEL 23 5.32 Slightly diffused < 1150 

Pearlite 26 5.44 Non-diffused  

4.4.3. Formation Mechanism of the Multi-Layered Structure Characterizing Martensite in the 

WEL 

It is expected that the passing trains cause simultaneous deformation and frictional heat on the rails. The 

deformation is indicated by the high KAM in the EBSD scan on the WEL, which can be due to localized 
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crystal lattice distortion. The KAM profile in the pearlite immediately beneath the WEL indicates 

negligible deformation in this zone. The abrupt change of KAM profile from WEL to the pearlite 

underneath indicates that the thermally-induced martensitic transformation is the dominant contribution 

to the formation of the studied WEL.  

In situ observation of the exact WEL formation mechanism is impossible, due to practical limitations 

associated with the complex loading conditions of the wheel/rail contact. However, the principal 

formation mechanism of the multi-layered structure martensite in the studied WEL, e.g., Figs. (4.7–4.10) 

and Figs. (4.12–4.14), can be interpreted on the basis of phase transformation theory. The identified 

morphological and compositional characteristics of martensite in the APT tips and TEM lamellae, 

extracted at different depths in the WEL, are attributed to variations in the thermal history at the 

corresponding positions.  

According to the hypothesis attributing WEL formation to martensitic phase transformation, the initial 

pearlitic microstructure in the rails transforms to austenite when the rail surface is heated to very high 

temperatures (i.e., austenitized) by the train wheels. The austenite subsequently transforms to martensite 

due to the rapid cooling after the train passes. On the one hand, the chemical composition and 

microstructures of the product martensite depend on the composition of the parent austenite [30]. On 

the other hand, the austenite composition depends on the characteristics of the pearlite to austenite 

transformation. An understanding of the pearlite to austenite transformation process is therefore 

essential for interpreting the multi-layered structures of the martensite in the characterized WEL.  

The final characteristics of the WEL are imparted during multiple wheel passages. In this process, the 

pearlite to austenite transformation is followed by martensite formation during cooling. The martensite 

serves as the initial microstructure for the subsequent phase transformation cycles. In the literature, the 

reverse martensite to austenite transformation is widely considered compositional invariant, i.e., the 

parent and product phases have the same composition.  

The pearlite to austenite transformation is considered a diffusional process [31], characterized by the 

redistribution of carbon between the initial phases and austenite. Moreover, manganese partitioning 

between ferrite/cementite and austenite, albeit on a very fine scale that is observable via high-resolution 

characterization only, is typical of this transformation. These diffusional processes are temperature- and 

time-dependent and the ferrite and cementite to austenite transformation may be incomplete if carbon 

diffusion in austenite is limited, e.g., due to the limited diffusion time during fast heating and the use of 

temperatures residing in the lower range of the austenite phase region [17,31].  

Simulations show that the most favorable conditions for the pearlite to austenite transformation occur at 

the rail surface, where the temperature is highest [17]. The temperature decreases rapidly from the 

surface to the rail center. As a result, compared with the region closer to the rail center, the surface 

region experiences higher temperatures and longer dwelling times within the austenite temperature range. 

This implies that the diffusion distances are longer and consequently carbon and manganese are more 

homogeneously distributed in the surface than in the center. The compositional characteristics of the 
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APT tip from the bulk pearlite (see Fig. 4.11) are compared with those of the tips from different depths 

in the WEL. A clear tendency for manganese and carbon segregation with increasing depth in the WEL 

is revealed. The absence of the 25 at% carbon zone from the rail-surface tip (see Fig. 4.12) and the 

WEL-center tip (see Fig. 4.13) indicates the full dissolution of cementite. Therefore, an overall steel 

carbon concentration of 0.67 wt.% is assumed for the austenite. Martensite with this carbon 

concentration is expected to have a twinning substructure with high dislocation density, similar to those 

observed for the surface WEL and the center WEL (Figs. 4.7–4.8). However, due to the local conditions, 

less diffusion occurs at the bottom of WEL (than at the top). Therefore, the pearlite is only partly 

transformed to austenite and cementite persists, as revealed via TEM (Figs. 4.9–4.10) and APT (Fig. 

4.14). 

 

4.5. Summary and conclusions 

 
A systematic characterization has been done on WEL in an R260 Mn grade rail steel, with XRD, EBSD, 

TKD, TEM and APT. The conclusion that WEL forms via martensitic phase transformation is based on 

the identified retained austenite by XRD, EBSD and TKD and the martensite microstructure revealed 

by TEM. A complex multi-layer structure in WEL was revealed by TEM and APT. The WEL close to 

the rail surface has a microstructure of nano-twinned martensite with high dislocation density. The 

bottom side of WEL consists of ferrite and untransformed cementite and high dislocation density. The 

manganese diffusion from the APT analysis is strong evidence for the significant temperature increase 

which allows the WEL to form. The observed microstructure fits well with the suggested phase 

transformation mechanisms. 

EBSD and TKD are shown to be useful complementary tools in characterizing and tracing the origin of 

WEL. They quantify grain size in the WEL as 20 nm – 4 μm and the hypothesis of WEL formation via 

severe plastic deformation only is thus excluded. The KAM measurement has been widely used to study 

the local misorientation due to plastic deformation. This measure reveals differences of deformation 

scales in the WEL and the matrix pearlite. The comparison of KAM in the WEL, the pearlite 

immediately beneath WEL and the WEL shows a secondary contribution of deformation to the 

formation of WEL. 
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Chapter 5 Laboratory simulation of 

martensite formation of white etching 

layer in rail steel 

 

 

Abstract:  

 
 White etching layer (WEL) is a frequently observed microstructural phenomenon in rail surface, formed 

during dynamic wheel/rail contact. It is considered as one of the main initiators for rolling contact fatigue 

cracks. There are several hypotheses for the formation mechanism of WEL. However, due to the 

complicated wheel/rail contact conditions, none is directly proven. Currently, the most popular 

hypotheses refer to either formation of martensitic WEL by phase transformations or formation of 

nanocrystalline ferritic WEL by severe plastic deformation. In Chapter 4, the phase transformation 

mechanism was shown to be the most possible for the studied rail steel. In this work, WEL formation 

by martensitic transformation in R260Mn grade pearlitic rail steel was simulated by fast heating and 

quenching experiments. The contribution of plastic deformation in the martensite formation was studied 

by applying simultaneous loading and heating. Microstructural characteristics of the simulated WEL 

and WEL observed in a field rail specimen were characterized by microhardness, optical microscopy, 

scanning electron microscopy and electron backscatter diffraction. Microstructures of simulated WELs 

and rail WEL were compared and similarities in morphology are identified. Plastic deformation is found 

to promote martensite formation. Numerical simulation shows the possible temperature rise up to 

austenitizing temperatures. Combining comparisons of experimental simulation with the observation of 

WEL in the rail and the thermodynamic calculations, the hypothesis for WEL formation via martensitic 

transformation is supported.  

Keywords: white etching layer; martensite formation; laboratory simulation; temperature rise; 

thermodynamic calculations2 

                                                           
2 The chapter is based on a scientific paper: 

Wu J, Petrov RH, Naeimi M, Li Z, Dollevoet R, Sietsma J. Laboratory simulation of martensite formation of 

white etching layer in rail steel. Int J Fatigue 2016;91:11–20. 



 
 

66 

 

5.1. Introduction 

 
Rolling contact fatigue (RCF) is the dominant damage mechanism in rails and has attracted wide 

scientific interest. The high and repetitive external load, exceeding 1 GPa, leads to the formation of 

peculiar surface structural alterations, surface crack formation and spallation [1,2]. One such specific 

structural phenomenon in rail surface is widely named white etching layer (WEL) [1–7]. WEL is 

commonly recognized as a thin and hard layer, which appears white under light reflection after being 

etched in 2 to 5% HNO3 in ethanol (Nital etchant). The widely accepted opinion is that the extremely 

high hardness of WEL, up to 1200 HV [6], is related to its brittleness. RCF cracks associated with WEL 

are frequently observed in rails [2].  

 The most popular hypotheses for WEL formation are: (i) martensite formed after the rail surface is 

heated up to austenitization temperatures and subsequently quenched, e.g. [8], and (ii) nanocrystalline 

ferrite as a result of severe plastic deformation [4]. A brief summary of the above two proposed 

mechanisms is given in Table 1. There is experimental evidence for the WEL formation via martensite 

phase transformation. In synchrotron X-ray diffraction (XRD) experiments, the WEL is shown to consist 

of bcc iron and the tetragonal crystal lattice distortion is identified [8,9]. This is a typical feature for high 

carbon martensite. Detection of retained austenite [8,9] indicates martensitic nature of the WEL to be 

the most probable. Occasionally, the martensite type features, such as the lath morphology [7] and the 

micro-twinning substructure [8], are observed in WEL by means of transmission electron microscopy 

(TEM). Martensite with similar hardness as WEL in [8] can be simulated by laser heat treatment. 

Takahashi studied WEL in rails using a combination of microhardness, scanning electron microscopy 

(SEM) and atom probe tomography (APT) [7]. He claimed the absence of severe plastic deformation in 

the studied rail, from the observation of unchanged cementite interlamellar distance in the rail surface 

pearlite and the absence of work-hardened pearlite zone beneath the WEL. In addition, identification of 

manganese diffusion, from cementite to the ferrite lamellae in the WEL by means of APT indicates a 

strong temperature rise caused by wheel/rail contact. This evidence tends to conclude that WEL is 

formed by martensitic phase transformation. 

However, calculations of temperature rise caused by wheel/rail contact do not support the martensitic 

transformation for the WEL formation in [9,10]. Reaching the austenitizing temperature, e.g. 727˚C for 

the eutectoid steel, has been shown to be improbable. Instead, observations of possible deformation 

twinning in the WEL and the work-hardened pearlite zone below WEL have been made [10,11]. In 

addition, pearlite after severe plastic deformation is shown to contain similar features as the WEL, such 

as cementite dissolution, nanometer grains and high hardness [4]. Differential Scanning Calorimetry 

(DSC) scans reveal a similar decomposing behavior of the WEL and the pearlite after mechanical 

alloying [4], indicating a similar microstructure type. The extremely high dislocation density in the WEL 
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is estimated to be able to accommodate the amount of carbon from the dissolved cementite. As a result, 

WEL formation due to plastic deformation is proposed [4,10,11]. 

 

Table.1 Summary of the formation mechanisms of the white etching layer 

Proposed mechanism Supporting evidence 

 

 

 

 

WEL formed by 

martensitic transformation 

 

 

 

 

Detection of tetragonality and retained austenite in WEL by synchrotron 

XRD [8,9].  

Martensite like morphology in WEL revealed by TEM, e.g. micro-

twinning [8] or lath-like morphology [7]. 

Simulation of martensite with similar hardness as WEL by laser heating 

experiment [8]. 

Absence of transient work-hardened pearlite zone below WEL by 

hardness measurements and no observation of cementite lamellae 

thinning from APT results [7]. 

Manganese diffusion revealed by APT [7].  

 

 

WEL formed by plastic 

deformation 

 

 

Temperature calculation does not support martensite transformation 

mechanism for WEL formation in [9,10]. 

Observation of deformation characteristics in WEL and the pearlite 

beneath WEL [10,11]. 

Reproduction of WEL by severe plastic deformation [4,11]. 

Similar thermal stability of the WEL and nanocrystalline ferrite formed 

by mechanical alloying, using DSC [4]. 

  

  

 In this study, WEL formation by martensitic transformation mechanism is simulated in laboratory 

conditions. The WEL formed by martensitic transformation must be a product of (ultra)fast phase 

transformation because of wheel/rail contact. According to [7], the heating rate generated during train 

passage can be higher than 106 ºC/s to the temperature where austenite forms. After train passage, the 

austenite transforms to martensite during fast cooling. Due to the extremely short wheel/rail contact time, 

estimated to be milliseconds using the heating rate of 106 ºC/s from room temperature to 727 °C for the 

eutectoid iron steel, it is almost impossible to measure the actual temperature changes during the period. 

On the other hand, fast heating and quenching heat treatment can be simulated and controlled using 

laboratory instruments, such as dilatometer and thermo-mechanical simulator. The latter instrument also 

provides accurate loading controls, such as (high) strain rate, which is more suitable to simulate the 

combined thermal and mechanical situation of wheel/rail contact. In this study, WEL formation by fast 

phase transformation mechanism is simulated by the thermo-mechanical simulator. The microstructural 

features are characterized and compared with WEL observed in rails. The similarity of the laboratory 

WEL and WEL in rails will be discussed on the basis of the current observations and comparison with 

the literature. 
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5.2. Materials and methods 

 
 R260Mn grade rail steel, cut from a straight rail track [12], was investigated. The steel has a 

composition of Fe-0.67 wt% C-1.51 wt% Mn-0.21 wt% Si, with a nearly fully pearlitic microstructure. 

The average pearlite colony size is 20 µm and the average cementite interlamellar distance is 150 nm. 

For WEL formation in laboratory conditions, cylindrical samples of ø6 mm × 75 mm were cut from the 

bottom of the railhead, where the materials are considered to be free of plastic deformation from train 

passages. Thermocouples were welded in the specimen center to measure the temperature changes 

during the experiments, Fig. 5.1(a). The samples were subjected to fast heating and quenching treatment 

by a Gleeble 1500 thermo-mechanical simulator. The specimens were quickly heated to temperatures 

between 730 ºC and 930 ºC, see Fig. 5.1(b). Heating rates of 20 ºC/s and 200 ºC/s were used to carry out 

the experiments. After heating to the selected temperature, the specimens were immediately quenched 

at a rate of 67 ºC/s, using helium gas, to transform austenite to martensite. It will be shown that austenite 

forms after being heated to the designed temperatures. 

 

 

Fig. 5.1 (a) Configuration settings of Gleeble 1500 used in the laboratory simulations. The inset in the 

left bottom of the figure schematically shows the dimensions of the specimen and the position of the 

thermocouple. The two parallel arrows in the inset indicate the position where the specimen for 

microstructure characterization was cut after the heat treatment; (b) Schematic representation of heat 

treatments used for WEL formation simulation in laboratory conditions 

 

In the following sections, the laboratory samples will be named ‘Sxxx-yyy’, where letter S indicates the 

simulated sample and the first three symbols refer to the temperature samples are heated to (xxx °C) and 

the last three symbols are the heating rate (yyy °C/s）. For example, S730-020 is the simulated specimen 

which is heated to 730 °C at the rate of 20 ºC/s. Additionally, rail samples, containing WEL, were also 

studied and will be named ‘rail WEL’ throughout this chapter. 

It is expected that WEL in rails forms via combined contributions from plastic deformation and 

temperature increases. In order to study the role of plastic deformation on the martensite (WEL) 
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formation, the test S730-200 with the identical specimen geometry as described earlier in this section was 

repeated while plastic deformation was applied simultaneously. The temperature of 730 °C was chosen 

because martensite with comparable morphology and hardness range to rail WEL was identified after 

fast heating and quenching tests. In the wheel/rail interaction, both compressive and shear stresses are 

expected but it is impossible to apply them simultaneously with the Gleeble thermo-mechanical 

simulator. Moreover, an accurate control of shear stress can be very challenging due to the possibility 

of sample slippage during the test. On the other hand, controlling compressive stress can be more 

accurate and a quantitative insight into the consequence of plastic deformation on the final simulated 

WEL can be obtained. From the finite element method output for the loading condition of the studied 

rail piece, a representative plastic strain of 0.3 % is used. The loading and the heating stop 

simultaneously upon reaching 730 °C, with a heating rate of 200 °C/s. In the subsequent section, the 

specimen tested with simultaneous heating and deformation will be noted as S730-200-s. 

The microstructures in both laboratory simulated samples and rail samples were characterized by 

microhardness tests, optical microscopy (OM) and scanning electron microscopy (SEM). After each 

heat treatment cycle, the specimens were cut transversely at the position where thermocouples were 

welded, see the inset in Fig. 5.1(a). The specimens for metallographic studies were prepared following 

the routine preparation procedure. A 2 vol% Nital etchant was used to reveal the microstructures. The 

microhardness was measured with a Durascan 70 (Struers) hardness tester, using a load of 1 N for 10 s. 

The microstructures were first characterized with an Olympus BX60M optical microscope. The samples 

were further analyzed with a Jeol 6500F SEM. 

Electron Backscatter Diffraction (EBSD) measurements were done on the rail specimen containing 

WEL. Specimen S730-200 was also analyzed by EBSD for comparison. The sample preparation procedure 

reported in [11] was used in the study. The EBSD measurements were carried out in a FEI Quanta-450 

SEM equipped with a field emission gun (FEG) and Hikari-Pro, EBSD detector. EDAX-TSL OIM Data 

Collections v.6.2 was used for data acquisition. All measurements were performed with accelerating 

voltage of 20 kV, FEI-spot size of 5, a 40 µm final aperture, step size of 50 nm and a hexagonal scan 

grid mode. With these settings, ~90% of the orientation data points were correctly indexed with 

confidence index higher than 0.06. The orientation data were analyzed by means of TSL OIM Data 

analysis v. 7 without additional post-processing (cleaning) and the grains were defined as regions 

containing minimum 4 pixels with an internal misorientation less than 5°.  

 In order to provide the thermodynamic basis for the design of heat treatments and for the interpretation 

of the obtained results, the equilibrium quasi-binary iron-carbon phase diagram was calculated by 

Thermo-Calc® Windows (TCW™), version S. According to Ref [13], the peak normal pressure during 

wheel/rail contact in the new profile rail can reach 1.8 GPa, which affects the phase diagram [14]. In 

this work, the hydrostatic pressure of 1.8 GPa was used and its effect on the equilibrium phase diagram 

was evaluated using Thermo-Calc. 
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5.3. Results 

5.3.1. Iron-carbon phase calculations 

The calculated equilibrium quasi-binary iron-carbon (Fe-C) phase diagram under atmospheric pressure 

is shown in Fig. 5.2(a) and the one calculated under hydrostatic pressure of 1.8 GPa is shown in Fig. 

5.2(b). The vertical dashed lines in both figures indicate the carbon concentration of the studied rail steel 

of 0.67 wt% C. In the equilibrium Fe-C phase diagram under atmospheric pressure for the present 

composition in Fig. 5.2(a), the minimum temperature for austenite to form, Ae1, is 700 °C and 

temperature for full austenitization, Ae3, is 722°C. Comparing with the classical pure Fe-C phase 

diagram, a three-phase zone, consisting of ferrite (α), cementite (θ) and austenite (γ), is recognized. The 

temperatures for the lower limit and the upper limit of the three-phase zone are the Ae1 and 716 °C 

respectively.   

 

 

Fig. 5.2 Equilibrium quasi-binary iron-carbon phase diagram: (a) under atmospheric pressure, (b) 

under hydrostatic pressure of 1.8 GPa 

 

The Fe-C phase diagram in Fig. 5.2(b), with a hydrostatic pressure of 1.8 GPa, is different from the one 

calculated under atmospheric pressure in Fig. 5.2(a). The most obvious difference is the shift of eutectoid 

carbon concentration from 0.71 wt% in Fig. 5.2(a) to 0.48 wt% in Fig. 5.2(b). The Ae1 temperature is 

670 °C and Ae3 is 777 °C. Comparing with the diagram for atmospheric pressure in Fig. 5.2(a), the 

highest temperature for cementite to remain stable changes from 716 °C in Fig. 5.2(a) to 777 °C in Fig. 

5.2(b) for the present composition. The shift in the eutectoid composition indicates that if hydrostatic 

pressure during wheel/rail contact is high enough, the rail composition shifted from (near) eutectoid to 

hypereutectoid and cementite will be stable in a wider temperature range under high hydrostatic pressure. 
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5.3.2. Microstructures of simulated WEL and the rail WEL 

Fig. 5.3(a) shows an optical image of the rail WEL. The specimen was cut cross-sectional so that the 

trains traveled perpendicular to the observed plane. After etching with 2 % Nital, rail WEL is revealed 

as featureless white islands, separated by distinct boundaries from the brownish etched pearlite matrix. 

Some pearlite colonies are also etched white but can be identified by hardness measurements. The 

average thickness of the rail WEL is ~ 25 µm and the microhardness varies between 725 HV and 1050 

HV. Immediately beneath the rail WEL, pearlite colonies appear intact and no flattening is recognized. 

The microhardness measurements in the pearlitic area under the rail WEL are close to the measurements 

in the original rail center, indicating the absence of work hardening.  

Fig. 5.3(b) shows the microstructures, with mixed white and brown contrast under light reflection, in 

specimen S730-020. The hardness of the brown region is ~290 HV, which is equivalent to the measured 

hardness of the central pearlite area in the studied rail section. The white area in Fig. 5.3(b) appears 

featureless for magnification up to 1000 x and is much harder, 670-810 HV, than the brown pearlitic 

area. The hardness of the white zone compares well with the hardness of martensite with the carbon 

content of ~0.67 wt% for the studied rail [8]. Accordingly, the hard white phase is considered to be 

martensite. In addition, within the white martensite blocks, some brownish regions can be observed, as 

indicated by arrows in Fig. 5.3(b). These regions are also identified as pearlite using SEM at higher 

magnification, see for example Fig. 5.4(c). Martensite formed in the other specimens, e.g. S780-020 in Fig. 

5.3(c) or S930-020 in Fig. 5.3(d), appears grey and is unlike the white martensite in Fig. 5.3(b). The mixed 

microstructure of martensite and pearlite is formed for austenitizing temperatures up to 830 °C, with 

reducing fraction of untransformed pearlite. Microstructures of samples S880-020 and S930-020 are similar 

and one example of the microstructure of the sample S930-020 is shown in Fig. 5.3(d). A single phase is 

observed, which is identified as martensite by means of hardness. Part of the martensite formed at these 

temperatures seems to have a needle-like shape. The grey particles in Fig. 5.3(d) are MnS inclusions, 

see our previous work [12]. Similar microstructures are observed in samples heated with 200 ºC/s. The 

fraction of martensite, formed at temperatures of 730 °C – 830 °C with the heating rate of 200 °C/s, is 

lower than those formed at the heating rate of 20 °C/s.  

Both the lab simulated and field rail specimens were characterized by SEM. Fig. 5.4(a) shows the SEM 

micrograph of an area inside the rail WEL and at a micrograph taken at WEL/pearlite boundary is shown 

in Fig. 5.4(b).  Two types of lamellar features in the rail WEL can be observed: (i) the lamellar with 

multidirectional morphology, Fig. 5.4(a); (ii) line lamellar with aligned features, as indicated by arrows 

in Fig. 5.4(b). The aligned morphology is more obvious in areas close to the rail WEL/matrix boundary 

in Fig. 5.4(b). Across the boundary, connections between cementite lamellae in pearlite and the aligned 

lamellae in the rail WEL are observed. Thus, the aligned lamellae in the WEL in Fig. 5.4(b) probably 

correspond to the previous locations of cementite. The distance between the aligned lamellae in rail 

WEL is similar to the cementite interlamellar distance in the adjacent pearlite. Occasionally, small 

isolated pearlite islands can be observed within the WEL, indicated by the open rectangle in Fig. 5.4(b). 
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Fig. 5.3 Optical micrographs of: (a) rail WEL, and laboratory simulated specimen (b) S730-020, (c) S780-

020 and (d) S930-020. The arrows in (b) and (c) show untransformed pearlite within the martensite blocks. 

 

Similar lamellar features are also observed in the laboratory formed WEL. Fig. 5.4(c) and (d) show SEM 

micrographs of laboratory specimen S730-020. The dark grey zones in Fig. 5.4(c) and (d) are the martensite 

with no typical needle shape, as expected for a carbon concentration of 0.67 wt% in the studied rail steel. 

The similar lamellar features in Fig. 5.4(a) and (b) is recognized in Fig. 5.4(c) and (d), in the laboratory 

specimen S730-020. The aligned line lamellae in the martensite in Fig. 5.4(d) also appear to continue from 

the adjacent lamellar cementite in the pearlite matrix. The distance of aligned line morphology in the 

martensite appears the same as the adjacent cementite. Some untransformed pearlite within martensite 

block, corresponding to the brownish areas in the white martensite block in Fig. 5.3(b), is recognized in 

Fig. 5.4(c). It is observed that the martensite formed in specimens heated to 780 ˚C and higher 

temperatures has the lath-like morphology and is significantly different from the rail WEL. As a result, 

the microstructures in specimens heated to 780 ˚C and higher temperatures will not be shown and 

discussed. 



 
 

73 

 

  

  

   

Fig. 5.4 SEM micrographs showing: (a) lamellar morphology in the rail WEL, (b) the aligned line 

feature at the rail WEL/pearlite boundaries, (c) lamellar morphology and (d) line feature in laboratory 

specimen S730-020. The dashed line in (b) decorates the rail WEL/pearlite boundary and the arrows in 

(b) and (d) indicate the continuation from cementite lamellar in pearlite to line feature in rail WEL and 

laboratory WEL. Note the difference of scales. 

 

The microstructure in the S730-200-s is similar to specimen S730-200, namely with mixed featureless 

martensite and brown pearlite in the optical microscopy and lamellar traces within the as-formed 

martensite. The difference between the S730-200 and the S730-200-s is that the fraction of martensite differs. 

In the S730-200, the fraction of the white featureless blocks is 12% while in S730-200-s the fraction increases 

up to 56%. The hardness of martensite in S730-200-s is 910-930 HV and is higher than that of the martensite 

in the S730-200, with a hardness of 670-810 HV. 

Figs. 5.5(a) and (b) show SEM micrographs of the pearlite before the thermo-mechanical test and the 

microstructure in the S730-200-s. Spheroidized cementite is observed in both figures. A further 

quantification of the fractions of the cementite spheroids from 10 randomly selected areas identifies 19 
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± 6% spheroidized cementite in the untested specimen while the fraction increases to 40 ± 30% in S730-

200-s, corresponding to a 20% increase in the average fraction of cementite spheroids. The increased 

fraction of cementite spheroids can be due to cementite fragmentation during plastic deformation during 

the test.  

  

Fig. 5.5 SEM micrographs: (a) pearlite in the specimen before thermo-mechanical tests; (b) the 

microstructure in the S730-200-s. 

 

Fig. 5.6(a) and (b) show the SEM images of the rail WEL and simulated WEL in specimen S730-200 

respectively. The dashed lines in Fig. 5.6(a) schematically indicate the WEL/pearlite boundaries. Fig. 

5.6(b) and (c) are grey scale image quality (IQ) maps, imposed by the map of austenite phase, in red, of 

Figs. 5.6(a) and (b) respectively. Both WELs show a lower IQ than the pearlite matrix in the IQ maps, 

probably due to the dislocation density in the WELs. The white lines in Fig. 5.6(c) delineate the 

axis/angle rotation of 90° < 1 1 2 >, representing the Kurdjumov-Sachs (K-S) orientations between 

martensite and austenite. The match of K-S orientation between austenite and ferrite, in Fig. 5.6(c), 

strongly supports the martensitic nature of the rail WEL. Austenite is also identified in the laboratory 

WEL in Fig. 5.6(d).  

The size distribution of the grains in the rail WEL and the laboratory simulated WEL in specimen S730-

200 is shown in Fig. 5.6(e). To build this plot, only the WELs are cropped and the pearlitic zones are 

discarded for the quantitative comparison. It can be seen that the grain size range in the rail WEL and 

the laboratory WEL in S730-200 is comparable. There are higher fractions of grains smaller than 300 nm 

in the rail WEL than in S730-200, Fig. 5.6(e). This is probably due to the grain refinement in the rail WEL 

by the deformation exerted by the passing trains. It should be noticed that the maximum grain diameter 

in rail WEL, 3.6 µm, is also larger than that in the simulated WEL in S700-200, 1.7 µm. The average grain 

size measured in the rail WEL, Fig.5. 6(c), is 272 nm whereas the average grain size of the laboratory 

WEL in Fig. 5.6(d) is 269 nm.   

Kernel average orientation (KAM) maps are often used to evaluate the strain distribution and they link 

the local lattice distortion measured via EBSD to the dislocation density in the material [14]. The KAM 
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plot of the rail WEL and the laboratory WEL is shown in Fig. 5.6(f). The analysis shows that the 

martensitic structure formed in the rail WEL has higher KAM than the one formed via lab simulation. 

This observation is logically consistent with the fact that the martensite in the WEL in rails is formed in 

the conditions of severe local deformation. Such conditions do not exist during the lab simulations of 

WEL.  
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Fig. 5.6(a) SEM micrograph of rail WEL. The blue lines indicate the WEL/pearlite boundary; (b) The 

SEM micrograph of the simulate WEL in sample S730-200; (c) The IQ map of rail WEL in (a), imposed 

with austenite phase map. The phase boundaries satisfying the K-S orientation relationship are 

delineated by the white lines; (d) The IQ map of laboratory WEL of specimen S730-200 in (b), imposed 

with austenite phase map; (e) Grain diameter distribution of both rail WEL and laboratory WEL in 

S730-200; (f) KAM distribution of both rail WEL and laboratory WEL in S730-200 

 

5.4. Discussion  

   5.4.1. Comparison to the literature on rail WELs 

A comparison of the characteristics of the studied rail WEL with WELs in literature will be first made. 

Due to the widely reported nanometer scale microstructure of WEL in rails, high-resolution techniques 

are usually required, such as using TEM or synchrotron XRD as summarized in Table 1. For example, 

lattice tetragonality detected by synchrotron XRD is convincing evidence for the martensite nature of 

the WEL, e.g. [8,9]. In some cases, micromechanical property measurements, e.g. by hardness tests, can 

be useful in differentiating WELs formed by different mechanisms. For example, the nanocrystalline 

ferrite rail WEL is commonly reported to be accompanied by the following features in the adjacent 

pearlite [10,11]: (i) a transient work-hardened pearlite zone beneath the WEL, (ii) an obvious reduction 

of the interlamellar cementite distance in the work-hardened pearlite zone. Consequently, observations 

of the absence of work-hardened zone and the cementite lamellae thinning in the pearlite matrix, e.g. 

[7], can be a strong indication of WEL not being formed by severe plastic deformation. Consequently, 

the studied rail WEL is most probably martensite due to the observation of: (i) the almost intact pearlite 

colonies immediately beneath WEL in the rail sample, Fig. 5.3(a), and the absence of work-hardened 

pearlite area beneath WEL; (ii) the almost unchanged interlamellar distance within the WEL, compared 

with the one in the connecting matrix, c.f. Fig. 5.4(b); (iii) the identification of retained austenite in the 

rail WEL in Fig. 5.6(c). 

The laboratory simulated WEL consists of martensite with a similar morphology as observed in the 

studied rail WEL, see Figs. 5.4(a) - (d). The hardness of the simulated WEL, corresponding to Figs. 
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5.4(c) and (d), is 670-810 HV. This is in general a bit lower than the measurements in the rail WEL, 

725-1050 HV. However, the current laboratory tests represent only one phase transformation cycle. Five 

repeated heat treatment cycles have been done to specimen S730-200 and the hardness increases to 700 - 

850 HV. Repeated fast heat treatments form a well-known procedure for producing finer martensite, 

thus higher hardness, c.f. [15]. Accordingly, martensite with equivalent hardness as the rail WEL might 

be produced after multiple wheel passages. In addition, the well-controlled heat treatment also allows 

relating the quantitative microstructure analysis to the exact heat treatment. The microstructural 

quantification from the experimental simulation can be used to clarify rail WEL formation due to 

increased temperature, in the condition where the heating rate is much higher than the current laboratory 

work.  

The temperature change during wheel/rail contact plays an important role in arguing the WEL formation 

mechanisms. For example, Newcomb [10] characterized the WEL to be fully martensitic. However, the 

martensite transformation theory is not supported by the temperature rise calculations. As an alternative, 

he proposes that the martensite in the WEL is a ferrite with supersaturated carbon, which is 

accommodated by dislocations generated due to plastic deformation.  

In the following sections, the temperature rise in the studied rail will be estimated using finite element 

modeling (FEM). A subsequent discussion on the observed microstructures in the laboratory simulated 

WEL and the rail WEL will also be made. 

  5.4.2. Estimation of temperature rise using FE method 

When wheels are running on rails, frictional heat is generated at the wheel/rail contact interfaces, causing 

a temperature rise in the materials. The thermo-mechanical behavior of the wheel-rail contact has been 

widely studied in the literature, see e.g. [16,17]. The problem of the temperature rise in the wheel-rail 

system has recently been investigated, using a coupled thermal-mechanical analysis [18]. With the finite 

element (FE) tool developed in [18], the frictional heat generated during rolling contact and the resulting 

temperature rise in the materials can be calculated.  

 

 

Fig. 5.7 The wheel-rail contact model for calculating temperature rise due to frictional heat 
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The model developed by Naemi in ref. [19] is used for the current calculation and is shown in Fig. 5.7. 

The model consists of a single train wheel with a diameter of 0.92 m and a rail track with a total length 

of 20.54 m. The wheel and rail materials are assumed to behave elastically and they are meshed with 8-

node solid elements. To achieve high accuracy with reasonable computing time, a non-uniform mesh is 

applied with the finest element size of 0.3×0.3 mm2 in the solution zone and areas far away from the 

solution zone is meshed with size up to 7.5 cm. At the beginning of the simulations, the materials are 

uniformly at the ambient temperature and the thermo-mechanical stresses are zero. The magnitudes of 

the stresses and the temperature at a material point at the contact interface ascend when the wheel 

approaches it. Four points were selected at the nodes shown in Fig. 5.7 for the temperature output. Using 

the parameters listed in Table 2, a wheel with a typical velocity of 140 km/h of the Dutch trains rolling 

along a straight rail was considered with a longitudinal creepage of 3.6%. This corresponds to a slip 

velocity of 5 km/h. A high friction coefficient of 0.6 was used and the ambient temperature was set to 

25 °C. This choice is made, since a higher friction induces greater heat generation at the contact interface, 

leading to a more critical state. A higher magnitude of creepage can also lead to a higher temperature 

rise. It is in practice, however, unlikely to have very high creepage in the presence of a high friction 

coefficient. With a creepage of 3.6% and a friction coefficient of 0.6, the contact was around the point 

of full slip, i.e. loss of adhesion area in the contact patch, while the wheel was rolling. This is thus indeed 

a critical situation.  According to [9], this status of the friction and creepage was roughly estimated to 

generate a flash temperature of around 700 °C.  

The temperature evolution with time in the rail surface was calculated and shown for the four nodes, 

Fig. 5.8(a), and their average, Fig. 5.8(b). The nodes were in the middle of the running band, where 

maximum temperature rise is expected. The temperature increases abruptly when the wheel arrives at 

the nodes. The peak temperature is obtained, when the nodes are in the rear part of the contact. When 

the wheel leaves the nodes, they rapidly cool down.  

 

Table 5.2 Parameters used in the thermo-mechanical FE model for typical critical Dutch-operation conditions 

Symbol (units) Description Values 

V (km/h) Wheel forward velocity 140 

S (%) Creepage  3.6 

Vs  (km/h) Slip velocity 5.0 

F Coefficient of friction 0.6 

E (GPa) Young’s modulus  210 

υ Poisson’s ratio  0.3 

κ (m2/s) Thermal diffusivity 1.518x10-5 

λ (W/°Cm) Thermal conductivity 50 

ρ (kg/m3) Density 7850 

c (J/kg/°C) Specific heat capacity 419.5 

N (kN) Normal load 134 

Mw (kg) Wheel weight 900 

Rw (m) Wheel radius 0.46 

T0 (°C) Ambient temperature 25 
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Fig. 5.8 (a) The temperature evolution with time in the rail surface of the four nodes in Fig.5. 7; (b) 

The average temperature variation with time of the four nodes.   

 

The highest temperature occurring at node 1 is 730 °C. This temperature is higher than both the Ae1 for 

steel under atmosphere pressure, which is 700 °C (cf. Fig. 5.2(a)) and the Ae1 of steel under hydrostatic 

pressure of 1.8 GPa, which is 670 °C (cf. Fig. 5.2(b)). The average maximum temperature of the four 

nodes is 670 °C. It is 30°C lower than the Ae1 for steel under atmospheric pressure (700 °C), but it is 

the same as Ae1 of steel under hydrostatic pressure of 1.8 GPa (670 °C). Hence, it is possible that the 

heat generation in the wheel/rail contact increases the rail surface temperature above the critical one for 

austenite formation.  

Using the data plotted in Fig. 5.8(b), one can estimate the average heating and cooling rate in the rail 

during wheel passage. The average heating rate is estimated to be 1.5×106 °C/s. The cooling rate between 

700 °C and 400 °C, which is the temperature zone for pearlite and bainite formation, is estimated to be 

1.7×106 °C/s. This cooling rate should be sufficient to prohibit the formation of pearlite or bainite. The 

cooling rate between 300 °C and 46 °C, within which martensite transformation is expected for the 

studied rail composition, is around 3.9×104 °C/s. Martensite can then form when the surface is cooled 

to the ambient temperature.  

It needs to be emphasized that a high frictional coefficient, 0.6, is needed in the FE modeling, in order 

to reach the required austenitization temperatures for the pearlite to austenite transformation to occur 

during the wheel/rail contact. Such high frictional coefficient corresponds to quite extreme operation 

conditions such as during train brake/acceleration. In addition, other sources, which are not considered 

in the FE modeling in this chapter, can lead to a similar temperature increase as well. For example, the 

presence of contaminations on the rail track, such as water, fallen leaves and etc. is a typical problem in 

Dutch railway network [20]. Accordingly, very slippery films can form on the rail surface and can 

subsequently lead to the wheel spinning on the rail track. Such wheel spinning can further 1) introduce 

a significant temperature increase at rail surface, which can even be high enough to cause local melt on 
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the rail surface [20]; 2) lead to the occurrence of the local flattening on wheel perimeters, the so-called 

wheel flat [21]. A substantial increase in the friction coefficient due to the presence of wheel flat can 

arise and can lead to the extensive temperature increases both on rail and wheel surfaces. Finally, the 

microstructure characterizations in Chapter 4 form a strong indication of such significant temperature 

increases at the rail surface.  

5.4.3. Thermodynamic interpretation 

The observed microstructures in the laboratory specimens can be interpreted from thermodynamic and 

kinetic theories. As discussed in the previous section, a mixture of martensite and pearlite is identified 

in laboratory specimens S730-020 till S830-020, using hardness measurements and SEM. This means that the 

initial pearlite has partially transformed to austenite and martensite forms because of the subsequent 

quenching during the laboratory experiments. When a specimen was heated to a temperature of 880 °C 

and higher, cementite was not observed and a possible single martensite is detected by hardness 

measurements, Fig. 5.3(d). Comparing with the calculated Fe-C phase diagram in Fig. 5.2(a), the 

specimens with mixed martensite and pearlite microstructure must have been heated to the temperatures 

within the three-phase region in Fig. 5.2(a). For temperatures above the three-phase region, no cementite 

is expected.  

The theory of phase transformation kinetics should be applied in the interpretation. The changes of the 

upper limit temperature can be the result of a local non-equilibrium condition due to the fast heating 

[22]. The equilibrium carbon concentration in austenite formed in the three-phase region is calculated 

with Thermo-Calc to be nearly constant at 0.69 wt%. As a result, carbon partitioning is needed for 

austenite to form, through a diffusional process. Carbon diffusion from cementite to the austenite/ferrite 

phase front is required for austenite to grow. The increasing heating rate shortens the diffusion time, 

thus the diffusion distance, of carbon in austenite for the same austenitizing temperature. As a result, the 

complete transformation of cementite to austenite will be delayed, leading to the observation of lamellae 

or the line traces in martensite, c.f. Fig. 5.4(d). This also matches well with the observed smaller fraction 

of martensite formed in heat treatment with the higher heating rate. 

Similar arguments can also be used to interpret the observed microstructure of the studied rail WEL. As 

discussed in the previous sections, the studied rail WEL is probably martensite on the basis of 

comparison with the literature and comparison with the laboratory simulate WEL. The temperature 

calculations also support the WEL formation through martensite phase transformation in the studied 

rails. As a result, the rail WEL forms most probably due to phase transformation and the interpretation 

for the observed microstructure in the laboratory specimens can also be used for the observations in rail 

WEL. 

 For the diffusional transformation of pearlite to austenite, the diffusion of alloying elements in austenite 

determines the growth kinetics of austenite. Therefore, an estimation of the diffusion distance of alloying 

elements will be made. According to the current FEM simulation, the rail surface is unlikely to be heated 
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up to 900 °C or higher, below which the diffusivity of manganese and silicon in the austenite is low [23]. 

Therefore, only carbon diffusion will be evaluated and only the diffusion distance of carbon in the 

austenite will be estimated. The diffusivity, D, of carbon in austenite is expressed as:  

𝐷 = 𝐷0 × exp(−
𝑄

𝑅𝑇
)
,                                       (1) 

where D0 = 0.234×10-4 m2/s, is the pre-coefficient, Q = 147.81 kJ/mol is the activation energy, R is the 

gas constant, T is the temperature at which the interstitial element diffuses [24]. 

The average diffusion distance, L, is then approximated by 

𝐿 = √𝐷𝑡    ,                                       (2) 

 

where t is the diffusion time within the austenitizing temperature zone which is calculated by: 

𝑡 =
(𝑇−𝑇𝐴𝑒1)

𝑣
               (3) 

where TAe1 is the Ae1 temperature and ν is the heating rate.  

It has been shown that the hydrostatic pressure of 1.8 GPa leads to a reduction of 30 °C in Ae1 , from the 

one calculated at atmospheric pressure. The equilibrium Ae1 of atmospheric pressure will be used for 

calculating the diffusing time, t. Since carbon can diffuse into ferrite from the two neighboring cementite 

plates for a lamellar pearlite microstructure the maximum diffusion distance for the carbon from 

cementite to ferrite then equals half the cementite interlamellar distance, namely 75 nm. Using equation 

(1) – (3), a maximum temperature of 1034 °C is required for carbon to diffuse for such distance in one 

single heating cycle using the heating rate of 1.7×106 °C/s, estimated from previous FEM simulation. 

This temperature is much higher than the calculated temperature in Figs. 5.8(a) and (b). At lower 

temperature, the diffusivity D and diffusion t reduce, leading to shorter diffusion distance. It is thus can 

be speculated that multiple cycles will be needed for the pearlite to be fully austenitized. 

The hydrostatic pressure of 1.8 GPa also leads to a shift of the eutectoid point, from 0.7 wt% C under 

atmospheric pressure to 0.48 wt% C, cf. Figs. 5.2(a) and (b). This means that during the wheel/rail 

contact, the rail composition will become hypereutectoid if the generated hydrostatic pressure is high 

enough. This will cause the cementite to be stable at higher temperatures than for a hypo-eutectoid 

composition. After load release, the rail composition returns to be hypo-eutectoid and the microstructure 

is expected to consist of martensite and cementite. As a consequence, detection of cementite in the 

martensite WEL, c.f. [8], can be either due to the shift of eutectoid point due to the external load or due 

to the pearlite being heated to the three-phase region in the phase diagram in Fig. 5.2(a). 

It is shown in this study that WEL formation through martensite phase transformation is supported by 

laboratory simulations, numerical temperature simulations and thermodynamic calculations. The 

additional contribution from the simultaneous deformation during heating is to promote the formation 

of austenite, which subsequently transforms to martensite. In addition, the martensite formed from 

combined deformation and heating is also harder than that formed only by heating. The causes for the 

promoted austenite formation due to combined deformation and heating can be: (i) cementite lamellae 
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breakage, which increases the surface area of cementite and provides extra sites for austenite nucleation; 

(ii) generation of dislocations, which enhances the carbon diffusion and consequently facilitates the 

austenite growth.   

 

5.5. Conclusions  

 
 Martensitic WEL is simulated in the laboratory by fast-heating treatments, using heating rates of 20 

ºC/s and 200 ºC/s. Characteristics of the transformed martensite are analyzed by microhardness, optical 

microscopy, scanning electron microscopy and electron backscatter diffraction. Microstructures of WEL 

from the studied rail surface are also investigated and compared with the microstructures of simulated 

martensite. The main results can be summarized as follows: 

1. Rail WEL is martensite. 

2. White etching areas form in the laboratory simulations. 

3. Mixed microstructures of martensite and pearlite are both identified in samples heated to 

temperatures of 730 °C to 830 °C. This can be interpreted by the deviation from the equilibrium 

condition in the three-phase region of ferrite, cementite and austenite in the calculated iron-

carbon phase diagram due to fast heating rates.  

4. The hydrostatic pressure of 1.8 GPa leads to a 30 °C reduction in the austenite start temperature 

and a significant shift of the eutectoid carbon concentration. Due to the high external pressure 

the eutectoid carbon concentration shifts from 0.7 wt% C to 0.48 wt% C and the corresponding 

A1 temperature changes from 700 °C to 670 °C. 

5. Simultaneous deformation and heating significantly promote martensite formation in rail steels. 

6. On the basis of comparison with the observed WEL in rails and the simulated WEL and WEL 

from literature, it is shown that the investigated WEL in rail is most likely martensite. The 

observations find good support by the thermodynamic and kinetic simulations and numerical 

frictional heat simulations. 
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Chapter 6 Phase-field modeling of white 

etching layer formation in rail steels via 

thermally induced phase transformation 

 

 

 

 

 

   

 

Abstract:  

In this chapter, the pearlite – austenite transformation during (ultra-)fast heating is simulated by the 

phase-field approach to provide insight into the white etching layer formation (WEL) in rail steels. The 

ferrite and cementite lamellae in the pearlite microstructure are individually resolved and martensite is 

included to represent the process occurring during the repeated wheel passages. The insight into the 

WEL formation was obtained by studying the pearlite to austenite transformation with heating rates of 

10 °C/s and 2000 °C /s. It is concluded that pearlite to austenite transformation occurring during WEL 

formation is most probably an interface-controlled process, related to the extremely high heating rate. 

The carbon concentration and the corresponding mechanical properties of martensite in a single WEL 

block can be significantly heterogeneous, depending on the heating rate during the wheel passages.  
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6.1. Introduction 

 
As discussed in chapters 4 and 5, the white etching layer (WEL) in the studied Dutch R260Mn grade 

rail steel forms predominantly via the pearlite to austenite transformation and the subsequent martensitic 

transformation. This conclusion is consistent with microstructure characterizations of WELs in rail 

steels in the literature, e.g. [1,2]. Moreover, a similar white color martensite layer forms in the rail’s 

counterpart wheel steels [3,4], which have a similar pearlitic type microstructure as rail steels. The high 

temperature required for such transformation to take place is due to frictional heat during the wheel/rail 

contact, e.g. more than 700 °C, and has been shown to be conceivable from numerical simulations [5]. 

As a result, thermal induced phase transformation is concluded to be the dominant mechanism for the 

WEL formation. 

The formation of martensite mainly introduces the following detrimental effects to the rail lifetime: (i) 

The martensite in the WEL is much harder, typically 2 – 3 times, than the matrix pearlite microstructure. 

The martensite in the WEL can thus lead to premature brittle fracture during the in-track service or can 

cause extensive plastic deformation of surrounding pearlite at the WEL edges [6]. The pearlite 

corresponding to the latter locations can accumulate more plastic strain and consequently lead to the 

premature crack formation, comparing with pearlite areas without the presence of WEL. The above facts 

can contribute, partially or fully, to rolling contact fatigue (RCF) damage initiation at the WEL, e.g. [7–

9]. (ii) The austenite to martensite phase transformation introduces residual tensile stress on the rail 

(sub)surface, which will facilitate the propagation of the initiated cracks at the WEL and the adjacent 

pearlite [10,11]. As a result, the formed RCF cracks can grow quickly towards the rail center, 

necessitating increasing maintenance frequency or more extensive rail material removal [9]. The latter 

can lead to earlier rail replacement. Therefore, it will be of economic and safety importance to 

reduce/eliminate WEL formation in rail steels. This requires a profound understanding of mechanisms 

and the dominant characteristics of WEL formation. 

WEL is typically observed in rail steels after a certain service period. This indicates that multiple train 

passages, i.e. phase transformation cycles, are necessary for the WEL to grow to the dimension which 

can be resolved by the laboratory facilities. The virgin pearlite microstructure first transforms to 

austenite, when the rail surface is heated above the starting temperature for austenite to form, i.e. the A1 

temperature. The austenitization procedure is generally accepted as a diffusional process and requires 

carbon redistribution between the parent ferrite, cementite and the product austenite phases. Such a 

procedure is time and temperature dependent [12,13]. The formed austenite tends to transform to 

martensite after the train wheel leaves the heated rail portion and WEL forms, due to the high cooling 

rate [14]. Whether austenite fully transforms to martensite depends on its chemical composition, since 

retained austenite can be present in the WEL [5,15]. 

However, the pearlite-austenite-martensite phase transformations for the WEL formation in rail steels 

can be extremely complex, due to the complicated cyclic thermal and stress conditions imposed by the 



 
 

87 

 

passing wheels. The wheel/rail contact conditions can affect the WEL formation mainly via the 

following aspects: (i) The extremely short contact time during one single wheel passage, especially for 

the diffusional pearlite to austenite transformation. A single wheel/rail contact is estimated to be 

typically on the order of 10-4 – 10-3 seconds [1,5]. Such short contact duration indicates the limited time 

for the alloying elements, mainly carbon [12], to diffuse and redistribute between the austenite and 

pearlite, for the austenite to grow. As a result, the pearlite to austenite transformation can be incomplete 

and the carbon concentration in the austenite can be heterogeneous, depending on the temperature and 

time reached in rail surface; (ii) The strongly varying temperatures reached, even at a single rail surface 

position, due to the dynamic wheel/rail contact. The variations in the temperatures can affect the 

completeness of pearlite to austenite formation [12]; (iii) The varying hydrostatic pressure from the 

running trains. The hydrostatic pressure can change the equilibrium, e.g. iron-carbon, state of the 

material. An estimation using the Thermo-Calc® software shows that hydrostatic pressure of 1.8 GPa 

only slightly lowers the critical austenitization temperature for the steel composition of the R260 Mn 

grade rail steel in [5], namely from 700 °C to 670 °C. A more significant consequence, due to such high 

hydrostatic pressure, in changing the eutectoid carbon concentration is instead predicted, i.e. from 0.7 

wt% to 0.48 wt%; (iv) Deformation-induced crystal defects. Besides the temperature increase, plastic 

deformation can also occur in the rail steel. The dislocations generated due to the plastic deformation 

can: (1) increase the free energy state of the ferrite and thus facilitate ferrite to austenite transformation; 

(2) enhance the carbon diffusion from cementite to ferrite. An increase in the grain boundary area, due 

to grain refinement by the possible recrystallization, offers extra sites for austenite to nucleate.  

The formed austenite tends to transform to martensite, i.e. the WEL, during the quenching, and the 

carbon concentration in the austenite will be inherited by the product martensite via the diffusionless 

transformation mechanism [14]. The local mechanical properties of the WEL are related to the carbon 

concentration in the previous austenite. As a result, the details of the austenitization are directly 

influencing the WEL formation and the final characteristics of the WEL.  

The pearlite to austenite transformation can be modeled by phase field modeling (PFM). There are 

numerous studies on PFM about the diffusional solid-solid phase transformation process in steels, see 

for example the review by Militzer et al. [16]. The most common examples are the simulations of 

austenite to ferrite transformation during continuous cooling [17–19]. There are, in the meantime, 

examples of the reverse ferrite/pearlite to austenite transformations [12,20]. For example, Savran [12] 

studied the austenitization process from a pearlitic type microstructure in a commercial steel by PFM, 

during continuous heating and isothermal treatments. Azizi-Alizamini [21] simulated austenite 

formation from pearlitic microstructures with an ultra-fine grain (UFG) structure of a Fe-C system. They 

both reach a good match between the simulated microstructure and the experimental observations. In 

addition, they have been able to identify detailed characteristics of the transformations, e.g. the different 

transformation kinetics of ferrite and cementite to austenite. 
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Additionally, (semi-) quantitative insight into WEL formation via martensite phase transformation is 

possible by using the PFM. The austenite to martensite transformation, i.e. the formation of WEL, is 

diffusionless and the martensite can be considered to inherit the compositional features of the parent 

austenite [14]. As a result, insight into the characteristics during austenite formation is considered to be 

crucial for martensite formation, indicating the suitable application of the PFM for the purpose. In this 

chapter, the WEL formation via austenite and martensite phase transformation was studied by PFM. 

Due to the above discussed complex conditions for the WEL formation in rails, it can be expected that 

it will be difficult to reproduce the WEL formation procedure in all detail. Instead, the current 

simulations aim to provide semi-quantitative insight into the WEL formation, during ultra-fast heating 

conditions. Based on the simulation results, possible routes to reduce the WEL occurrence in rail steels 

are discussed.  

 

6.2. Modeling concept   

6.2.1. The microstructure model 

Building a representative pearlitic microstructure model of rail steel is complex. On the one hand, a 

sufficient number of pearlite grains/colonies must be included in order to have a realistic representation. 

The pearlite grains in rails are typically tens of micrometers in diameter and a representative 

microstructure model thus should cover a dimension range of 10-5 – 10-4 m. On the other hand, the 

pearlite consists of fine lamellae of ferrite and cementite, which are typically10-8 -10-7 m in thickness. 

The lamellae thickness depends on the steel chemistry and the thermo-mechanical production processes. 

Accordingly, a very fine mesh size is required so that the lamellae can be adequately resolved for the 

PFM calculations. Expectably, a significant calculation time, in addition to the requirement of large 

memory size [12], will be crucial for a large-scale modeling with a resolution that is sufficient to account 

for the lamellae. 

Pearlite has been modeled by different strategies and is adopted depending on the applications. 

Simplifying the pearlite microstructure as a single phase, to which a eutectoid carbon concentration is 

assigned, can be useful for large-scale simulations, see Savran [12]. This simplification enables a 

representatively large pearlite microstructure while without requiring very fine mesh size and the 

correspondingly extensive computing time. General agreements of austenite formation kinetics and the 

microstructure morphology are achieved. However, closer observations of austenite formation, 

especially under non-equilibrium conditions like fast heating conditions, frequently identify a cementite 

to austenite transformation lagging the ferrite to austenite transformation [12,21,22]. This aspect cannot 

be modeled by the above simplification for pearlite and the ferrite and cementite must be resolved 

separately [16].  

Alternatively, Savran et al  [12] and Militzer et al. [23] performed separate high-resolution PFM, in 

which ferrite and cementite lamellae are treated individually. In their simulations, a significantly refined 
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microstructure domain, typically 104 – 105 nm2, is used, for a sufficient insight into the transformation 

characteristics of individual phases without extensive computing time. In addition, a very small grid size 

is used to sufficiently resolve the fine lamellae in the pearlite, e.g. 23 nm comparing with 330 nm for 

the large-scale simulations, both in [12]. Moreover, the pearlite to austenite transformation kinetics can 

be semi-quantitatively represented, despite the small simulation scale. In the present study, the pearlite 

microstructure in the R260 Mn grade rail steel is built by following the high-resolution PFM modeling 

of Savran in [12]. However, a much higher heating rate is used in the current simulation, relating to the 

actual situation during train passage.           

The 2D microstructure model in Fig. 6.1 is used for the simulations in the current study. The primary 

focus of this study is the characteristics of chemical composition evolution in the austenite phase during 

the pearlite to austenite transformation. In addition, the carbon diffusion path in a microstructure with a 

planar lamellar morphology can be assumed to be isotropic, justifying the simplifications in this study. 

As a result, the 2D microstructure in Fig. 6.1 is considered to be suited to represent the realistic 3D 

microstructure in the studied rail steel.  

The alternating gray ferrite lamellae and the white cementite lamellae, in two adjacent pearlite colonies, 

represent the observed lamellar pearlite microstructure in the studied R260Mn grade rail steel. The 

small-scale microstructure in Fig. 6.1 can be used to represent the local microstructures along the rail 

depth. The characteristics of phase transformation along rail depth, due to varying temperature caused 

by the passing wheels, can be studied by subjecting the microstructure model in Fig. 6.1 to different 

temperature cycles.  

The phase and grain boundaries are represented by the dark lines in Fig. 6.1. In order to sufficiently 

resolve the fine cementite, a small grid of 20 nm is used and the cementite width is assigned to be ten 

grid points, i.e. 200 nm. The interface thickness is 4 times the grid size. 

 

 

Fig. 6.1: The microstructure model used to represent the initial full pearlite in the R260 Mn grade rail 

steel. The gray component is α-ferrite and white is θ-cementite. The dark lines are the grain/phase 

boundaries. 
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6.2.2. Phase field model concept 

The phase field simulations in the current study were done with the multi-phase-field software 

MICRESS®, which is based on the work of Steinbach et al. [24]. The phase transformation kinetics is 

described by a phase field parameter, ∅𝑖 (i=1…N) and for grain i, ∅𝑖 = 1 inside the grain, and ∅𝑖 = 0 

elsewhere. At the grain junctions, e.g. before each grain i and j, the following applies: ∅𝑖 + ∅𝑗 = 1, and 

0 < ∅𝑖 < 1, 0 < ∅𝑗 < 1. For the whole system, the relation  ∑ ∅𝑖 (𝒓, 𝒕) = 1𝑁
𝑖=1  applies everywhere, in 

which N is the total number of grains and i is the grain number, r and t are the location and time.   

The transformation kinetics is described as the change of each phase field parameter with time, since 

gradients in ∅𝑖 are only formed at the interface, changes take place only at interface according to:: 

𝑑∅𝑖

𝑑𝑡
= ∑ 𝜇𝑖𝑗 [𝜎𝑖𝑗 (∅𝑖∇2∅𝑗 − ∅𝑗∇2∅𝑖 +

𝜋2

2𝜂𝑖𝑗
2  (∅𝑖 − ∅𝑗)) +

𝜋

𝜂𝑖𝑗
 √∅𝑖∅𝑗∆𝐺𝑖𝑗]𝑗      (6.1) 

in which i and j are the grain numbers; 𝜎𝑖𝑗 is the interfacial energy; 𝜇𝑖𝑗 is the interfacial mobility; 𝜂𝑖𝑗 is 

the interface thickness; ∆𝐺𝑖𝑗 is the driving pressure.  

The interfacial mobility, 𝜇𝑖𝑗, is considered to be temperature dependent and is described as: 

𝜇𝑖𝑗 = 𝜇𝑖𝑗
0 exp (

−𝑄𝑖𝑗

𝑘𝑇
),                                                                                              (6.2) 

where Qij is the activation energy for interface motion, k is the Boltzmann constant, T is the 

temperature, 𝜇𝑖𝑗
0  is the pre-factor and can be calculated by: 

𝜇𝑖𝑗
0 =

𝑑𝑖𝑗
4 .𝑣𝐷

𝑘𝑇
,                                                                                                       (6.3) 

where  𝑣𝐷 is the Debye frequency, 𝑑𝑖𝑗 is the average interatomic distance : 

𝑑𝑖𝑗 = 0.5 ∗ (𝑉
𝑖

1

3 + 𝑉
𝑗

1

3),                                                                                    (6.4) 

where 𝑉𝑖 and 𝑉𝑗 are the atomic volumes of the crystal structure of the neighboring grains i and j. 

It is worth pointing out that the interfacial energy and the mobility are usually used as fitting parameters 

and are adjusted accordingly to match the experimental observations in different simulations [12,20,21]. 

However, the experimentally observed ‘finger-type’ microstructure during pearlite to austenite 

transformations are reported separately by simulations in the same papers [12,21], despite significantly 

different interfacial energies used. A full laboratory reproduction of the heating-quenching cycles is 

impractical, so the interfacial energies used in [12] are adopted in the current simulation for the purpose 

of a semi-quantitative insight into the process. Accordingly, Table 6.1 lists the calculated and adopted 

interfacial energies and activation energies for the current simulations. 

Table 6.1 The adopted interfacial energy and activation energy for mobility from [12], used for the 

current simulations. 

Phase interactions γ:γ γ:α γ:θ α:α α:θ θ:θ 

𝜎𝑖𝑗 (J m-2) 0.076 0.039 0.0904 0.05 0.105 0.125 

𝑄𝑖𝑗(kJ mol-1) 185 150 150 150 215 215 
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Fig. 6.2: The phase equilibria for the studied rail steel. An equilibrium pseudo-binary Fe-C diagram is 

plotted in light gray. The para -binary Fe-C diagram is shown as dark gray lines. The dark solid lines 

represent the implemented phase diagram in the phase field simulation, which is linearized from the 

phase para- binary Fe-C diagram. The horizontal dotted line indicates the reference temperature of this 

simulation at 677 °C. 

 

The driving pressure ∆𝐺𝑖𝑗  in equation 6.1 depends on the temperature of the system and the local 

composition at position r and time t. The evolution of phases’ compositions and the required phase 

diagram can be derived by combing MICRESS® with a thermodynamic database, Thermo-Calc® in this 

case. In the current study, the driving pressure for the phase transformation was calculated by using 

linearized phase diagrams. Under the fast heating conditions as occurring in rail steels, diffusion of 

alloying elements other than carbon is very limited [12]. As a result, a para-equilibrium quasi-binary 

iron-carbon phase diagram was used as the phase diagram for the simulations. The driving pressure can 

be obtained via: 

∆𝐺𝑖𝑗(𝑥𝑐 , 𝑇) = ∆𝑆𝑖𝑗 (𝑇𝑅𝑒𝑓 + 0.5 [𝑚𝑖
𝐹𝑒−𝐶 (𝑥𝑖

𝐶 − 𝑥𝑖
𝐶𝑟𝑒𝑓

) + 𝑚𝑗
𝐹𝑒−𝐶 (𝑥𝑗

𝐶 − 𝑥𝑗
𝐶𝑟𝑒𝑓

)] − 𝑇)  (6.5) 

𝑇𝑅𝑒𝑓 is the reference temperature, 𝑚𝑖
𝐹𝑒−𝐶 and 𝑚𝑗

𝐹𝑒−𝐶 are the slopes of lines separating the two phase 

regions in the equilibrium phase diagram from the single phase region of the phases of grain i and j , 𝑥𝑖
𝐶 

and 𝑥𝑗
𝐶 are the local carbon content in grain i and j, 𝑥𝑖

𝐶𝑟𝑒𝑓
 and 𝑥𝑗

𝐶𝑟𝑒𝑓
 are the equilibrium carbon content 

in the grain i and j at the reference temperature. 
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6.2.3 Austenite nucleation  

Austenite will form when the initial pearlite is heated to temperatures above the critical temperature, A1. 

The austenitization process from a pearlitic type microstructure typically consists of nucleation and 

growth stages [12]. Experimental findings, e.g. synchrotron X-ray diffraction, commonly identify 

preferred austenite nucleation at α/α grain boundaries, ferrite/cementite phase boundaries and pro-

eutectoid ferrite and pearlite boundaries, if they are present. In the phase field modeling, the nucleation 

rate is expressed by the Classical Nucleation Theory (CNT) [12,20]: 

�̇� = 𝑁𝑛𝛽∗𝑍 exp (
−∆𝐺∗

𝑘𝑇
)                                                                             (6.6) 

where 𝑁𝑛 is the density of potential nucleation sites, 𝛽∗is the frequency factor (the rate at which single 

atoms are added to the critical nucleus), 𝑍 is the Zeldovich non-equilibrium factor, which corrects the 

equilibrium nucleation rate for nuclei that grow beyond the critical size, ∆𝐺∗ is the activation barrier 

and is related to the chemical Gibbs free energy difference, ∆𝐺, by :  

∆𝐺∗ =
𝜓𝑖

(∆𝐺)2   ,                                                                                         (6.7) 

where 𝜓 takes into account the geometric effects and the interfacial energies of the newly generated 

interfaces during nucleation. ∆𝐺 is the driving pressure for the nucleation.  

The nuclei density input to the phase field simulation usually requires validation from experimental 

observations. However, the accurate nuclei density of austenite during ultra-fast heating cannot be 

obtained through experiments, since an in-situ or interrupted measurement is almost impossible. Instead, 

this study focuses on the compositional characteristics of the microstructure under continuous heating. 

In the MICRESS® software, the nuclei density can be set by setting parameters of ‘shielding distance’ 

and ‘shielding time’, which are set to be 0.5 µm and 2 s respectively in this study. This corresponds to 

a nucleus density of 0.08 μm-2. 

6.2.4. Martensite  

The heating and cooling occurring at an identical rail surface site during wheel passages are cyclic and 

the heating and cooling rates are extremely high, e.g. [1,5]. The pearlite may partially or fully transform 

to austenite, depending on the temperature-time path. During the subsequent fast quenching, the 

austenite, partially or fully, transforms to martensite.  

The difficulty of introducing a martensite phase into the PFM is the scarce kinetic data for the martensite 

to austenite transformations [20]. Thiessen et al. introduce an artificial martensite phase to represent the 

martensite-ferrite microstructure mixture in their dual phase steel [20]. They treated the martensite as a 

BCC-ferrite phase with the eutectoid carbon concentration. The introduction of supersaturated carbon 

in the modeled martensite has consequences. Figs. 6.3 (a) and (b) show schematically the Gibbs energy 

curves of different phases below and above A1 temperatures. When the temperature is below A1, the 

excess carbon will precipitate in carbides, with a driving pressure of ∆𝐺(𝐹𝑒3𝐶) . When the temperature 
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reaches above A1, the martensite has an additional driving pressure, ∆𝐺(𝛾) , for austenite formation, 

comparing that for ferrite to austenite transformation.  

The carbide precipitation is, however, very unlikely for the WEL formation, due to the exerted extremely 

high heating rates, typically 105 – 106 °C /s. In [25], cementite precipitation is experimentally shown not 

to occur when the heating rate is over 15 °C/s in Fe-(5-9)Mn-0.005C (in wt%). Hence, carbide 

precipitation during heating will be excluded from the current simulations.  

In this study, the route of introducing martensite in [20] is adopted while its chemical composition was 

treated differently. Instead of assigning a uniform eutectoid carbon content to the martensite, the grain 

structure and the carbon concentration in the formed austenite during the previous heating cycle is 

assigned to martensite.  

 

   

Fig.6.3: Schematic diagram of Gibbs energy of the phases below A1 in (a) and above A1 in (b). 

𝐶𝑎′ represents a martensite with carbon supersaturation. ∆𝐺(𝐹𝑒3𝐶)  and ∆𝐺(𝛾)are the additional Gibbs 

energy to form carbide and austenite respectively. 

6.2.5. Simulation conditions and experimental settings 

The pearlite to austenite and the pearlite + martensite to austenite transformation are simulated under 

continuous heating conditions and martensite forming during cooling is considered to fully inherit the 

structure and composition of the formed austenite. The austenite is set to nucleate at α/θ boundaries. It 

has been predicted [26] that, with a train speed of 140 km/h, the identical rail surface portion tends to 

be heated to a similar temperature during different wheel passages, if the loading conditions and the rail 

profile are unchanged during the train passages. It is also shown that the previous wheel pass has limited 

influence on the temperature change due to the arrival of a subsequent wheel. As a result, the starting 

temperature is considered to be identical for all simulations.  

It was found that a very high heating rate, 105 °C/s and above, does not lead to transformation with 

MICRESS®, probably due to the fact that the nucleation of austenite is not able to occur because of the 

very high heating rate. Instead, the current simulation uses a relatively high heating rate, 2000 °C /s, in 

a combination with simulations at a lower heating rate of 10 °C /s, in order to gain insight into the effect 

of the heating rate on the austenite formation. The microstructure model in Fig. 6.1 has periodic 
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boundaries in the vertical direction and the horizontal boundaries were set to be isolated. The cementite 

phase is set to be stoichiometric and no carbon diffusion will occur in the cementite during the simulation.  

For the heating rate of 10 °C /s, a dilatometry curve was experimentally obtained under the same heat 

treatment in a DIL-805 A/D dilatometer. The austenite fraction can be extracted by analyzing the 

dilatometric curve during continuous heating, by lever rule after [12]. Fig. 6.4 shows the quantified 

austenite fraction and the output from the phase field modeling, with the heating rate of 10 °C /s. The 

good match was obtained by adjusting the nucleation density as a fitting parameter. It should be noted 

that recrystallization is not considered in the current simulation.  

 

 

Fig. 6.4: Comparison of austenite fraction between experimental measurement and simulation result 

during heating at 10 °C /s. 

 

The γ → α or the reverse transformation is typical to have mixed mode characteristics, rather than a pure 

diffusional or an interface controlled character [28]. A mode parameter, S, is frequently used to indicate 

the transformation characteristics of γ → α or α → γ transformation, the details about which are 

represented in e.g. [28,29]. In ref [29], pearlite microstructure is introduced as part of the initial 

microstructures to study the characteristics during pearlite + ferrite → austenite transformation. The 

pearlite is, however, treated as a single phase with an average eutectoid carbon concentration in the 

simulations. As a result, the transformation kinetics from pearlitic ferrite and cementite is not resolved 

separately and is consequently different from the simulated transformation in this chapter. Furthermore, 

the continuous cementite dissolution during the austenitization provides extra carbon into the existing 

austenite/ferrite system, making the calculation of the S parameter unrealistic. Alternatively, pure 

diffusion-controlled and interface-controlled phase transformation during the pearlite to austenite 

transformation was realized by modifying the pre-factor of the interface mobility 𝜇𝛼𝛾
0  of γ/α interface in 
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equation (6.2): (1)  𝜇𝑖𝑗
0  is multiplied by 100, so that the transformation is close to the diffusion-controlled 

process, (2)  𝜇𝑖𝑗
0  is multiplied by 0.01 so that the transformation is close to the interface-controlled 

process. The transformation characteristics of the pearlite to austenite reaction for the WEL formation 

is indicated by comparing the carbon concentration in austenite at the γ/α interface with austenite carbon 

concentration in the above two extreme cases and the case of the original parameters. 

 

6.3. Results and discussion 

 
It should be pointed out first that a full representation of the thermal conditions for the pearlite to 

austenite transformation at a given rail surface point is impossible. The wheel/rail contact is dynamic 

and the actual thermal cycles during the wheel passages are constantly varying. Instead, the current 

simulation provides a semi-quantitative insight into the characteristics of austenite formation, under the 

fast heating process. During subsequent cooling, the formed austenite transforms to martensite via a 

diffusionless process and the composition of the parent austenite is considered to be inherited by the 

martensite product phase. In the subsequent sections, first comparisons with experimental results of the 

pearlite to austenite transformation will be made, to verify the used parameters, with a heating rate of 

10 °C/s.  The insight into the consequence of heating rates in WEL formation will be discussed, based 

on comparisons of results from the higher heating rate of 2000 °C/s and the lower rate of 10 °C/s. 

6.3.1. Pearlite to austenite transformation at a low heating rate, 10 °C /s 

Figs. 6.4(a-d) show the carbon maps of the microstructure, after being heated to different temperatures 

above the A1 temperature, with a heating rate of 10 °C /s. The initial ferrite and cementite lamellae can 

be recognized by the lamellar morphology. The austenite can be identified by the different grayscale, 

due to the carbon concentration being distinctly different from the ferrite and cementite. The austenite 

is set to nucleate at the α/θ and α/α boundaries, Figs. 6.5(a) and (b). As temperature increases, the 

austenite grows faster into ferrite than into cementite, Figs. 6.5 (b–d), and a slower cementite to austenite 

transformation can be noticed in Figs. 6.5. In Fig. 6.5 (d), the ferrite lamellae are nearly completely 

transformed to austenite, while untransformed cementite remains. Such finding is in accordance with 

the experimental observations of Savran in [12] and can be contributed to the required limited carbon 

redistribution between cementite and austenite and the inadequate diffusion time of carbon in the 

austenite. 
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Fig. 6.5: Carbon distribution map of microstructure after being heated to austenitizing temperatures: 

(a) 735 °C; (b) 739 °C; (c) 746 °C; (d) 748 °C, with a heating rate of 10 °C/s. The vertical scale bar is 

in at%. 

 

The carbon concentration in the austenite in equilibrium with ferrite, 𝐶𝛾𝛼, and cementite 𝐶𝛾𝜃, can be 

estimated from the implemented phase diagram in Fig. 6.2, along the line between the (α + γ)/γ and (γ 

+ θ)/γ phase region boundaries respectively. Following Fig. 6.2, 𝐶𝛾𝛼 reduces as temperature increases, 

while 𝐶𝛾𝜃  increases in line with temperature and is significantly higher than 𝐶𝛾𝛼 . Only if the 

transformation is complete, the carbon concentration equals to the average carbon concentration in 

austenite in the steel. For the studied R260Mn grade rail steel, the overall carbon concentration is 3.04 

at%.   

The carbon in the formed austenite can be seen to be heterogeneous, by looking at the gray scales in the 

carbon maps in Figs. 6.5 (a-d). The austenite grains formed at α/α boundary is darker, i.e. has a lower 

carbon concentration, than austenite formed at α/θ boundary. Figs. 6.6(a) and (b) show two separate 

examples of carbon concentrations in the austenite formed at the α/α and α/θ boundaries. The 

equilibrium carbon concentration in austenite in equilibrium with cementite and ferrite at the plotted 

temperatures are added as references.  

Fig. 6.6(a) shows the carbon concentration evolution in the austenite, nucleated at an α/θ boundary in 

line with temperature, along line D-D’ in Fig. 6.5(a). Carbon in the austenite at temperature 1007.2 K 

corresponds to the slightly grown austenite. The carbon concentrations in austenite at all plotted 

temperatures are lower than the plotted equilibrium carbon concentrations. As temperature increases, 

the austenite further grows away from the cementite and the carbon concentration reduces. A carbon 

concentration gradient in the austenite can be observed. Fig. 6.6(b) shows another example of carbon 

evolution in austenite, nucleated at an α/α boundary, along the line C-C’ in Fig. 6.5(b). The carbon 

concentrations in austenite at all plotted temperatures are higher than the equilibrium concentrations. 
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Fig. 6.6: Carbon distribution in austenite during continuous heating at 10 °C/s: (a) along line D-D’ and 

(b) line C–C’ in Fig. 6.5 (a) and (b) respectively. 

6.3.2. Pearlite to austenite transformation at a high heating rate, 2000 °C /s 

Figs. 6.7(a–c) show the carbon map of the microstructure heated to different temperatures above the A1 

temperature, with a heating rate of 2000 °C/s. Austenite was set to start nucleating at 774 °C, which is 

higher than the temperature for the heating rate of 10 °C/s in Fig. 6.5, due to the higher heating rate [27]. 

The lamellar ferrite and cementite and the newly formed austenite can be recognized by the morphology 

and the gray scale due to different carbon concentrations of the three phases. Alike the simulation with 

a heating rate of 10 °C/s, the austenite nucleates at the α/θ and α/α boundaries, e.g. Figs. 6.7(a) and (b). 

As the temperature increases, austenite grows faster into the ferrite than into the cementite, Fig. 6.7 (b–

c).  

 

 

Fig. 6.7: Carbon distribution map of microstructure after being heated to austenitizing temperatures: 

(a) 778 °C; (b) 806 °C; (c) 862 °C, with a heating rate of 2000 °C/s. 

 

Figs. 6.8 (a) and (b) show the carbon profiles along A-A’ and B-B’ lines in Fig. 6.7(b) at different 

temperatures, to show the different carbon concentration profile of austenite nucleated at the α/θ 
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boundary and the α/α boundary respectively. Alike the case of 10 °C/s in Fig. 6.6 (a) and (b), the 

austenite formed at an α/θ boundary has a higher carbon than that nucleated at an α/α boundary, whereas 

the difference is more significant in the case of 2000 °C/s than at 10 °C/s.  

  

Fig. 6.8: Carbon distribution in austenite: (a) along line A-A’ and (b) line B – B’ in Fig. 6.8 (b), during 

heating at 2000 °C /s. 

 

Transformations from ferrite (α) and cementite (θ) in the initial pearlite to austenite (γ) require 

simultaneous crystal lattice reconstruction, e.g. body-centered cubic (α) to face-centered cubic (γ), and 

carbon partitioning. It can be well expected that the carbon content in austenite nucleated at an α/θ 

boundary, Fig. 6.6(a) and Fig. 6.8(a), is higher than in that nucleated at an α/α boundary, Fig. 6.6(b) and 

Fig. 6.8(b), following the phase diagram in Fig. 6.2. When temperature further increases, austenite grows 

predominantly into the ferrite, Fig. 6.5 and Fig.6.7.   

Austenite formed at the α/θ boundary grows faster than the austenite nucleated at the α/α boundary, for 

example by comparing Fig. 6.5(a) and (b): heating from 735.2 °C to 737.0 °C, the austenite in Fig. 6.6(a) 

grows 260 nm, while it grows 161 nm in Fig. 6.6(b) within the same temperature intervals. Austenite 

first nucleates at a relatively lower temperature during continuous heating. The carbon concentration in 

austenite nucleated at an α/θ boundary is expected to be significantly higher than austenite formed at an 

α/α boundary, Fig. 6.2. As temperature increases, the α/γ interface proceeds predominantly into ferrite 

region and the carbon concentration within the interface is expected to be in equilibrium between ferrite 

and austenite. As a result, a more pronounced carbon concentration gradient, ∆𝑥, in the austenite formed 

at cemenite formes builds up, than austenite nucleate in ferrite, providing a higher interface movement 

velocity [28]: 

 𝑣 = 𝑀𝜔∆𝑥                                                                           (6.8) 

in which 𝑀 is the interface mobility and 𝜔 is a thermodynamic proportionally factor. 

Figs. 6.9(a) and (b) show the carbon concentration profiles along line D – D’ at 10 °C/s and line A–A’ 

at 2000 °C/s respectively. The open and filled circles in both figures are the carbon concentrations in 

austenite at the γ/α interface, predicted by diffusion-controlled and interface-controlled kinetics 
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respectively. It can be seen that at the heating rate of 10 °C/s, the austenite carbon concentration is in 

between the two extreme cases, Fig. 6.9(a). The carbon concentration in the austenite at the heating rate 

of 2000 °C/s is closer to interface-controlled conditions, Fig. 6.9(b).  This indicates that the increased 

heating rate can shift the pearlite to austenite formation closer to the interface-controlled characteristics. 

  

 

Fig.6.9 Comparisons of carbon concentration in austenite with predicted carbon concentration in 

austenite at γ/α interface due to diffusion-controlled (open circle) and interface-controlled 

transformation (filled circle) along line D – D’ at 10 °C/s in (a) and along A–A’ at 2000 °C/s. 

6.3.3. Martensite to austenite transformation  

The martensite is considered in the current phase field simulations as a BCC phase with the carbon 

concentration of the prior austenite, which causes the BCC phase to be supersaturated. The martensite 

substructure, e.g. high dislocation density [30], lath/twinning structures [14,31], cannot be included in 

the MICRESS® software. The substructures may have some effects on the formation of austenite, and 

the martensite to austenite transformation kinetics during heating in a subsequent wheel passage may be 

underestimated in the current simulation. However, similar simplifications, e.g. by Thiessen et al. [20], 

are shown to be able to establish a reasonable match between the simulation and experimental results.  

Figs. 6.10 (a – f) show the carbon concentration map and the distribution of the phases in the 

microstructure, with the heating rate of 2000 °C/s during a second wheel passage. The grain structure 

and carbon concentration of α’ martensite are inherited from the simulations in Section 6.3.2, heated to 

762 °C, and are shown in Fig. 6.10(a). The carbon in the martensite diffuses into the adjacent ferrite 

when the temperature increases, if martensite is not transformed to austenite, Fig. 6.10(b), in spite of the 

instability caused by the carbon supersaturation. The carbon of the austenite that forms in the martensite 

has a very high concentration, exceeding 10 at%, Figs. 6.10(c-e). The austenite further grows and the 

carbon diffuses when the individual austenite grains interact. The carbon concentration in the austenite 

in Fig. 6.10(f) is 3–5 at%. 
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Fig. 6.10: Carbon concentration and phase distribution map of microstructure after being heated to 

temperature below austenitizing temperatures: (a) 762 °C; (b) 766 °C and temperatures above the 

austenitizing point during the second wheel passage: (c) 774 °C; (d) 776 °C; (e) 778 °C and 794 °C (f), 

with a heating rate of 2000 °C/s. 

 

The major insight resulting from including the martensite in this study is that the austenite formed from 

martensite will have a higher carbon concentration than austenite forming from ferrite. Such conclusions 

can be drawn by looking at the calculated Gibbs free energy curve of a Fe – C system at temperature 

1016 K in Fig. 6.11, which is above the A1 temperature. The austenite, formed at ferrite with an 

equilibrium carbon concentration, 𝐶𝛼𝛾 is expected to have a carbon concentration of 𝐶𝛾𝛼. With a BCC 

phase supersaturated carbon in carbon, e.g. 𝐶𝛼′ in Fig. 6.11, the according carbon concentration in the 

formed austenite should be 𝐶𝛾𝛼′, which is higher than 𝐶𝛾𝛼. Martensite transformed from the austenite 
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with 𝐶𝛾𝛼′, will be harder than that formed from austenite with 𝐶𝛾𝛼. This will also lead to formation of 

martensite with heterogeneous mechanical properties.  

 

Fig. 6.11: Calculated Gibbs energy curves of BCC-ferrite and FCC-austenite at 1016 K of a Fe-C 

system, which is above the A1 temperature. 𝐶𝛼𝛾 and 𝐶𝛾𝑎 corresponding to the equilibrium carbon 

concentration in ferrite and austenite when they have same chemical potential. 𝐶𝛼′ represents the 

carbon concentration of martensite and 𝐶𝛾𝛼′ is the carbon concentration in equilibrium with 𝐶𝛼′. 

6.3.4. Insight into the formation of WEL in rails 

The current simulations provide the following insight into the formation of WEL via the mechanism of 

the thermally-induced martensitic phase transformation. By comparing the results of heating rates of 

10 °C/s and 2000 °C/s, it can be concluded that the accelerated heating rate can have the following 

consequences: (i) A slower austenite formation rate with increased heating rate in line with temperature. 

The higher heating rate increases the Ac1 temperature [27] and limits the carbon diffusion distance in 

the austenite, leading to delayed austenite formation. As a result, only a minor fraction of the pearlite 

transforms to austenite and the full austenitization requires a higher temperature or longer time for the 

austenite to grow. The WEL is observed only after certain loading history after implementation and is 

most probably due to the extremely short contact time during a single wheel passage, i.e. limited fraction 

of austenite and subsequently martensite. (ii) A more significant heterogeneity of carbon concentration 

in the WEL after final heating, both in WEL at different rail surface portions and in WEL at different 

rail depth, e.g. [1]. As discussed above, such differences must be related to the previous temperature and 

loading history for the formation. (iii) The subsequent heterogeneous mechanical properties within a 

single WEL block. This can be due to the significant variations in carbon concentration in the formed 

austenite during pearlite to austenite and also martensite to austenite formations.    
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6.4. Summary and conclusions 

 
White etching layer in rail steels, formed due to thermally-induced martensitic phase transformation 

mechanism, has been (semi) quantitatively studied by a phase-field modeling approach. A validation of 

the used nucleation density, mobility and interfacial energy was firstly done by comparing with the 

dilatometric measurement with a heating rate of 10 °C/s. The subsequent insight into WEL formation is 

mainly gained from simulation results of pearlite to austenite transformation at a heating rate of 

2000 °C/s and its comparison with that of 10 °C/s. Simulation with both heating rates shows faster ferrite 

to austenite transformation, than cementite to austenite transformation. The simulation results indicate 

a switch from diffusion-controlled to the interface-controlled pearlite to austenite transformation, as 

heating rate increases significantly. The carbon concentration and the corresponding mechanical 

properties in a single WEL block can be significantly different and depends on the loading condition. 

The unfavorable WEL formation via this formation mechanism can be reduced both by optimizing the 

wheel/rail contact condition and metallurgical design. The wheel/rail contact optimization appears to be 

more advantageous since it also minimizes the undermined RCF in pearlite due to the thermal softening. 

The metallurgical design mainly delays WEL formation by raising the A1 temperature and possibly 

reduces the austenite/ferrite interface mobility.  
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Chapter 7 Investigation of brown etching 

layer: an additional insight 

 
 

 

 

 

Abstract: 

 White etching layer (WEL) is a frequently observed structural change in rail surface and can cause 

rolling contact fatigue damage. WEL is named after its white appearance in the light microscope after 

revealing with Nital etchant. The two prevalent proposed formation mechanisms of white etching layer 

are either the martensitic phase transformation hypothesis or the severe plastic deformation mechanism. 

The controversy can be due to the different loading conditions of the rails, from which WEL specimen 

was extracted. In this chapter, a differently etched layer from WEL, named as brown etching layer (BEL), 

is reported. Unlike the classical WEL, the BEL has a brownish color under light microscope and is 

distinctly softer than WEL. The cracks associated with BEL can grow deeper into the rail, compared 

with the cracks caused by WEL in the literature. This indicates that the presence of BEL can be more 

dangerous than WEL to the rail lifetime. Electron backscatter diffraction identifies retained austenite 

and the kernel average misorientation mapping reveals deformation characteristics both in the BEL and 

the pearlite immediately underneath. The comparison of morphology and hardness of BEL with WEL 

indicate that BEL can be correlated to the WEL. The formation mechanism of BEL is proposed from 

the observed microstructure and is further correlated to the WEL.  

 

Keywords: white etching layer; brown etching layer; electron backscatter diffraction; retained austenite; 

martensite; deformation; kernel average misorientation3 

                                                           
3 This chapter is partly based on a scientific paper:  

Li S, Wu J, Petrov RH, Li Z, Dollevoet R, Sietsma J. “Brown etching layer: A possible new insight into the  

crack initiation of rolling contact fatigue in rail steels?”, Eng Fail Anal 2016;66:8–18. 
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7.1. Introduction 

 

This chapter characterizes a different type of WEL, the brown etching layer (BEL) [1]. The BEL is 

named after its brownish color observed in the optical microscope after etching with Nital, e.g. the one 

in Fig. 7.1, and is in analogy to the naming of WEL in literature. The observed BEL exhibits most of 

the morphological features as the classical WEL in literature, such as a clear interface with the bulk 

material and the shape of isolated or continuous distributed “islands”. Similar to the WEL [2,3], BEL is 

observed in rail surface and is subsequently considered to be another important source for rolling contact 

fatigue (RCF) initiation, as cracks are closely associated to the BEL, e.g. the ones in Fig. 7.1. Moreover, 

cracks associated with BEL, e.g. the top left big crack in Fig. 7.1, have been found to grow considerably 

deeper towards the rail depth, compared with the literature in which cracks caused by the WEL mostly 

propagate at a more limited depth only or cause spalling [2,3]. This indicates the possibly more 

detrimental role of BEL in the RCF development in rails than WEL. Consequently, more extensive rail 

grinding is expected for completely removing the cracks caused by BEL, leading to premature rail 

removals and more frequent rail replacements. Therefore, the study of the formation mechanism of the 

BEL is of practical concern and importance. 

To the authors’ knowledge, similar BELs  as in this chapter were reported [4,5] but did not attract 

substantial attention. The BELs in the aforementioned publications and the present chapter are observed 

in rails with different traffic conditions, e.g. train speeds and annual axle load. This indicates that BEL 

is not related to a specific traffic condition. Furthermore, there is insufficient evidence in the existing 

publications to correlate the BEL to a specific rail steel grade. The observed BEL in the present chapter 

is shown with different features from those reported in the literature and will be elaborated in subsequent 

sections. In addition to the microstructural morphology, the mechanical characteristics of the BEL, 

measured by a micro-hardness test, is shown to be different from that of the well-known WEL. 

Considering that the mechanism for WEL formation in the literature remains controversial and depends 

on the loading conditions for the WEL formation, the discovery of the BEL arouses the questions as 

follows: Could an investigation of the BEL provide a possible additional insight into the formation of 

the WEL? To this end, microstructural features of the BEL were studied using micro-hardness tests, 

optical microscopy (OM), scanning electron microscopy (SEM) and electron backscatter diffraction 

(EBSD). This study is expected to provide an understanding of: 1) the microstructural features and 

mechanical properties of the BEL, 2) correlations between the WEL and the BEL, and 3) the possible 

formation mechanism of the BEL. The microstructural features of the BEL were compared with the 

WEL reported in the literature. 
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Fig.7.1 An example of brown etching layer observed in rail surface. Cracks are frequently observed to 

be associated with BEL. 

 

7.2. Materials 

 
The rail used for this investigation is an R260 Mn grade rail steel and was removed from a straight track 

in the Dutch railway network between Meppel and Leeuwarden in 2007. The track is a main passenger 

line, with a highest operating speed of 140 km/h. The line on average carried approximately 10,000 tons 

of loads per day. The period from the last grinding maintenance was estimated to have been more than 

1 year. Therefore, the total tonnage is greater than 3.65 MGT.  

The studied rail track had problems with corrugation on the rail surface, showing wave pattern with 

periodic shiny peaks and dark valleys when still in service, see for example the image in Fig. 7.2(a) 

which was taken while the rail was in-field. Such wave patterns are not visible anymore after removal 

of surface corrosion during the storage in open air for a long time. However, the wave patterns can be 

still recognized by using the RAILPROF measurement device. The measured surface profile of the rail 

track in Fig. 7.2(a) is superimposed in the same figure to show the original corrugation crests and valleys 

before removal. The surface profile in Fig. 7.2(a) was used as guidance for the subsequent sampling for 

metallographic analysis and Fig. 7.2(b) is the resembled rail piece after cutting. Longitudinal-vertical 

rail specimens with dimensions of 20 mm × 2 mm × 10 mm in the longitudinal, lateral and vertical 

directions were cut for the characterizations. BELs are identified as being at the corrugation crest. The 

notations of RD, TD, and ND refer to the traffic/rolling direction, transfer direction and direction 

perpendicular to the rail surface respectively. These notations are kept through the rest of the chapter. 

The microstructure of the specimens was first investigated with an Olympus BH-2 optical microscope 

and then in a JSM 6500F scanning electron microscope with field emission gun (FEG-SEM). Moreover, 

micro-hardness tests were performed using a Durascan 70 (Struers), with a load of 0.49 N and a loading 

duration of 10 s, to quantify the mechanical properties of the BEL. The hardness distribution along the 

depth within the BEL was measured.  At each depth, minimum of 4 indentations were made.  

The EBSD measurements in the BEL and pearlite beneath were done in a FEI Quanta-450 SEM 

equipped with a field emission gun (FEG) and the experimental settings were explained in Chapter 3. 
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In short, the EBSD measurements were done with a step size of 50 nm and a hexagonal scan grid mode 

and a working distance of 16 mm. The grains were defined as regions containing minimum of 4 pixels 

with an internal misorientation less than 5°, unless specifically mentioned otherwise. 

 

  

Fig. 7.2 (a) Photo of surface corrugation while the studied rail was in in-track in June 2007. The 

superimposed wave pattern was measured after the rail removal and storage in the open air for ~ 7 

years; (b) Photo of specimens after cutting and resembling. 

 

7.3. Results 

7.3.1. Micro-hardness test 

It should be first pointed out that, unlike the uniform contrast of WEL in the optical microscope (OM), 

Nital chemical reveals BEL as an alien structure with inhomogeneous color, e.g. Figs. 7.3 (a) and (c). A 

featureless white color zone is observed in some of the BEL islands, which is within the first few microns 

from the rail surface. Such white color zone is separated from the underneath brown color region in the 

BEL by a sharp boundary, for example as delineated by the red solid line in Fig. 7.3(a). In addition, this 

white zone has significantly different mechanical properties than that in the immediate beneath brown 

color zone, as identified by hardness measurements in this section. Accordingly, this zone is considered 

to be different from the underneath brown color zone and is named as white sublayer in the chapter, e.g. 

notations in Fig. 7.3(a). The white sublayer in Fig. 7.3(c) appears not as dominant as that in Fig. 7.3(a), 

because only part of the white sublayer is included in the viewed micrograph. This is due to the limited 

observed area under the adopted magnification for taking the picture. The white sublayer continues to 

the adjacent area in the same specimen.  

The underneath brown color zone consists of the rest of the BEL and the bottom is separated from the 

matrix pearlite area by a clear boundary, for example as indicated by the dotted black line in Fig. 7.3(a). 

Furthermore, a whitish zone is observed at the bottom of the brown color area and is near the BEL/matrix 

boundary. However, the hardness in the brown color area, to be shown in this section, changes gradually 

along the rail depth and no abrupt hardness change is identified in the region. Consequently, this whitish 

zone is considered to belong to the main brown color zone and the notations in Figs. 7.3(a) and (c) will 
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be used throughout this chapter in which: (i) the white sublayer only refers to the topmost white area, 

which has a distinct boundary with the beneath brown color zone; (ii) the brown sublayer refers to the 

area below the white sublayer, including the area appearing whitish at the bottom of the BEL. 

 

  

   

Fig. 7.3 (a) and (b) are optical micrographs and the hardness distribution plot of a BEL consisting of 

mixed sublayers; (c) and (d) are optical micrograph and the hardness distribution plot of a newly 

single-layer BEL. 

 

The hardness distributions along rail depth in Figs 7.3(a) and (c) are shown in Figs. 7.3(b) and (d). The 

schematic scales in Figs 7.3(a) and (c) are added to show the spatial distribution of indentations and 

their depth positions are indicated by the superimposed letters in the same figures. The topmost white 

sublayer in Fig. 7.3(a) is identified to have the highest hardness among all the measurements, 880 ± 60 

HV in Fig. 7.3(b). An abrupt hardness drop down to 540 ± 30HV is observed in the brown sublayer 

immediately below the white sublayer, above position A2 in Fig. 7.3(a). A further hardness increase can 

be observed in the brown sublayer along the rail depth and a maximum hardness, 840 ± 30 HV, is 

recognized in the BEL sublayer close by the BEL/pearlite boundary, i.e. close by zone A3 in Fig. 7.3(a). 

The hardness in the pearlite immediately under BEL, showing materials flow, shows no significant 

differences from the undeformed matrix observed at ~ 12 mm beneath the rail surface. The zone with 

the highest hardness within the materials flow area is measured to be close to the BEL/pearlite boundary 
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with a hardness of 326 ± 9 HV and is slightly higher than the measurements in the undeformed zone 

with hardness of 307 ± 15 HV. 

 

  

  

  

  

Fig. 7.4.SEM micrographs of areas: (a) close by positions A1 in Fig. 7.3(a); (b) close to position C3 in 

Fig. 7.3(c); (c) close to position C1 in Fig. 7.3(c); (d) – (f) are the magnified micrographs of areas 

within the empty black rectangles in (a) – (c) respectively. 
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The characteristics of hardness distribution in the surface brown sublayer in Fig. 7.3(c) (left top corner 

with a minor portion of white sublayer) are alike the brown sublayer in Fig. 7.3(a), after comparing the 

hardness profiles in Figs. 7.3(b) and (d): (i) the hardness of the brown color area decreases when 

approaching closer to the rail surface. The topmost layer is the softest, with a hardness as low as 450 ~ 

470 HV; (ii) the highest hardness within the BEL appears near the BEL/matrix boundary. Hardness 

within this sub-region varies in the range of 740 ~ 752 HV, with an average hardness of 746 HV.  

7.3.2. Morphological features of BEL in SEM 

SEM observations were performed to characterize the microstructure within the BEL and to offer 

possible explanations of the hardness difference in BEL. The BELs consisting of the near single brown 

sublayer and mixed sublayers, Figs. 7.3(a) and (c), are both examined.  

Figs. 7.4(a) and (d) are secondary electron images of BEL taken at the boundary of white color and 

brown color sublayer boundary, i.e. the red solid line in Fig. 7.3(a).  The same boundary is again 

delineated by the black dotted line in Fig. 7.4(a) and (b). It can be seen that the topmost white sublayer 

is hardly influenced by the etching, showing a smooth surface topography in the secondary electron 

micrograph. On the contrary, the brown sublayer immediately beneath is more etched and has gully-like 

characteristics. Two elongated MnS inclusions, without any associated cracks, are observed to be 

parallel to the traffic direction and are indicated by the two black arrows in Fig. 7.4(a). Figs. 7.4(b) and 

(e) are SEM images taken close to area C3 in Fig. 7.3(c), in which part of the pearlite microstructure in 

the matrix is included and the BEL/matrix boundary is indicated by the dotted black line in Fig. 7.4(b). 

A lamella-type microstructure is observed in the BEL and is representative for the microstructures within 

the brown sublayers, e.g. zones A2 – A3 in Fig. 7.3(a) and zones C2 – C3 in Fig. 7.3(c). Continuation 

of some lamellae from the matrix into the BEL can be seen, for example as indicated by the arrows 

across the interface in Fig. 7.4(c).  Finally, the microstructure in the topmost brown sublayer in Fig. 

7.3(c), ~10 µm from the rail surface, is different from the other areas in the BEL. The SEM images in 

Figs. 7.4(c) and (f) show fiber-like features within the zone and are flattened in the traffic direction. 

7.3.3 EBSD results 

EBSD characterizations were done on the brown sublayer in Fig. 7.3(c), in order to reveal the 

microstructures and the possible microstructural differences in the layer. Figs. 7.5(a – c) show the grey 

scale image quality (IQ) maps of: (1) the topmost BEL (position C1 in Fig. 7.3(c)); (2) the subsurface 

BEL, which is around 80 µm beneath the rail surface (position C2 in Fig. 7.3(c)); (3) the pearlite area 

immediately beneath the BEL, respectively (position C3 in Fig. 7.3(c)).  

 



 
 

112 

 

   

   

 

Fig. 7.5 The IQ maps of (a) surface area, (b) BEL zone 80 μm beneath the rail surface and is slightly 

above the BEL/pearlite boundary, (c) is the pearlite area underneath the BEL block and part of the 

BEL is included for the mapping. The corresponding IPF images relating to the ND directions of the 

three areas are shown in (d-f). The scale bar in (e) applies for all figures. 

 

Two main grain morphology groups within the BEL are observed and can be summarized as follows, 

by relating to the external loading direction: (i) grains aligned toward the traffic direction (RD), 

approximately within the topmost 25 µm from rail surface, e.g. the IQ map in Fig. 7.5(a); and (ii) grains 

with random morphology representing the areas beneath the surface aligned zone and a representing 

example is shown by the IQ map of the subsurface BEL area in Fig. 7.5(b). The IQ map of pearlite 

immediately below the BEL is shown in Fig. 7.5(c), in which part of the BEL is included for the mapping. 

The boundary of the main BEL/matrix boundary is delineated by the white dotted line. The ferrite grains 

in the pearlite can be seen to be fragmented and aligned. Localized thin deformation bands are 

recognized in the pearlite zone. Some separated BELs, identified by lower IQ than pearlite and indicated 

by white arrows in Fig. 7.5(c), can be observed in the pearlite zone. This indicates the growing pattern 

of BEL towards the rail center during the service time. 
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The IPF of the corresponding zones in Figs. 7.5(a-c) are shown in Figs. 7.5(d-f) respectively, referring 

to the external ND direction. The grains of the topmost BEL, Fig. 7.5(d), show the likely preferred 

alignment of {1 0 1} α along the ND direction of the rails. The grains of the unaligned subsurface area 

in BEL do not reveal preferred orientation, Fig. 7.5(e). The IPF of pearlite area immediately beneath the 

BEL is shown in Fig. 7.5(f). Only part of the included BEL was successfully indexed in this mapping 

and the unindexed areas are mapped as pixels with random crystal orientations. A significant difference 

in the orientation of the fragmented grains, rotated grains and the thin deformation bands can be seen. 

This indicates the deformation history in the characterized pearlite area.   

Fig. 7.6(a) shows the differences of length fractions of high angle grain boundary (HAGB), defined with 

misorientations of 15 – 180°, and low angle grain boundary (LAGB), with misorientation between 5 -

15°, in areas along the rail depth. The data pixels with CI less than 0.1 were discarded for the 

quantification. The boundary position between BEL and matrix is indicated by the vertical dotted line 

in Fig. 7.6(a). The HAGB in BEL ranges from 48 % - 70 %, while the fraction of LAGB rarely exceeds 

15 %. In general, both HAGB and LAGB fractions in BEL reduce through the rail depth. When reaching 

the pearlite area, LAGB length fraction increases from 6 % in the subsurface BEL zone to 27% in the 

pearlite while the HAGB fraction decreases from 48 % to 39 %.  

Fig. 7.6(b) shows the grain equivalent diameter distributions in zones measured in Fig. 7.6(a). It can be 

seen that the grain size in the BEL scatters significantly and is not uniform and area with smallest 

average grain size is close to the BEL/pearlite boundary. The grain diameter in the pearlite immediately 

below the BEL can be seen to be comparable with the BEL. The average grain sizes in the zones within 

BEL are 314 ± 197 nm, 315 ± 238 nm, 401 ± 317 nm, 349 ± 229 nm, 307 ± 210 nm and an average size 

of 309 ± 297 nm is quantified in the measured pearlite zone. 

  

Fig. 7.6 (a) Distribution of grain boundary fraction along the rail depth; (b) the distribution of average 

grain diameter along the rail depth. 
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Fig. 7.7 The KAM maps of (a) surface BEL area, (b) BEL zone 80 μm beneath the rail surface and 

slightly above the BEL/pearlite boundary. (d) The KAM plot of areas in the BEL, deformed pearlite 

and the undeformed pearlite region. KAM plot of WEL in [6] is added for comparison. 

 

Figs. 7.7(a-c) show the KAM maps of scanned areas in Figs. 7.5(a - c), using the 1st neighbor and cut-

off angle of 5°. The clusters of red pixels represent 5° KAM and are due to the poorly indexed pixels 

which fail to be assigned to a proper neighboring grain by the used clean-up procedures. Dense green 

lines, representing misorientation 1 – 3° can be observed in all maps. The KAM distribution of areas 

along the rail depth is shown in Fig. 7.7(d) and the KAM measurement of WEL in [6], chapter 4, is 

included as a comparison. The KAM measurement from the undeformed zone, ~ 12 mm beneath the rail 

surface, is used as a reference for all measurements. The KAM plot of area at a depth ~ 102 μm 

corresponds to the deformed pearlite area closest to the BEL/pearlite boundary. It can be seen that the 

peaks of KAM distributions in the BEL and deformed pearlite shift to higher angle range, comparing 

with the reference undeformed pearlite. The KAM in the BEL increase along the rail depth and the KAM 

in the bottom of BEL, e.g. the zone at ~ 92.5 µm below the rail surface, is comparable with KAM of 
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WEL in [6]. The KAM profile of deformed pearlite immediately beneath the BEL is higher than the 

topmost BEL and is close to the ones for the area within the ~27 μm from rail surface.  

  

 

 

Fig. 7.8 (a) An example of the phase map revealing retained austenite in the BEL. The dark parts were 

due to the discarding of unreliable pixels with CI less than 0.1. The white lines decorate rotation 

boundaries of 90° < 112 >, representing the K-S orientation relationship; (b) characteristics 

misorientation angle distribution in the BEL and the MacKenzie plot for random orientation 

distribution; (c) fraction of retained austenite in BEL along rail depth. 

 

Retained austenite is frequently identified in the BEL and an example is shown in Fig. 7.8(a). The ferrite 

and austenite phases are decorated with green and red respectively in the phase map. The dark parts are 

due to the discarding of unreliable pixels with CI less than 0.1. The white lines in Fig. 7.8(a) delineate 

the boundaries satisfying axis/angle rotation of  90° < 112 > , representing the K-S orientation 

relationship between martensite and austenite. The retained austenite is distributed heterogeneously and 

correlating the distribution to specific rail depth is impossible. Fig. 7.8(b) shows a representative 

misorientation angle distribution chart of ferrite grains in the BEL and the random MacKenzie 

distribution is included. The two maxima, at misorientation angles of 0 ° and ~60 °, assemble the 
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characteristic misorientation angles of martensite formed by normal heat treatment. Fig. 7.8(c) is the 

plot of retained austenite fraction in the BEL. The fraction of retained austenite in all measurements is 

very low, less than 1%, and there is no clear relation between austenite fraction and the rail depth of the 

characterized areas.  

 

7.4. Discussion 

7.4.1 Characteristics of BEL 

Based on the current investigations, the presented BEL is found to have the following characteristics in 

general:  

1) The BEL consists of heterogeneous sublayers with white and brown colors, Figs. 7.3(a) and (c), in 

contrast to the single uniform white layer in the WEL.  

2) The hardness of the white sublayer in BEL is comparable to that of the WEL in [6–9], whereas the 

brown sublayer is significantly softer. The minimum measured hardness of the brown sublayer is 450 

HV in Fig. 7.3(d) in this study, whereas the hardness of the WEL is rarely below 700 HV [7,8]. This 

indicates the possible different microstructure of the two types of layers.  

3) The SEM observation of the brown sublayer reveals significant lamella-type morphology. Note that 

in Fig. 7.4(b) there is a continuation of the lamellae of BEL to the cementite lamellae in the bulk material 

immediately beneath. The continued lamellae may facilitate crack propagation from BEL into the bulk 

material, due to the low growth resistance of pearlite to cracks parallel with the lamellar direction [10].  

4) The SEM observation of fibre-like and flattened morphology, Figs. 7.4(c) and (f), and the grain 

alignment in EBSD, Figs. 7.5(a) and (d), towards the traffic direction in the topmost surface region of 

the nearly single-layer BEL in Fig. 7.3(c), indicates a history of considerable plastic deformation of the 

rail material (see Fig. 7.4(c)).  

5) Retained austenite is commonly identified through the whole brown sublayer in Fig. 7.3(c). 

6) There is no significant difference in grain size in the BEL and the deformed pearlite area beneath, 

Fig. 7.6(b). 

7) The KAM in the characterized BEL is higher than that of the undeformed pearlite area, Fig. 7.7(d). 

The KAM in the BEL increases toward the rail center. 

7.4.2. Comparison and correlation BEL to WEL 

To better understand the BEL, its microstructural features are compared to those of the WEL reported 

in the literature. A commonly pearlite-like microstructure is frequently revealed by SEM in the 

characterized brown sublayer in the BEL, e.g. Figs. 7.4(b) and (e). A more interesting observation can 

be the continuation of the cementite-like traces in the BEL, which cross the BEL/pearlite boundary in 

Fig. 7.4(b). The SEM work in [6,8] recognizes a similar pearlite-like feature at the bottom of WEL and 

the observed lamellar traces are identified as cementite by electron diffraction method in TEM. The 

interlamellar distance of the cementite in WEL measures 30 - 40 nm and is significantly finer than the 



 
 

117 

 

spacing of 80 - 120 nm in the undeformed matrix area [8]. Consequently, they propose that refined 

distance between lamella traces in the WEL is due to plastic deformation.  

A similar pearlite-like morphology is identified at the bottom of the characterized WEL in chapter 4 of 

this thesis as well. The similar fragmented like cementite lamellae in ref[8] was recognized in TEM. 

However, refined cementite interlamellar distance is absent in this case as the measured interlamellar 

distance in the WEL is close to the one measured in the undeformed zone. Furthermore, the diffusive 

manganese compositional profile in the WEL, identified by the APT measurements, indicates that the 

investigated WEL forms predominantly via martensite phase transformation. The fragmented-like 

cementite was consequently considered to be due to partial dissolution of cementite as a result of 

extremely limited time for the alloying element to diffuse in the austenite during austenitization. 

Furthermore, an alike lamellar-like feature is expected in martensite formed via non-equilibrium heat 

treatments, due to the partial dissolution/transformation of cementite [6,11]. Consequently, extra 

evidence is necessary to clarify the microstructure in the BEL. 

Based on the EBSD results, the studied BEL is unlikely to form predominantly via plastic deformation 

as the hypothesis proposed for the formation of WEL reported in [8]. Firstly, the ferrite grains refine as 

plastic strain increases in a pearlitic microstructure, e.g. after different high pressure torsion cycles [12]. 

Accordingly, the grains in the topmost BEL should be the finest, due to the expected maximum and 

mostly accumulated plastic strains in this region. In addition, up to 50 vol% of the grains in the WEL in 

ref[13] are characterized to be ~ 20 nm. Such grain size is beyond the spatial resolution of EBSD 

technique, typically 50 - 100 nm, and should consequently lead to failure in indexing of such fine grains. 

Moreover, most of the grains in the BEL are quantified to be more than 300 nm, which is much coarser 

than that in ref[13]. Secondly, the hypothesis of BEL formation via plastic deformation will fail to 

interpret the significant hardness decrease in the white sublayer and the immediately beneath brown 

sublayer in Figs. 7.3(a) and (b). A gradually reduced hardness is more reasonable for the hypothesis of 

plastic deformation [12]. The further increasing hardness in the brown sublayer along the rail depth in 

Figs. 7.3(b) and (d) is in contrast to the expected hardness changes with decreasing plastic strains in 

pearlite microstructure after deformation. 

Instead, EBSD characterizations indicate that BEL forms dominantly via temperature induced 

martensite phase transformation. Firstly, the detection of retained austenite in the BEL in Figs. 7.8(a) 

and (c) is a strong indication of significant temperature increases up to austenitization temperature to 

transform the original pearlite to austenite [14,15]. Besides, the misorientation angle plot in Fig. 7.8(b) 

is a representative plot for martensite [16]. Secondly, the observation of isolated BEL in the pearlite 

region in Fig. 7.5(c) reveals the growing pattern of BEL during the loading history. The similar growth 

characteristic in WEL is observed by EBSD, which is proposed to form mainly via the martensite 

transformation mechanism in chapter 4. Such features can readily be interpreted by thermodynamic and 

kinetic theories [6]. As a result, BEL can be related to WEL in this case. Furthermore, the reduced KAM 

in the topmost BEL, Fig. 7.7(d), can also be explained due to recrystallization in this region. 
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In addition, the hardness distribution and the etching resistance to Nital chemical in the BEL, in Figs. 

7.3(b) and (d), can be interpreted by the changes in martensite hardness after tempering at different 

temperatures. According to the prediction from finite element simulation [6], the maximum temperature, 

generated during frictional contact with the wheels, is expected to occur at the rail surface. The 

decreasing hardness in the brown sublayer approaching to the rail surface in Fig. 7.3 (c) can then be 

interpreted to be due to the softening by increasing extent of tempering [17]. Furthermore, the hardness 

difference in the white and brown sublayers in Fig. 7.3(a) can be explained by the softening in the 

martensite and the repeated martensite-austenite-martensite phase transformation cycles. The brown 

sublayer in Fig. 7.3(a) can correspond to the zone that is heated to temperatures below the lower critical 

temperature for austenite to occur, namely, the Ae1 temperature. The martensite within this zone will 

not transform to austenite, while it will be tempered due to the high temperature. As a result, martensite 

closest to rail surface in Fig 7.3(c), while not transforming to austenite during heating, will be tempered 

to the greatest extent and consequently become the softest. The martensite in the white sublayer in Fig. 

7.3(a) will repeatedly transform to austenite during heating and subsequently transform to martensite 

during cooling. The tempering reduces the etching resistance of martensite to Nital chemical, leading to 

the brownish appearance observed in this study. 

It should, however, be pointed out that the above-mentioned hypothesis is based on the assumption that 

a single martensite WEL forms before the tempering occurs to form the observed white and brown 

sublayers in Fig. 7.3 (a) and (c). This can be possible since the unstable frictional heat is generated 

during the wheel/rail contact, which is a very complicated subject and is affected by different factors. 

Nevertheless, a reversed sequence for a BEL formed via martensite phase transformation is unlikely to 

occur, i.e. the brown sublayer forms prior and is the precursor for the white martensite sublayer. 

According to the quasi-binary phase diagram in Fig. 7.9, reproduced from chapter 5, a mixture of pearlite 

and martensite (transformed from austenite) is expected at temperatures below full austenitization. An 

increasing fraction of martensite will form at higher temperatures and will improve the hardness, if the 

rail steels is heated to the temperature range with mixed microstructures. Accordingly, this should lead 

to the observation of increasing hardness in the BEL when approaching the rail surface. However, an 

opposite hardness distribution is observed in Figs. 7.3(b) and (d) in this work 
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Fig. 7.9 The quasi-binary Fe – C phase diagram, reproduced from chapter 5 from this thesis.   

 

Meanwhile, evidence of plastic deformation history in the studies rail specimen can be identified. This 

is indicated by: (i) the fiber-like morphology in the BEL, Figs. 7.4(c) and (f), and the observed materials 

flow in Figs. 7.3(a) and (c); (ii) the alignment of grain morphology towards the ND direction in the 

topmost BEL, Fig. 7.5(a), (iii) the higher KAM in the BEL and the pearlite immediately underneath the 

BEL, compared with that of the undeformed matrix pearlite, Fig. 7.7(d); (iv) the grain fragmentation 

and the deformation bands in pearlite beneath the BEL/pearlite boundary, Fig. 7.5(c). As a result, the 

studied BEL forms via combined contribution of plastic deformation and thermally induced phase 

transformation.  

 

7.5. Conclusions 

 
This chapter characterizes a different type of WEL, the BEL, in a rail sample showing RCF damage. 

The BEL is characterized by optical microscopy, microhardness, scanning electron microscopy and 

EBSD. The findings are compared with WEL reported in the literature. The following conclusion can 

be drawn: 

(1) BEL consists of white and brown sublayers with distinctly different mechanical properties.  

(2) BEL forms via combined martensite phase transformation and plastic deformation. 

(3) The white sublayer is proposed as martensite and the brown sublayer is martensite that is tempered 

below the critical austenite transformation temperature.  
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Chapter 8 General conclusions and 

recommendations 

 

 

 

 

 

 

8.1. Conclusions 

 
The research presented in this dissertation focuses on the microstructural processes taking place during 

the wheel/rail contact in pearlitic railway steels. The most striking microstructural change is the 

formation of the White and Brown Etching Layers (WEL and BEL) at and just below the surface. The 

interpretation and analysis of the microstructural processes enable a semi-quantitative estimate of the 

mechanical and thermal conditions in the rail, which however was not the central issue of interest in this 

dissertation. The most significant findings from this research are summarized in this chapter: 

1) The current dissertation convincingly shows that the thermally-induced pearlite to austenite 

transformation occurs at the rail surface during the wheel/rail interaction. The austenite at the rail 

surface transforms during cooling to twinned martensite with very high carbon content and fine 

microstructure. This thin surface layer of high carbon martensite appears white after etching with 2 

to 5% nitric acid in ethanol and is known in the literature as WEL.  

2) This finding is supported by the characterizations on the WEL and the BEL in the R260 Mn grade 

rail steel, which is often found underneath the WEL. It is generally accepted that a small fraction of 

austenite is retained during the martensitic transformation and can be identified in the microstructure 

at room temperature, e.g. [1]. The common identification of retained austenite in the WEL by XRD, 

EBSD and TKD is strong evidence of temperature rise above the austenitization temperature during 

the wheel loading, which leads to the transformation from the initial pearlite to austenite. It is very 

difficult to monitor the exact loading conditions of the rails and it is almost impossible to preform 

accurate temperature measurements on the rail surface at the moment of rail/wheel contact. The 
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majority of the data for temperature changes in rails are obtained via modeling approach. In this 

work not only the observation of retained austenite is evidence for the occurrence of very high 

temperatures, but also the manganese diffusion in the surface WEL. Evidence for manganese 

diffusion was derived by comparing with the manganese profile from the matrix pearlite. This is 

evidence for the high-temperature increase in the rail surface since the manganese diffusion is very 

sluggish at low temperatures. Accordingly, the WEL is identified to consist of martensite and 

retained austenite. 

3) The structures in the WEL in rails can be simulated by ultrafast heating and cooling experiments 

under laboratory conditions. The martensite morphology in the WEL in rails was successfully 

reproduced by applying heating rates of 20 °C/s and 200 °C/s to different temperatures in the 

austenitization range, immediately followed by fast cooling. The retained austenite in the WEL, as 

found in rails, is also identified in the laboratory simulated WEL. This experiment showed that the 

WEL in rails can form by martensitic transformation, induced by attaining a high temperature, 

followed by fast cooling. 

4) Phase field modeling (PFM) is used to study the characteristics of the pearlite to austenite 

transformation during continuous heating. Although the applied heating rate of 2000 °C/s in the 

PFM is not directly applicable to the actual condition at rail surface during the wheel passage, e.g. 

more than 105 °C/s, the PFM results reveal a clear tendency of shift towards the interface-controlled 

mechanism during the austenite growth as heating rate increases.   

5) The study of the brown etching layer (BEL) indicates that the BEL forms most probably due to 

tempering of the martensite. Similarly to WEL, the identification of retained austenite through the 

whole BEL thickness is considered as strong evidence that the temperature increases above the 

austenitization temperature at the rail surface during the wheel/rail contact. The degradation of 

etching resistance to Nital and the reduced hardness in the brown sub-layer in the BEL can be 

interpreted to be due to the tempering of the martensite. Accordingly, the BEL is proposed to consist 

of tempered martensite. 

 

8.2. Recommendations for future work  

 

Besides the insight into the WEL and BEL formation presented in this dissertation, the following aspects 

are recommended to be further investigated for a better understanding of the WEL and BEL and their 

roles in the Rolling Contact Fatigue damage development: 

1) Characterization of the BEL to further explore its formation mechanism. The formation mechanism 

of BEL in Chapter 7 in this dissertation is a first interpretation and is proposed based on the different 

etching response to Nital, the hardness profile along the rail depth and the EBSD scans through the 

BEL thickness. Characterization with more advanced techniques, like TEM and APT that allow 

revealing the fine microstructure of BEL and type of carbides formed, will lead to more profound 
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insight. Identification of carbide types and the fine structure of martensite, together with the carbon 

content of austenite, can be used as evidence for the tempering processes in the WEL that change 

its microstructure, properties and etching response towards BEL.  

2) Quantitative study of the fracture and fatigue performance of the WEL and BEL. WEL is widely 

proposed to be an important cause to the initiation of rolling contact fatigue (RCF) cracks and its 

presence can cause RCF damage initiation. Similarly, the BEL can be another important cause of 

RCF damage. A more quantitative study on the fracture characteristics and fatigue properties of the 

WEL and the BEL and the comparisons with the martensite formed during fast heating and 

quenching heat treatments will be beneficial to confirm the role of WEL and BEL in the RCF crack 

formation. The fracture properties can be further used as more realistic input parameters for RCF 

formation in finite element simulations and micromechanical modeling, which will provide 

quantitative insight into the role in the RCF development in relation with the WEL and BEL. 

3) Experimental validation of the compositional characteristics in the martensite (the austenite during 

high temperature), formed under the realistic conditions simulated in Phase Field Modeling. The 

chemical compositions in the martensite can be considered to be identical to the austenite before the 

transformation and can be quantitatively studied by Atom Probe Tomography. Such study can 

experimentally validate the conclusion that high heating rates shift towards the interface-controlled 

mechanism during austenite growth, predicted from the phase field modeling.   

4) Study of the possible formation of WEL and BEL in bainitic rail steels and the role in the RCF 

evolution by in-field tests on the Dutch rail track and laboratory simulations with the recently 

developed railway test rig at the CiTG faculty of the Delft University of Technology. The bainitic 

rail steels have been shown to have advantages on the RCF performance over the pearlitic rail steels, 

e.g. the field tests [2] and from laboratory tests [3,4]. Whether WEL and BEL will form in the 

bainitic steel under the contact conditions on the Dutch rail track remains unclear. The test rig allows 

a precise control of the loading conditions to form the WEL and BEL in the bainitic steel.  
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Summary 

 

 

 

 

The microstructural aspects of rolling contact fatigue in rails were studied. The rail track is a critical 

component of the railway system and its long-term performance contributes crucially to the sustainable 

development of the railway system. The increasing demands of trains with a higher speed/capacity 

impose more severe load conditions on the steel rail tracks. Steels with improved performance are 

needed to meet such demands because the current rail steels are reaching their limit. Moreover, the 

understanding of the root cause of damage in rails is still insufficient. This hinders the development of 

new rail steels that perform better. 

The dominant damage in rails is rolling contact fatigue (RCF), the effects of which can cost the rail 

maintenance companies millions of euros a year. In order to reduce the rail track maintenance cycles, 

progress in numerical modeling to predict the RCF crack evolutions is continuously made.  

Simultaneously, numerous microstructure studies are being done on field loaded rail steels, to explore 

the cause of RCF by analyzing the rail steels’ response to the loading from the passing wheels. The 

knowledge of the rail microstructure is essential in these cases, especially due to fact that the RCF crack 

initiation is mainly microstructurally related.  

Premature RCF crack initiation in the pearlite rail steels occurs due to the formation of a peculiar surface 

(micro) structure change, classically called white etching layer (WEL). WEL is typically 2 – 3 times 

harder than the pearlite matrix. Metallographic studies in both field-loaded and laboratory simulated 

loadings of rail steels reveal frequently brittle fractures across the WEL, besides crack formations in the 

pearlite adjacent to the WEL. The numerical simulations identify a more extensive strain accumulation 

in pearlite close to the WEL, compared to that in pearlite without WEL.  

The microstructure in the WEL is complex and extremely fine, making the characterization of WEL 

challenging. High-resolution techniques such as X-Ray Diffraction (XRD), Transmission Electron 

Microscopy (TEM) and Atom Probe Tomography (APT) have been successfully applied to establish the 

grain size, phases, and compositional characteristics of WEL respectively. However, controversy 

regarding the origin of the WEL remains, most probably because the WELs studied in the literature were 

generated in rails under various and not well-defined loading conditions. In summary, WELs are 
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generally proposed to be caused via either martensite phase transformation owing to a significant 

temperature increase during wheel passage(s) or via significant grain refinement due to severe plastic 

deformation.  

In order to gain a comprehensive insight into the microstructure in the WEL, techniques at different 

resolution scales (from micrometer to nanometer), are used for characterizations in Chapter 4. The WEL 

was firstly investigated by optical microscopy and microhardness measurements to reveal the 

morphology and hardness of WEL and the pearlite matrix. XRD is used to study the phase components 

in the WEL, by scanning the surface areas containing WEL. Secondary electron images are taken from 

a scanning electron microscope (SEM) to assess the WEL at an improved resolution level, compared 

with that in optical microscopy. EBSD measurements in SEM provide information about grain structure, 

phase component in the WEL, which are compared with those in the pearlite matrix immediately beneath 

the WEL. Kernel Average Misorientation (KAM) analysis was used to quantify the deformation level. 

In addition, TEM is used to study the microstructure in the WEL with a resolution of sub-nanometer and 

APT is used to determine the compositions of WEL at the same dimensional level. The results obtained 

are consistent with each other: (i) Both XRD and EBSD show the presence of retained austenite, 

indicating the martensite nature of WEL; (ii) TEM identifies a representative nano-twinning substructure 

of martensite and the presence of untransformed cementite; (iii) the APT results reveal a significant 

manganese redistribution between zones of previous cementite and ferrite, providing direct evidence of 

a temperature increase. The experimental findings are compared with those of the literature and they are 

in good agreement. The WEL in Chapter 4 has the same white color as in the one reported in the 

literature, taken from optical microscopy and after being etched with the same chemical etchant. In 

addition, grain size quantification from EBSD measurements shows that the grains within the WEL can 

go up to micrometer size. This is much larger than that reported in the nanocrystalline ferrite WEL. 

Furthermore, the KAM comparison shows the absence of deformation in the pearlite matrix immediately 

beneath the WEL. Based on the microstructural investigations at different scales, it is suggested that the 

studied WEL has been formed via martensite phase transformation. 

A laboratory simulation of WEL formation during continuous heating is described in Chapter 5. This 

simulation provides supportive evidence for the conclusions drawn in Chapter 4. Although it is 

impossible to fully reproduce real conditions for WEL formation, e.g. the extremely high heating rate, 

the well-controlled laboratory conditions will enable a (semi)quantitative insight into the WEL 

formation process and the outcome can further be used for verifying the theoretical simulations. In 

Chapter 5, WEL formation during continuous heating was simulated in a thermo-mechanical simulator, 

under heating rates of 20 and 200 °C /s to different temperatures above the austenitization temperature. 

Simultaneous deformation and heating-quenching tests were done to assess the contribution of local 

plastic strain in the martensite formation. The microstructures after the tests were characterized by 

optical microscopy, microhardness, and EBSD. It is found that, with the applied heating rates, the 

generated martensite has a similar hardness and morphology as WEL observed in Chapter 4 under real 
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exploitation conditions. EBSD measurements on both laboratory simulated and rail WEL identify 

similar grain sizes. Plastic deformation is shown to enhance the formation of martensite, compared with 

specimens tested under identical conditions without strain. The experimental findings can be interpreted 

by thermodynamic and kinetic calculations. Finally, FEM simulation of temperature changes during 

wheel/rail contact also confirms the possibility of a temperature increase in rails above the 

austenitization temperature. 

In Chapter 6, WEL formation due to pearlite to austenite and the subsequent martensite phase 

transformation is modeled using the phase field modeling approach, in order to obtain insight into the 

specifics of WEL formation. For the modeling, a 2D microstructure model was first built to represent 

the pearlite microstructure in 3D, from the consideration of the plate-like morphology of ferrite and 

cementite and the assumption that the carbon diffusivity is isotropic. The driving force of the ferrite and 

cementite to austenite transformations is obtained using the linearized iron-carbon phase diagram, 

whereby the transformation kinetics are taken into account by incorporating the phase interface mobility 

and  diffusivity of carbon. Due to fact that WEL formation occurs most probably after many wheel 

passages, the martensite, which transforms from the austenite from the previous wheel passage, is 

included as the initial microstructure for the next wheel pass. Martensite is, however, a non-equilibrium 

phase and there is scarce quantitative information regarding the martensite to austenite transformation. 

Following the literature, carbon-supersaturated ferrite is used to represent the martensite. The simulation 

results show that transformation from ferrite to austenite is faster than that of the cementite to austenite 

transformation. The increased heating rate caused the carbon concentration in austenite to deviate more 

from the equilibrium concentration. Accordingly, there is more heterogeneity in the mechanical 

properties in the WEL, which inherit the carbon concentration of the austenite. 

In Chapter 7, a new type of surface damaged layer, named as BEL due to the brownish appearance, is 

discussed. BEL differs from WEL not only in its appearance in optical microscopy but also in its 

hardness. Measurements of crack lengths show that the RCF cracks associated to BEL are longer than 

those formed by the WEL. Characterization with hardness, optical microscopy, and EBSD shows a 

layered structure in the BEL. The brownish area within the BEL is significantly softer than the classical 

WEL, while its white colored area has a hardness similar to the WEL. EBSD measurements identify 

retained austenite in the BEL and grain refinement in the pearlite immediately beneath the BEL. The 

deformation features, in the BEL and the pearlite underneath are quantified by the KAM method from 

EBSD scans, by comparing with the measurement from deformation-free pearlite areas. As a result, 

BEL is considered to form via both plastic deformation and phase transformation. The white sublayer is 

proposed as martensite and the brown sublayer is martensite that was tempered below the critical 

austenite transformation temperature. 
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Samenvatting 

 

 

 

 

 

De microstructurele aspecten van rollende contactmoeheid in rails worden in dit proefschrift beschreven  

De spoorstaven vormen  een cruciaal onderdeel van het spoorwegsysteem en de lange duur  prestaties 

hiervan dragen in hoge mate bij aan de duurzame ontwikkeling van het  systeem. Treinen  met steeds 

hogere snelheid / capaciteit leggen steeds zwaardere belastingscondities op aan de stalen railsporen. 

Staalsoorten met  betere  prestaties in spoorbanen zijn nodig om aan de toenemende  eisen te voldoen, 

omdat de huidige railstalen hun limiet bereiken. Bovendien is het inzicht in  de grondoorzaak van schade 

aan rails nog onvoldoende. Dit belemmert  de ontwikkeling van nieuwe spoorstaafstalen met betere 

prestaties. 

De dominante schade in rails is  rollende contactmoeheid (RCF), waarvan de effecten de 

spoorwegonderhoudsbedrijven miljoenen euro's per jaar kunnen kosten. Om de onderhoudcycli van het 

spoor te verkorten, wordt continu vooruitgang geboekt in de numerieke modellering om de RCF-

scheurontwikkeling te voorspellen. Gelijktijdig   worden  parallel daaraan tal van microstructuurstudies 

uitgevoerd op het belaste railstaal, om de oorzaak van RCF te onderzoeken door de respons van de  

spoorstalen op  de passerende wielen te analyseren. De kennis van de railmicrostructuur  is hierbij 

essentieel, vooral vanwege het feit dat de RCF-scheur initiatie hoofdzakelijk microstructureel 

gerelateerd is. 

Voortijdige RCF-scheurinitiatie in het perliet-railstaal vindt plaats als gevolg van  een bijzondere  

verandering van de (micro-) oppervlaktestructuur, klassiek aangeduid als witte etslaag (WEL). WEL is 

meestal 2 - 3 keer harder dan de perlietmatrix. Metallografische studies   van railstaal, naar  zowel in de 

praktijk belaste als laboratorium belaste railstaal onthullen vaak brosse breuken over de WEL, naast 

barstvorming in het perliet in de buurt van de WEL. De numerieke simulaties tonen  een meer 

uitgebreide spanningsaccumulatie aan in perliet dichtbij de WEL, dan in het perliet  zonder WEL. 

De microstructuur in de WEL is complex en buitengewoon kleinschalig , waardoor de karakterisering 

van WEL uitdagend is. Hoge-resolutie technieken zoals X-Ray Diffraction (XRD), Transmission 

Electron Microscopy (TEM) en Atom Probe Tomography (APT) zijn met succes toegepast om 

respectievelijk de korrelgrootte, fasen en compositiekenmerken van WEL te karakteriseren. 
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Controversen met betrekking tot de oorsprong van de WEL bestaan  echter nog steeds. Dit is 

hoogstwaarschijnlijk te wijten aan het feit dat de WEL's die in de literatuur worden beschreven , werden 

gegenereerd in rails onder verschillende en niet goed gedefinieerde bedrijfsomstandigheden . 

Samenvattend, WEL's worden over het algemeen gesteld te worden veroorzaakt via martensite fase 

transformatie als gevolg van een significante temperatuurstijging tijdens de wielpassage (s) of via 

aanzienlijke korrelverfijning als gevolg van sterke  plastische vervorming. 

Om een uitgebreid inzicht te krijgen in de microstructuren in de WEL, worden in Hoofdstuk 4technieken 

op verschillende resolutieschalen (van micrometer tot nanometer)  gebruikt voor de karakterisering. De 

WEL werd eerst onderzocht  door optische microscopie en microhardheidsmeting om de morfologie en 

hardheid van WEL en de perliet -matrix vast te stellen. XRD werd  gebruikt om de fasecomponenten in 

de WEL te bestuderen door de oppervlakten te scannen die WEL bevatten. Secundaire 

elektronenbeelden werden genomen van een scanning-elektronenmicroscoop (SEM) om de WEL te 

analyseren  met een verbeterd resolutieniveau, vergeleken met dat  in optische microscopie. EBSD-

metingen in SEM verschaffen  informatie over  de korrelstructuur, de fasecomponenten in de WEL. 

Deze worden  vergeleken met die in de perlietmatrix onmiddellijk onder de WEL. Kernel Average 

Misorientation (KAM) -analyse werd gebruikt om het deformatieniveau te kwantificeren. Bovendien 

werd t TEM gebruikt om de microstructuur in de WEL vast te stellen  met een resolutie van sub-

nanometers en wordt APT gebruikt om de samenstellingen van WEL in hetzelfde dimensie –bereik  waar 

te nemen . De verkregen resultaten zijn consistent met elkaar: (i) Zowel XRD als EBSD tonen  de 

aanwezigheid van vastgehouden austeniet aan, wat de martensietaard van WEL aangeeft; (ii) TEM laat  

een representatieve nano-twinning substructuur van martensiet en de aanwezigheid van niet-

getransformeerd cementiet zien; (iii) de APT-resultaten onthullen een significante herverdeling van 

mangaan tussen zones van eerder aanwezig cementiet en ferriet, wat een direct bewijs van 

temperatuurverhoging oplevert . De experimentele bevindingen worden vergeleken met die uit de 

literatuur en zijn in goede overeenstemming. De WEL in Hoofdstuk 4 heeft dezelfde witte kleur als die 

in de literatuur wordt  vermeld.Zij werd vastgesteld met  optische microscopie en werd  geëtst met 

hetzelfde chemische etsmiddel. Bovendien laat kwantificering van de korrelgrootte van EBSD-metingen 

zien dat de korrels binnen de WEL tot  micrometers groot  kunnen zijn en dus veel groter zijn dan die 

gerapporteerd in het nanokristallijne ferriet WEL. Verder toont de KAM-vergelijking de afwezigheid 

aan van vervorming in de perlietmatrix direct onder de WEL. Op basis van de microstructurele 

karakterisering  op verschillende schalen, wordt gesuggereerd dat de bestudeerde WEL-vormen worden 

gevormd via martensietfase-transformatie. 

Een laboratoriumsimulatie van WEL-vorming tijdens continue verwarming wordt in Hoofdstuk 5 

beschreven . Deze simulatie biedt aanvullend  bewijs voor de conclusies in Hoofdstuk 4. Desondanks is 

het onmogelijk om reële omstandigheden voor WEL-vorming na te bootsen, b.v. de extreem hoge 

verwarmingssnelheid. De  goed gecontroleerde laboratoriumomstandigheden geven  echter wel een 

(semi) kwantitatief inzicht in het WEL-formatieproces . De  uitkomst kan verder worden gebruikt voor 
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het verifiëren van de theoretische simulaties. In Hoofdstuk 5 wordt  WEL-vorming tijdens continue 

verwarming gesimuleerd in een thermomechanische simulator, onder opwarmsnelheden van 20  en 

200 °C /s tot verschillende temperaturen boven de austenitiseringstemperatuur. Gelijktijdige 

vervormings- en opwarm-afkoel  proeven   werden uitgevoerd om de bijdrage van plaatselijke plastische 

deformatie  in de martensietformatie te bestuderen. De microstructuren na de tests werden onderzocht 

met  optische microscopie, microhardheid en EBSD. Het is gebleken dat, met de toegepaste 

verwarmingssnelheid, het gegenereerde martensiet een vergelijkbare hardheid en morfologie heeft als 

WEL onder  reële exploitatie-omstandigheden zoals waargenomen in Hoofdstuk 4. EBSD-metingen op 

zowel laboratorium-gesimuleerde als rail-WEL laten  vergelijkbare korrelgroottes zien. Er wordt  

aangetoond dat plastische vervorming de vorming van martensiet versterkt , vergeleken met  monsters 

die zonder spanning onder dezelfde omstandigheden zijn getest. De experimentele bevindingen konden  

worden geïnterpreteerd door thermodynamische en kinetische berekeningen. Tenslotte wijst  FEM-

simulatie van de temperatuurveranderingen tijdens contact tussen wiel en rail eveneens  op de 

mogelijkheid van temperatuurverhogingen in rails boven de austenitiseringstemperatuur. 

In Hoofdstuk 6 wordt WEL-vorming als gevolg van perliet tot austeniet en de daaropvolgende 

martensietfase-transformatie gemodelleerd met behulp van een faseveld-modelleringsaanpak, om zo 

inzicht te krijgen in de kenmerken van WEL-vorming. Voor de modellering werd eerst een 2D 

microstructuurmodel gebouwd om de perlite microstructuur in 3D weer te geven, uitgaande  van de 

plaatachtige morfologie van ferriet en cementiet en de aanname dat de koolstof diffusie isotroop is. De 

drijvende kracht van de ferriet- en cementiet-tot-austeniettransformaties werd  verkregen door gebruik 

te maken van het gelineariseerde ijzer-koolstof fasediagram waarbij  de transformatiekinetiek  in 

rekening wordt gebracht door integratie van fase-grenslaagmobiliteit en de diffusiviteit van koolstof. 

Vanwege het feit dat WEL-vorming hoogstwaarschijnlijk na veel wielpassages optreedt , wordt het 

martensiet, dat transformeert van het austeniet van de vorige wielpassage, opgenomen als de initiële 

microstructuur voor de daaropvolgende wielpassage. Martensiet is echter een niet-evenwichtsfase en er 

is nauwelijks kwantitatieve informatie over de martensiet-naar-austeniettransformatie. Volgens de 

literatuur wordt koolstof-oververzadigd ferriet gebruikt om het martensiet  te representeren . De 

resultaten van de simulaties laten zien dat transformatie van ferriet naar austeniet sneller gaat  dan de 

omzetting van cementiet naar austeniet. De verhoogde verwarmingssnelheid zorgt ervoor dat de 

koolstofconcentratie in austeniet meer afwijkt van de evenwichtsconcentratie. Dienovereenkomstig is 

er meer heterogeniteit in de mechanische eigenschappen in de WEL, die de koolstofconcentratie van het 

austeniet aannemen . 

In Hoofdstuk 7 wordt  een nieuw type oppervlakbeschadigde laag, BEL genoemd vanwege het bruine 

uiterlijk, beschreven . BEL verschilt van WEL, niet alleen qua  uiterlijk onder optische microscopie 

maar ook qua  hardheid. Metingen van scheurlengten tonen aan dat de RCF-scheuringen geassocieerd 

met BEL langer zijn dan die gevormd door de WEL. Karakterisering met hardheid, optische microscopie 

en EBSD toont een gelaagde structuur aan binnen de BEL. Het bruinachtige gebied binnen de BEL is 
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aanzienlijk zachter dan de klassieke WEL, terwijl het witgekleurde gebied een vergelijkbare hardheid 

heeft als de WEL. EBSD-metingen identificeren achtergebleven  austeniet in de BEL en korrelverfijning 

in het  perliet  onmiddellijk onder de BEL. De vervormingseigenschappen in de BEL en het perliet 

daaronder werden gekwantificeerd door de KAM-methode van EBSD-scans, door deze te vergelijken 

met de meting van vervormingsvrije  gebieden. Als gevolg hiervan wordt BEL beschouwd zich  te 

vormen via zowel plastische vervorming als fasetransformatie. De witte sublaag wordt voorgesteld als 

martensiet en de bruine sublaag is martensiet dat werd  getemperd onder de kritische 

austeniettransformatietemperatuur. 
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