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Abstract: This paper presents a review of our original results obtained during the last decade. 

These results have been found theoretically for classical mass-action-law models of chemical 

kinetics and justified experimentally. In contrast with the traditional invariances, they relate to a 

special battery of kinetic experiments, not a single experiment. Two types of invariances are 

distinguished and described in detail: thermodynamic invariants, i.e., special combinations of 

kinetic dependences that yield the equilibrium constants, or simple functions of the equilibrium 

constants; and “mixed” kinetico-thermodynamic invariances, functions both of equilibrium 

constants and non-thermodynamic ratios of kinetic coefficients. 

Keywords: invariant expression; two-step mechanism; scaled incremental conversion; 

conservatively perturbed equilibrium; linear complex mechanism; thermodynamic invariant 

 

1. Introduction 

1.1. Definition of Invariants 

Searching for invariants is one of the most important goals of many sciences such as chemical 

kinetics and chemical engineering. Invariants are considered functions of the state variables that 

remain constant during non-steady-state complex transformations. 

Linear element conservation laws are well known linear invariances that are widely used in 

chemistry and chemical engineering. Linear stoichiometric relationships of chemical reactions are 

cases of conservation laws. Stoichiometric coefficients are numbers of molecules of chemical 

components, which participate in chemical reactions. These coefficients have a negative sign and a 

positive sign for reactants and products, respectively. 

Linear element conservation laws are valid regardless of the kinetic and thermodynamic 

properties of the reaction mechanism, as well as the way the chemical reactions are carried out. 

These laws are determined only by the list of chemical substances. As for linear stoichiometric 

relationships, they typically correspond to the detailed mechanism of a complex chemical reaction. 

The up-to-date mathematical framework of application of these linear invariants is presented in 

recent monographs [1,2]. 

1.2. Thermodynamic Invariants from Reciprocal Experiments 
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Since 2011 new and original types of chemical invariants were described [3–5]. These invariants 

of thermodynamic origin are closely related to Onsager’s famous reciprocal relations [6,7]. The 

experimental procedure, real or computational, consists of two dual experiments performed from 

different initial conditions of the reacting mixture, called the “dual experiments”. The simplest of 

these invariants is related to the single reversible reaction A ⇄ B, in a batch reactor (BR): 

 The first experiment is performed in a reactor primed with substance A only. 

 The second experiment is performed in a reactor primed with substance B only.  

In both cases, the time-dependent concentrations of A and B are measured, A(t) and B(t), 

respectively. A special attention was paid to symmetric concentration profiles: the dependences “B 

produced from pure A”, BA(t), from the first experiment, and “A produced from pure B”, AB(t), from 

the second experiment. Explicit formulas for these concentration profiles are shown in Table 1, 

assuming that both the forward and backward reaction as first-order, monomolecular reactions, 

with kinetic coefficients k+ and k−, respectively. 

Table 1. Concentration profiles of A and B for the reversible reaction A ⇄ B, from two 

different initial conditions. 

Experiment Substance Concentration Profile 

1st experiment, from pure A. 

A A�(t) =
k�e�(�����)� + k�

k� + k�
 

B B�(t) =
k��1 − e�(�����)��

k� + k�
 

2nd experiment, from pure B. 

A A�(t) =
k��1 − e�(�����)��

k� + k�
 

B B�(t) =
k�e�(�����)� + k�

k� + k�
 

The notation of the concentration profiles is as follows: the first capital letter denotes the 

substance, whereas the subscript letter denotes the single component primed in the reactor, in this 

case: pure A or pure B. The concentration profiles shown in Table 1 are plotted in Figure 1. 

As seen in Table 1, the ratio of the symmetric concentration profiles BA(t)/AB(t) is constant, equal 

to the equilibrium constant of the reversible reaction Keq, Keq = k+/k−. The equality BA(t)/AB(t) = Keq is 

valid for t > 0, i.e., throughout the course of the reaction. Clearly, this invariant expression is 

different from other linear invariances such as mass conservation balances. The new invariant 

expression is used as follows: knowing the thermodynamic characteristic—the equilibrium 

constant—and one concentration profile, say, AB(t), we can find another, unknown, concentration 

profile, for instance BA(t) = AB(t)Keq [8]. 

This result is valid also for a steady-state plug flow reactor (PFR) and a steady-state 

continuously stirred tank reactor (CSTR), if the astronomic time t is replaced by the space time , 

defined as the reactor volume divided by the volumetric flow rate [1,2]. 

It is reasonable to define this ratio of concentration profiles, BA(t)/AB(t), as a thermodynamic 

invariant, since it is equal to a thermodynamic parameter such as the equilibrium constant Keq. This 

type of invariant can be observed in more complicated, reversible linear mechanisms, calculated 

from the ratio of concentration profiles of any arbitrary chemical species connected via any number 

of reversible reactions, as long as these concentration profiles are obtained from dual experiments 

[4]. The thermodynamic invariants obtained for complex multistep mechanisms are two-fold: 

 Pure equilibrium constants, obtained from the ratio of concentration profiles of chemical species 

connected via a single step reaction within a complex chemical mechanism.  

 Apparent equilibrium constants, consisting of products of equilibrium constants of elementary 

reactions, obtained from the ratio of concentration profiles of chemical species connected via 

multiple step reactions in a complex chemical mechanism. 
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Figure 1. Concentration profiles of A (black) and B (blue), starting from pure A (solid) and 

from pure B (dashed), assuming a single step reversible reaction A ⇄ B with k+= 2 s−1, k−= 1 

s−1. The ratio between BA(t) (solid blue) and AB(t) (black dashed) is the equilibrium 

constant. 

The theoretical basis of these invariants within the thermodynamic theory of irreversible 

processes is given elsewhere [4]. In 1931, Onsager [6,7] presented the foundations and 

generalizations of the reciprocal relations introduced in the 19th century by Lord Kelvin and 

Helmholtz. In his historical papers, Onsager mentioned also the close connection between these 

relations and the detailed balance of elementary processes: at equilibrium, each elementary 

transaction must be equilibrated by its inverse transaction. For linear or linearized kinetics with 

microreversibility, x’ = K x, where x is the vector of the solution, the kinetic operator K is symmetric 

in the entropic inner product. This form on Onsager’s reciprocal relations implies that the shift in 

time, eKt, is also a symmetric operator. This feature generates the reciprocal relations between the 

kinetic curves; this is the fundamental basis of our thermodynamic invariants [4]. 

In a more general setting, duality between experiments must be defined using the entropic 

inner product [4]. Let J denote the vector of fluxes and X that of thermodynamic forces, then by 

Onsager’s relations J = L X, where L is a symmetric matrix. In isolated systems, X is the gradient of 

the entropy Φ, and the linear(ized) kinetic equation is ẋ = Kx, where K = L(D�Φ)�� is the product 

of two symmetric matrices, which need not be symmetric (for the standard inner product). If, 

however, we use the entropic inner product instead, defined by < a|b >�=

− ∑ a�
���

��� ���
�,� |��b�, symmetry is obtained in the sense that < Ka|b >�=< a|Kb >�. Integrated over 

time, this means that < e��a|b >�=< a|e��b >�. The general requirement for two trajectories to be 

dual is then that their initial values be orthogonal in this entropic inner product. 

Even some simple non-linear mechanisms may show similar invariants, calculated from the 

ratio of selected concentration profiles. For instance, for the elementary reaction A + B ⇄ C + D it can 

be demonstrated that (CA(t) DC(t))/(AC(t) BA(t)) = Keq, where CA(t) and BA(t) are concentration profiles 

obtained when the initial concentration of C is zero, and AC(t) and DC(t) are concentration profiles 

obtained when the initial concentration of A is zero [5].  

With this knowledge, it is possible to predict unknown kinetic dependences based on the 

chemical equilibrium description and known kinetic dependences [8]. Additionally, we are able to 

confirm our experimental data validating them via the new invariants. Design of special batteries of 

kinetic experiments, virtual and/or real, can be considered a new step towards understanding the 

behavior of complex chemical reactions, and to gain insights on the intrinsic kinetic features of 

complex mechanisms.  

2. Experimental Verification of Thermodynamic Invariants 
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2.1. Water Gas Shift Reaction  

Yablonsky et al. [4] and then Constales et al. [9] justified the experimental validity of these 

invariances for non-steady-state kinetic dependences in a Temporal Analysis of Products (TAP) 

reactor. The experiments were performed in the thin zone TAP reactor Knudsen regime conditions. 

The reversible water–gas shift reaction, H2O + CO ⇄ CO2 + H2, was carried over an iron oxide 

catalyst. Two types of pulse experiments were performed: a) the oxidized catalyst was treated by a 

series of pulses of CO, and b) the reduced catalyst was treated by a series of pulses of CO2. A single 

pulse experiment was performed injecting CO in the reactor, and measuring the exit flow of CO2, 

and vice versa: injecting CO2 in the reactor, and tracking the flow of CO at the exit of the reactor. The 

reversible conversion of CO to CO2 was approximated by a first order reversible reaction A ⇄ B. 

From the combined Laplace–Fourier technique, the thermodynamic invariant was obtained from the 

outlet flow data of the two gases. 

2.2. Redox Reaction of Ferricyanide and Ferrocyanide 

Later, Hankins et al. [10] performed transient electrochemical experiments using the reduction 

of ferricyanide to ferrocyanide, measuring the concentration of each substance separately using a 

gold disk-ring electrode. The electrochemical reaction ferricyanide ⇄ ferrocyanide was 

approximated by a first order reversible reaction A ⇄ B. The experiments consisted of a dual 

chronoamperometry, by setting the potential of both the ring and disk electrodes to an equivalent 

far-from-equilibrium potential such as the anodic or cathodic limit, respectively, and allowing 

relaxation to equilibrium state defined by the Nernst potential. The limiting electric currents are 

related by the equilibrium constant of the ferri/ferrocyanide system. This relationship provides the 

unique possibility of predicting the transient electrochemical trajectory starting from one initial 

condition based only on both the known trajectory, which starts from the symmetric initial condition 

and the equilibrium constant. 

2.3. Etherification/Hydrolysis Reaction 

Peng et al. [11] tested the validity of the thermodynamic invariance using a batch reactor where 

the reaction of etherification of ethanol with acetic acid was studied jointly with the reaction of 

hydrolysis of ethyl acetate. In the etherification reaction, the glass flask was loaded with ethanol and 

acetic acid, and with ethyl acetate and water for the hydrolysis reaction, using acetonitrile as a 

solvent, at different temperatures (20, 30 and 40 °C); ethanol + acetic acid ⇄ ethyl acetate + water, or, 

symbolically, A + B ⇄ C + D, where A is ethanol, B is acetic acid, C is ethyl acetate and D is water. As 

mentioned in the previous section, this reaction has an invariant expression, (CA(t) DC(t))/(AC(t) 

BA(t)) = Keq. This was the first experimental evidence of a thermodynamic invariance obtained for a 

non-linear chemical system, and this invariance was found in the dual kinetic experiment [5,11]. 

3. Kinetico-Thermodynamic Invariants for Two-Step Mechanisms 

The single reversible reaction A ⇄ B is the starting point of the thermodynamic invariants 

discussed in the previous section. In this section it will be shown that more complex linear 

mechanisms exhibit the so called kinetico-thermodynamic invariants. The two-step mechanism A ⇄ 

B ⇄ C is chosen for illustrating these invariants. Of the two methods described in this section to 

obtain kinetico-thermodynamic invariants, only the last one, described in Section 3.2, can be 

extrapolated to more complex linear mechanisms. 

3.1. From Scaled Incremental Conversion (SCI) 

The function that will be used to calculate the invariants for a two-step mechanism is closely 

related to the widely used term “conversion”. For the substance A, the Scaled Incremental 

Conversion (SIC) of A, A, is defined as follows: 

χ� =
A(t) − A�

A�� − A�

 (1)
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where Ao and Aeq are the initial and the equilibrium concentration of A, respectively.  

At the beginning of the reaction, at time t = 0, A(0) = Ao, so the SIC value  is zero. On the other 

hand, at the end of the reaction or at equilibrium, A(t→∞) = Aeq, and the SIC value  is equal to one, 

as seen in Figure 2. For both irreversible and reversible reactions, the SIC values go from zero to one, 

at the beginning of the chemical reaction and at chemical equilibrium, respectively. It can be easily 

demonstrated that SIC expressions of two chemical species from symmetric initial conditions are 

always equal [12]. 

The invariants are calculated using the invariant generator function F shown in Equation (2). 

This function uses four concentration profiles Ci as arguments: 

F(C�, C�, C�, C�) =
Δχ��

Δχ��
=

χ� − χ�

χ� − χ�

 (2)

where i denotes the SIC of the substance i, evaluated at a given initial condition.  

The difference of SIC terms that appear in the generator function F is equal to zero at t = 0, and is 

also zero at equilibrium. Then, a plot of the difference of SIC terms shows an extreme value at a 

value of time defined exclusively by the kinetic coefficients, independent of the SIC terms involved 

in the difference [12].  

The invariants obtained from Equation (1) for a two-step consecutive mechanism will be 

divided threefold, according to the number of initial conditions involved in the four arguments of 

the invariant generator function F: 

 Thermodynamic invariants, calculated from the same initial condition. These invariants, shown 

in Table 2, depend on two independent parameters: the equilibrium constants K1 and K2.  

To facilitate the reading of the tables of invariants, we will break down the last of the invariant 

expressions listed in Table 2. The arguments of this invariant are {AB, BB, BB, CB}; these concentration 

profiles are the four arguments of the function F. The invariant expression is obtained evaluating SIC 

expressions of these concentration profiles, and relating them according to Equation (2), as follows: 

F(A�, B�, B�, C�) =
χ��

− χ��

χ��
− χ��

=

A(t) − A�

A�� − A�
�

(��,��,��)�(�,��,�)

−
B(t) − B�

B�� − B�
�

(��,��,��)�(�,��,�)

B(t) − B�

B�� − B�
�

(��,��,��)�(�,��,�)

−
C(t) − C�

C�� − C�
�

(��,��,��)�(�,��,�)

=

A�(t)
A��

−
B�(t) − B�

B�� − B�

B�(t) − B�

B�� − B�
−

C�(t)
C��

=
k�

�

k�
�

k�
�

k�
� = K�K� = K�� 

(3)

Due to the fact that the SIC expressions of reciprocal concentration profiles are equal, this 

invariant expression can also be obtained from the following combinations of arguments: 
F(A�, B�, B�, C�) = F(B�, B�, B�, C�) = F(A�, B�, B�, B�) = F(B�, B�, B�, B�) = K�� 

(4)
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Figure 2. From top to bottom, the Scaled Incremental Conversion (SIC) plots of CB, BB, BA 

and CA. k1+ = 4.5 s−1, k1− = 10 s−1, k2+ = 6.5 s−1, k2− = 12 s−1. 

• Kinetico-thermodynamic invariants calculated from two different initial conditions,  

Since the two-step mechanism is described by four parameters: k1+, k1−, k2+ and k2−, the 

kinetico-thermodynamic invariants are functions of three independent dimensionless parameters: 

two equilibrium constants K1 = k1+/ k1− and K2 = k2+/ k2−, and the non-thermodynamic ratio in = k1+/k2−, 

as seen in Tables 3 and 4. Any other ratio of kinetic coefficients can be calculated from both the 

equilibrium constants and in; however, it is not possible to resolve single kinetic coefficients using 

the invariants. The physicochemical meaning of κ�� is the following: it is the ratio of the kinetic 

coefficients of the incoming reactions to the substance B. A similar non-thermodynamic ratio is out = 

k1−/k2+; the ratio of the kinetic coefficients of the outgoing reactions to the substance B. These 

non-thermodynamic ratios are related as follows: 

���

����

= ���� = ��� (5)

• Kinetico-thermodynamic invariants calculated from three different initial conditions, shown in 

Table 5.  

Table 2. Thermodynamic invariants for a two-step consecutive mechanism, calculated 

from the same initial condition. 

Arguments of the F function Invariant 

{��, ��, ��, ��} −��  

{��, ��, ��, ��} ��� 

Table 3. Kinetico-thermodynamic invariants for a two-step consecutive mechanism, 

calculated from two different initial conditions: A and B. 

Arguments of the F function Invariant 

{��, ��, ��, ��} −
(1 + ���)���

(�� + ���)(−1 + ���)
 

{��, ��, ��, ��} 
�����

1 + �� − ���

 

{��, ��, ��, ��} −
��(1 + ���)���

(1 + ��)(��� + ���)
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{��, ��, ��, ��} −
��(1 + ���)���

(1 + ��)(−1 + ���)
 

{��, ��, ��, ��} 
�����

1 + ��

 

{��, ��, ��, ��} 
(1 + ���)���

(1 + ��)(−1 + ���)
 

{��, ��, ��, ��} −
(1 + ���)(1 + �� − ���)

(1 + ��)(−1 + ���)
 

{��, ��, ��, ��} 
(1 + ���)���

��� + ���
 

{��, ��, ��, ��} 
(1 + ���)���

−1 + ���

 

{��, ��, ��, ��} −
���

1 + ��

 

{��, ��, ��, ��} −��� 

{��, ��, ��, ��} 
1 − ���

1 + ���

 

Table 4. Kinetico-thermodynamic invariants for a two-step consecutive mechanism, 

calculated from two different initial conditions: A and C. 

Arguments of the F function Invariant 

{��, ��, ��, ��} 
(�� + ���)���

�� + ��� − (1 + ��)���
 

{��, ��, ��, ��} 
(�� + ���)���

�� + ���

 

{��, ��, ��, ��} −
(�� + ���)���

1 + ��
 

{��, ��, ��, ��} −
(1 + ��)���

�� + ���

 

{��, ��, ��, ��} 
(1 + ��)���

1 + ��
 

{��, ��, ��, ��} 
(1 + ��)(−1 − �� + ���)

1 + ��

 

Table 5. Kinetico-thermodynamic invariants for a two-step consecutive mechanism, 

calculated from three different initial conditions. 

Arguments of the F function Invariant 

{��, ��, ��, ��} −
(1 + ���)(�� + ���)���

(1 + ��)(��� + ��(−1 + ���) + ���)
 

{��, ��, ��, ��} 
(1 + ��)��(��� + ��(1 − ���) + ���)

(1 + ���)(�� + ��� − (1 + ��)���)
 

{��, ��, ��, ��} 
(1 + ��)��(��� + ��(1 − ���) + ���)

(1 + ���)(�� + ���)
 

{��, ��, �� , ��} −
(1 + ��)��(��� + ��(1 − ���) + ���)

(1 + ��)(1 + ���)
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3.2. From Conservatively Perturbed Equilibrium (CPE). The Simplest Case  

If two equilibrium concentrations are swapped in a two-step mechanism, the initial 

concentration of the third one will be equal to its corresponding equilibrium concentration, due to 

balance. This type of experiment is denoted as Conservatively Perturbed Equilibrium (CPE), 

described elsewhere [13]; in a CPE experiment, the initial concentrations of some substances are set 

equal to their corresponding equilibrium concentrations; these substances are called unperturbed 

substances. For the rest of the substances in the mechanism, called perturbed substances, their initial 

concentrations differ from their corresponding equilibrium concentrations, in such a way that the 

total balances of the elements remains unaffected. A special parameter, , measures the magnitude 

of the perturbation for these substances with respect to their corresponding equilibrium 

concentrations. 

There are three different possibilities of CPE-experiments on the two-step mechanism studied 

in this section, shown in Table 6. Notice that the total balance of the perturbed and unperturbed 

substances is not affected by the perturbations. For instance, for the case when B and C are 

perturbed, and A unperturbed, we have that Ao + Bo + Co = Aeq + (Beq – ) + (Ceq + ) = Aeq + Beq + Ceq. 

When  = 0, detailed balance is obtained. For a special value of , shown in the last column in Table 6, 

the equilibrium concentrations of the perturbed substances appear swapped. This value of  

corresponds to the absolute value of the difference of the equilibrium concentrations of the swapped 

substances. Then, the swap of the equilibrium concentrations it is a particular case of a CPE 

experiment [14]. 

Table 6. Combinations of perturbed and unperturbed substances in a two-step 

mechanism. 

Unperturbed 

Substance 

Perturbed  

Substances 
Initial Concentrations Value of  

A B, C (Ao, Bo, Co) = (Aeq, Beq – , Ceq + )  = Beq – Ceq 

B A, C (Ao, Bo, Co) = (Aeq – , Beq, Ceq + )  = Aeq – Ceq 

C A, B (Ao, Bo, Co) = (Aeq – , Beq + , Ceq)  = Aeq – Beq 

The concentration profiles of the unperturbed substances shown in Table 6 are shown in Figure 3: 

ABC, BAC and CAB; the subscripts indicate the substances whose equilibrium concentrations are 

swapped. For instance, ABC denotes the concentration profile of A, being A unperturbed, swapping 

the equilibrium concentrations of B and C, i.e., from the initial conditions (Ao, Bo, Co) = (Aeq, Beq – , 

Ceq + ). The corrected concentration profiles shown in Figure 4 are proportional by simple functions 

of the kinetic coefficients, because the extreme values occur all at the same value of time. 

There are only two independent ratios of corrected concentration profiles of unperturbed 

substances in the two-step mechanism studied:  

⎩
⎪
⎨

⎪
⎧

A��(t) − A��

B��(t) − B��
= �

k�
�

k�
� − k�

��
δ�

δ�
= �

κ��

K�(κ�� − 1)
�

δ�

δ�

A��(t) − A��

C��(t) − C��
= −

k�
�

k�
�

δ�

δ�
= −κ���

δ�

δ�
 

 (6)
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Figure 3. Concentration profiles of ABC, BAC and CAB. The first two, ABC and BAC, must be 

read with the left Y-scale. The last one, CAB, must be read with the right Y-scale. k1+ = 1.75 

s−1, k1− = 3.00 s−1, k2+ = 1.50 s−1, k2− = 0.50 s−1. 

 

Figure 4. Corrected concentration profiles of ABC, BAC and CAB. From top to bottom, ABC − 

Aeq, BAC − Beq and CAB − Ceq. k1+ = 1.75 s−1, k1− = 3.00 s−1, k2+ = 1.50 s−1, k2− = 0.50 s−1. 

The subscripts in 1 and 2 appear in the last equation to stress that the values of  in the 

numerator and the denominator of the ratio can be different. Evaluation of the invariant expressions 

shown in Equation (6) yields the same time-independent functions of kinetic coefficients, regardless 

of the type of chemical reactor. 

The values obtained from the invariant expressions shown in Equation (6) are shown in Tables 7 

and 8, for different values of 1 and 2. The values of 1 are shown in the first row, whereas the values 

of 2 are shown in the first column. The values of  on the first two columns and the first two rows 

yield an initial concentration of zero for one of the substances of the two-step mechanism. The values 

of  on the third column and the third row yield swapped equilibrium concentrations. As  measures 

the difference between the initial concentrations and the corresponding equilibrium concentrations, 

it is convenient to choose its value as equilibrium concentrations, or differences of equilibrium 

concentration.  

Table 7. Invariant expressions from the ratio of corrected concentration profiles of A and B: 

(ABC(t) − Aeq)/(BAC(t) − Beq). The values of 1, in the first row, correspond to a CPE 

experiment when A in unperturbed. The values of 2, in the first column, correspond to a 

CPE experiment when B in unperturbed. 
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1 

      → 

2 ↓ 

Beq −Ceq Beq − Ceq 

Aeq 
κ��

κ�� − 1
 

−K�κ��

κ�� − 1
 

−(K� − 1)κ��

κ�� − 1
 

−Ceq 
−κ��

K��(κ�� − 1)
 

κ��

K�(κ�� − 1)
 

(K� − 1)κ��

K��(κ�� − 1)
 

Aeq − Ceq 
−κ��

(K�� − 1)(κ�� − 1)
 

K�κ��

(K�� − 1)(κ�� − 1)
 

(K� − 1)κ��

(K�� − 1)(κ�� − 1)
 

Table 8. Invariant expressions from the ratio of corrected concentration profiles of A and 

C: (ABC(t) − Aeq)/(CAB(t) − Ceq). The values of 1, in the first row, correspond to a CPE 

experiment when A in unperturbed. The values of 2, in the first column, correspond to a 

CPE experiment when C in unperturbed. 

1            

      → 

2 ↓ 

Beq −Ceq Beq − Ceq 

Aeq 
k�

�

k�
� = −K�κ��� κ�� K�(K� − 1)κ��� 

−Beq κ��� 
k�

�

k�
� = −K�κ��� −(K� − 1)κ��� 

Aeq − Beq 
K�κ���

K� − 1
 

−κ��

K� − 1
 −

(K� − 1)κ��

(K� − 1)K�
 

It is possible to obtain invariant expressions for a two-step linear mechanism also mixing the 

two procedures just described, as the ratio of the difference of two SIC terms and a corrected 

concentration profile. The thermodynamic invariants obtained from this ratio are shown in Table 9. 

In the first column, it is shown the invariant expression and its value, and in the rest of the columns 

is shown the value of the invariant expression for different values of . 

Table 9. Invariant expressions from the ratio of differences of SIC terms and a corrected 

concentration profile. 

Invariant expression 

Values of  

Beq ‒Ceq Beq ‒ Ceq 

���
− ���

���(�) − ���
= −

� + �� + ���

�(� + ��)
 −

(� + ��(� + ��))�

��(� + ��)
 

(� + ��(� + ��))�

���(� + ��)
 

(� + ��(� + ��))�

��(−� + ��
�)

 

���
− ���

���(�) − ���
= −

� + �� + ���

�
 −

(� + ��(� + ��))�

��
 

(� + ��(� + ��))�

���
 

(� + ��(� + ��))�

��(−� + ��)
 

Invariant expression 

Values of  

Aeq ‒Ceq Aeq ‒ Ceq 

���
− ���

���(�) − ���
= −

� + �� + ���

���
 −

(� + ��(� + ��))�

��
 

(� + ��(� + ��))�

��
���

 
(� + ��(� + ��))�

��(−� + ����)
 

���
− ���

���(�) − ���
= −

� + �� + ���

���(� + ���)
 −

(� + ��(� + ��))�

��(� + ���)
 

(� + ��(� + ��))�

��
���(� + ���)

 
(� + ��(� + ��))�

��(−� + ���
� )
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4. Kinetico-Thermodynamic Invariants for Linear Complex Mechanisms 

4.1. Invariant Expressions for Polar Two-Step Mechanisms 

In the two-step mechanism A ⇄ B ⇄ C, the single-step substances A and C participate in the 

single reactions A ⇄ B and B ⇄ C, respectively; these single-step substances can be considered as 

poles of the two-step mechanism. We will demonstrate that if a complex linear mechanism contains 

a polar two-step submechanism, the invariant expressions shown in the previous section for the 

two-step mechanism A ⇄ B ⇄ C, Equation (6), are also valid for the polar two-step submechanism. 

In other words, the invariant expressions remain unaltered if other parallel first-order reactions 

occur from the substance B, the single substance that connects the two poles A and C. In Table 10 are 

shown several linear mechanisms with one or more polar two-step submechanisms.  

An important requirement to be fulfilled is that the initial concentrations of the chemical species 

apart from the polar two-step submechanism must be equal to the equilibrium concentrations; i.e., 

they are unperturbed substances. The two perturbed substances belong to the polar two-step 

submechanism, and the third substance in this submechanism remains unperturbed. Corrected 

ratios of the concentration profiles of the unperturbed substances within the polar two-step 

submechanism yield the invariant expressions, the same expressions shown in Equation (6). A 

formal demonstration of this feature is shown elsewhere [15].  

Table 10. Polar two-step submechanisms within linear complex mechanisms. 

Linear Complex Mechanism Polar Two-Step Submechanisms 

D
⇅

A ⇄ B⇄ C
 

A ⇄ B ⇄ C 

A ⇄ B ⇄ D 

C ⇄ B ⇄ D 

D
⇅

A ⇄ B⇄ C
⇅
E

 

A ⇄ B ⇄ C 

A ⇄ B ⇄ D 

A ⇄ B ⇄ E 

C ⇄ B ⇄ D 

C ⇄ B ⇄ E 

D ⇄ B ⇄ E 

A ⇄ B ⇄ C ⇄ D
⇅
E

 D ⇄ C ⇄ E 

A ⇄ B ⇄ C ⇄D⇄ E
⇅
F

 E ⇄ D ⇄ F 

E F
⇅ ⇅

A ⇄ B ⇄ C ⇄ D
 

A ⇄ B ⇄ E 

D ⇄ C ⇄ F 

E
⇅

A ⇄ B ⇄ C ⇄ D
⇅
F

 

E ⇄ C ⇄ F 

D ⇄ C ⇄ E 

D ⇄ C ⇄ F 

A ⇄ B ⇄ C ⇄ D None 

A ⇄ B ⇄ C ⇄ D ⇄ E
⇅
F

 None 

4.2. Invariant Expressions for Linear Mechanisms with Single-Step Substances 
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An invariant expression can be constructed for any linear complex mechanism with at least two 

single-step substances, similar to the last equation in Equation (6). These single-step substances can 

be connected by a single substance, like in a polar two-step submechanism, or by any linear complex 

submechanism. The invariant expression can be determined for whichever single-step substances 

within a linear complex mechanism. The value of the invariant expression will be a generalization of 

the last equation in Equation (6) [16]. 

Consider the following complex mechanism: 

A�

k�
�

⇄
k�

�
A�

k�
�

⇄
k�

�
A� … A���

k���
�

⇄
k���

�
A� 

where Ai are chemical species, and ki+ and ki− are the kinetic coefficients of the forward and 

backward i-th reaction, respectively. In this mechanism, there are two single-step substances, A1 and 

An. Although not explicitly shown, other parallel reactions can occur from substances Ai, 2 ≤ i ≤ n−1; 

if so, more than two single-step substances exist. These parallel reactions do not affect the invariant 

expression. 

The formula for the invariant expression of the linear complex mechanism shown above is: 

A�(���,�) − A�,��

A�(�,�) − A�,��

= −
∏ k�

����
���

∏ k�
����

���

δ�

δ�

=
k�

�

k���
� �

1

∏ K�
���
���

�
δ�

δ�

 (7)

where Ai(j,k) is the concentration profile of Ai, with the substances Aj and Ak as perturbed substances; 

the rest of the chemical species in the complex mechanism remain unperturbed. Ai,eq denotes the 

equilibrium concentration of the substance Ai, and 1 and 2 are perturbations in the numerator and 

the denominator, respectively. In Table 11 are shown several linear mechanisms with one or more 

polar two-step submechanisms. 

The non-thermodynamic ratio of kinetic coefficients k1‒/kn‒1+ that appears in the invariant 

expression shown in Equation (7) can be seen as the ratio of the kinetic coefficients of the outgoing 

reactions to the submechanism that connects the single-step substances A1 and An. In a polar 

two-step submechanism A1 ⇄ A2 ⇄ A3, this non-thermodynamic ratio is of the kinetic coefficients of 

the outgoing reactions to the single substance A2; this ratio corresponds to out, defined in Section 1.2. 

Summarizing, the invariant expression derived in this section, shown in Equation (7), consists 

of the product of three factors of different nature: 

A non-thermodynamic factor: the ratio of kinetic coefficients of outgoing reactions, either to a 

single substance or to a submechanism of the complex mechanism. 

A thermodynamic factor: the pure or apparent equilibrium constant of a submechanism of the 

complex mechanism. The inverse of this factor appears in the invariant expression.  

An “experimental” factor: the values of the perturbations 1 and 2, defined by the experimental 

setup of the two experiments needed to determine the invariant expression. 

Table 11. Invariant expressions obtained from corrected ratios of concentration profiles of  

single-step substances for some linear complex mechanisms. 

Linear Complex 

Mechanism 

Single-step 

Substances 
Invariant Expression 

A�

k�
�

⇄
k�

�
A�

k�
�

⇄
k�

�
A� A1, A3 

A�(�,�) − A�,��

A�(�,�) − A�,��
= −

k�
�

k�
�

δ�

δ�
= κ���

δ�

δ�
 

A�

k�
�

⇄
k�

�
A�

k�
�

⇄
k�

�
A�

k�
�

⇄
k�

�
A� A1, A4 

A�(�,�) − A�,��

A�(�,�) − A�,��
= −

k�
�k�

�

k�
�k�

�

δ�

δ�
 = −

k�
�

k�
� �

1

K�
�

δ�

δ�
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A�

k�
�

⇄
k�

�
A�

k�
�

⇄
k�

�
A�

k�
�

⇄
k�

�
A�

k�
�

⇄
k�

�
A� A1, A5 

A�(�,�) − A�,��

A�(�,�) − A�,��
= −

k�
�k�

�k�
�

k�
�k�

�k�
�

δ�

δ�

= −
k�

�

k�
� �

1

K�K�
�

δ�

δ�
 

A�

k�
�

⇄
k�

�
A�

k�
�

⇄
k�

�
A�

k�
�

⇄
k�

�
A�

k� ⇅ k�

A�

 

A1, A4 
A�(�,�) − A�,��

A�(�,�) − A�,��

= −
k�

�k�
�

k�
�k�

�

δ�

δ�

= −
k�

�

k�
� �

1

K�
�

δ�

δ�

 

A1, A5 
A�(�,�) − A�,��

A�(�,�) − A�,��
= −

k�
�k�

�

k�
�k�

δ�

δ�
= −

k�
�

k� �
1

K�
�

δ�

δ�
 

A4, A5 
A�(�,�) − A�,��

A�(�,�) − A�,��

= −
k�

k�
�

δ�

δ�

 

A�

k�
�

⇄
k�

�
A�

k�
�

⇄
k�

�
A�

k�
�

⇄
k�

�
A�

k�
�

⇄
k�

�
A�

k� ⇅ k�

A�

 

A1, A5 

A�(�,�) − A�,��

A�(�,�) − A�,��

= −
k�

�k�
�k�

�

k�
�k�

�k�
�

δ�

δ�

= −
k�

�

k�
� �

1

K�K�
�

δ�

δ�
 

A1, A6 
A�(�,�) − A�,��

A�(�,�) − A�,��

= −
k�

�k�
�

k�
�k�

δ�

δ�

= −
k�

�

k�
�

1

K�
�

δ�

δ�

 

A5, A6 
A�(�,�) − A�,��

A�(�,�) − A�,��
= −

k�
�k�

k�
�k�

�

δ�

δ�
= −

k�

k�
� �

1

K�
�

δ�

δ�
 

5. Final Remarks 

Design of special batteries of kinetic experiments, virtual and/or real, can be considered a new 

step towards understanding the behavior of complex chemical reactions. It was found, analytically, 

computationally and experimentally, that some sets of kinetic experiments, e.g., reciprocal 

experiments with symmetric initial conditions, experiments under “conservatively perturbed 

equilibrium” conditions, exhibit invariances. Such invariant expressions are ratios of 

non-steady-state dependences carefully chosen that yield constants at any moment of time. These 

invariant expressions differ from the invariances previously known (mass conservation laws and 

stoichiometric relationships). Two groups of such invariances can be distinguished: 

• Thermodynamic invariances as functions of equilibrium constants. 

• “Mixed” kinetico-thermodynamic invariances as functions of both equilibrium constants and 

kinetic coefficients. These invariants were found for special linear mechanism: two-step 

mechanisms, and other linear mechanisms with polar two-step submechanisms and single-step 

substances. 

A present dogma in chemical kinetics states that it is impossible to describe the non-equilibrium 

behavior of a chemical system based exclusively on its description in equilibrium, except for some 

linear relationships near the vicinity of equilibrium [3]. However, the research that led us to obtain 

the thermodynamic invariant expressions shows that some dependences that describe kinetic 

behavior, far from equilibrium, are related via a thermodynamic parameter such as the equilibrium 

constant. With this knowledge, it is possible to predict unknown kinetic dependences based on the 

chemical equilibrium description and known kinetic dependences.  
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