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Abstract. Many real-world networks exhibit community structures and
non-trivial clustering associated with the occurrence of a considerable
number of triangular subgraphs known as triadic motifs. Triads are a set
of distinct triangles that do not share an edge with any other triangle
in the network. Network motifs are subgraphs that occur significantly
more often compared to random topologies. Two prominent examples,
the feedforward loop and the feedback loop, occur in various real-world
networks such as gene-regulatory networks, food webs or neuronal net-
works. However, as triangular connections are also prevalent in commu-
nication topologies of complex collective systems, it is worthwhile inves-
tigating the influence of triadic motifs on the collective decision-making
dynamics. To this end, we generate networks called Triadic Graphs (TGs)
exclusively from distinct triadic motifs. We then apply TGs as underly-
ing topologies of systems with collective dynamics inspired from locust
marching bands. We demonstrate that the motif type constituting the
networks can have a paramount influence on group decision-making that
cannot be explained solely in terms of the degree distribution. We find
that, in contrast to the feedback loop, when the feedforward loop is the
dominant subgraph, the resulting network is hierarchical and inhibits
coherent behavior.

Keywords: complex networks, triadic motifs, collective decision-making,
group coherence, feedforward loop, hierarchality

1 Introduction

The network topology defining agent interactions plays a crucial role in swarm-
inspired collective systems [4,8,11,14,17]. Researchers are beginning to unravel
the influence of the topology on collective decision-making and propose engi-
neering approaches that increase the performance of (artificial) collective sys-
tems [11,14,16]. To gain insights into how interaction networks impact decision-
making, a popular approach is to generate well defined topologies that are in-
spired from real-world observations. Often these topologies are designed to re-
duce complexity and focus on the impact of specific network properties.

One of the properties worth investigating is the presence of triangular connec-
tions. Recently, an abundance of triangular subgraphs called triadic motifs has
been discovered in numerous real-world networks [13, 15, 21]. Particularly, the
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feedforward loop was found, among others, in gene-regulatory networks, food
webs or neuronal networks [1, 15,21].

In light of these discoveries, a reliable method was developed for generat-
ing graphs with an abundance of such motifs, called Triadic Random Graphs
(TRGs). A TRG is generated using exclusively triadic motifs Mi as building
blocks [20]. This approach is based on conditionally independent sampling of
triples from Steiner Triple Systems and the assignment of the motif-specific
topology to each triple. As a result, the homogeneous TRG Ti is a directed graph
that consists purely of T distinct triadic subgraphs of type Mi. The benefits of
TRGs are twofold: (i) the dynamics emerging on the local level of each triadic
motif are directly influenced through no more than three nodes, i.e. higher-order
correlations are reduced, (ii) the global network topology can be purely described
in terms of motif type Mi and T (no higher order motif analysis is required).
Network properties such as average degree, clustering coefficient or shortest path
can be controlled, at least to some extent, by the choice of Mi and T . Thus,
TRGs can provide a simple but powerful fundamental design for studying the
impact of triadic connections on complex dynamic processes.

An increasingly popular example of complex dynamics is the collective decision-
making observed in locust marching bands [2–4, 8, 16]. In essence, it represents
a symmetry-breaking scenario in which a large group faces the choice between
two equal-quality options. In dense groups, the corresponding communication
network displays a high number of triangular connections whose impact on the
group behavior is not yet fully understood [8, 11]. In this paper we aim at en-
hancing this understanding by studying the influence of triadic motifs on the
locust-inspired symmetry-breaking model.

A common approach for modeling swarming systems such as locust march-
ing bands, is to allow the individuals influence each other’s behavior based on
physical proximity (i.e. euclidean distance) [2, 6, 10, 18]. However, to focus the
analysis solely on the contribution of the motif topology, the approach taken in
the current study is different in that we only consider the non-euclidean, static
group communication network, disregarding correlations in physical space. This
approach is necessary as it allows applying pre-constructed well-defined triadic
graphs and, thus, comparing the contribution of the different motif types in a
controlled way. The findings obtained this way can then serve as a baseline for
more sophisticated methods such as adaptive-network models [4, 8, 9].

Nevertheless, as we will show below, our network-driven approach is suffi-
cient to reproduce the main characteristics of state trajectories known from the
swarming model [2, 3]. Moreover, the network approach offers the possibility to
confirm the validity of the previously analytically derived upper limit to the co-
herence degree |φ| (a measure of the group alignment) [16]. In particular, we will
demonstrate that for some motif types, the group may reach this upper bound
of |φ| while other motifs have a comparably inhibitory impact. As we will show,
a shared characteristic of the latter motif types is the presence of nodes with
zero out-degree. Decreasing their number resulted in an increase of |φ|. Finally,
we observed that the use of the feedforward loop led to a hierarchical network
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structure that was particularly detrimental to the group alignment. Therefore,
our results suggest that the motif type can have important consequences for
collective decision-making.

We introduce the TRGs in Sec. 2 and the locust-inspired collective decision-
making model in Sec. 3. Subsequently, we report and discuss our results in Sec. 4,
and conclude in Sec. 5.

2 Triadic Graphs

2.1 Triadic Motifs

In the current study we focus on the directed closed triadic motifsMi illustrated
in Fig. 1. Among these, are the feedforward loop M1, the feedback loop M3

and the bi-directional loop M7. To investigate the influence of triadic motifs on
the collective decision-making we generated seven types of TGs, Ti, following a
procedure described below. For each Ti only one type of triadic motifs,Mi, was
used as building block, respectively. In each Ti every node is an element of at
least one triadic motif. The total number of distinct triadic motifs was verified
using the MFINDER software (version 1.2) 1.

Fig. 1. The seven types of triadic motifs used as building blocks of TGs Ti.

2.2 Steiner Triple Systems

A recent mechanism proposed by [20] specializes in network construction us-
ing triadic motifs as primary building blocks. This mechanism is based on the
concept of Steiner Triple Systems (STS), a mathematical design of a structure
consisting of distinct three element subsets (i.e. triples). The most profound fea-
ture of the STS is that any pair of elements can be connected through only one
unique link that belongs to exactly one triad. Therefore, a network based on
Steiner Triples contains exclusively distinct triadic subgraphs. To realize an STS
with N elements, two necessary and sufficient conditions need to be satisfied [12]:

Nmod 2 = 1, N(N − 1)mod 3 = 0 (1)

leading to an upper bound for the number of distinct triads T [20]:

T ≤ 1

3

N(N − 1)

2
. (2)

1 https://www.weizmann.ac.il/mcb/urialon/
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To satisfy Eq. (1)-2, all TRGs generated in the current study have a size of
N = 73 = 343 and T = 343n with n ∈ N < 8.

2.3 Triadic Graphs

Similar to the Erdős-Rényi model, where the assignment of edges is not condi-
tioned on the current state of the network, in the model proposed by [20] the triad
assignment is conditionally independent and the resulting graph is the TRG. A
key aspect of this approach is that T triads are sampled from a pre-constructed
STS GSTS . Each sampled triad is assigned the motif-specific topology (such as
those shown in Fig. 1). Therefore, triadic motifs are the fundamental parts con-
stituting (directed) TRGs. Note that this model allows the generation of random
network ensembles that have the same number of edges and nodes.

However, to ensure that every generated network has only one connected
component, we slightly deviated from the above-mentioned procedure. For each
instance, before independently assigning the triads, we first created a seed net-
work Gs (an example is shown in Fig. 2 (left)) by iterating through all nodes
of GSTS and assigning a triad θ ∈ GSTS to Gs only if θ satisfies the follow-
ing two conditions: (i) at least one node (ν ∈ θ) ∧ (ν 6∈ Gs), (ii) at least one
(ν ∈ θ) ∧ (ν ∈ Gs). As a result, Gs has only one connected component with
the same predefined number of nodes N as the GSTS from which the triads are
sampled. Subsequently, to reach the predefined number T , Gs is assigned new
triads by means of randomly drawing new θ from GSTS without replacement.
Fig. 2 (right) shows an example of a final TRG T1. Due to this procedure the
graphs are not as strictly random as the original [20], thus we will henceforth
refer to them as Triadic Graphs (TGs).

Fig. 2. Examples of Left: a seed network Gs, Right: a final TG. Both graphs were
constructed from motifs of type M1.

We distinguish between homogeneous and heterogeneous TGs. In the former
case the total number of triads is T = Ti, with Ti being the number of motifs
of type Mi. Whereas, in a heterogeneous TG, T =

∑7
i=1 Ti. The choice of the

particular type of Mi for TG construction strongly determines various network
properties, particularly the degree distribution.



Collective Decision Making 5

The total degree of a node ν is given by ktot,ν = kin,ν + kout,ν , where kin,ν
and kout,ν are the node’s in- and out-degree, respectively. For instance, consider
the right-most node of M1 in Fig. 1. Its degree is given by kin,ν = 0, kout,ν = 2
and ktot,ν = 2. In contrast, the degree of the analogous node of M2 is given
by kin,ν = 1, kout,ν = 2 and ktot,ν = 3. As the triadic motifs are assigned
conditionally independent of each other, the number of triadic motifs around ν
is binomially distributed for small TGs and Poisson distributed for large TGs.
Moreover, the global average of the total degree is correlated with the type of
Ti. For instance, consider again the motifs M1 and M7. The total in-degree,
summed over all three nodes, is kin,M1 = 3 and kin,M7 = 6, respectively (and
similarly for the out-degree). Thus, the total degree distribution of a network is
a function of the type and number of triadic motifs and can be deduced from
the TG model [20]. Consequently, the average total degree can be calculated as
a function of Ti: 〈ktot〉 = Ti

N (kin,Mi
+ kout,Mi

).
Finally, it can be useful to isolate the influence of the degree distribution

on the dynamical processes from that of the triadic motifs. For this purpose, we
compare the simulation outcomes of TGs to null-models which are the respective
randomizations. The randomized version of each TG is generated using the a
Markov Chain Monte Carlo rewiring algorithm [19]. In essence, the algorithm
runs a predefined number of mutually independent, degree-preserving rewirings
between pairs of nodes. As a consequence, the initial abundance of triadic motifs
vanishes while the network size, the number of connections and the distribution
of in- and out-degrees are preserved.

3 Decision making model

We examine the influence of triadic motifs on the decentralised decision-making
dynamics in the canonical model of locust marching [3,8,11,16]. This biologically
inspired model represents a binary decision problem in which the agents need to
collectively decide whether to go left or right [2, 6, 22].

Consider a one-dimensional opinion space oi of an individual i, in which a
commitment to option A (B) corresponds to oi < 0 (oi > 0), respectively. Then,
similar to the locust velocity [2,16,22], the opinion of i is updated at each time
step to

oi(t+ 1) = δs [G(〈oi(t)〉) + ζi(t)] , (3)

where ζi(t) ∈ [−1.0, 1.0] is a real random number sampled from a uniform distri-
bution (representing noise). Additionally, the average opinion of the individual’s

neighborhood 〈oi(t)〉 is given by 〈oi(t)〉 = 1
kin,i

∑N
j=0 oj(t)Aji, where Aji is an

element of the network’s N ×N adjacency matrix, with Aji = 1 if there is a di-
rect link leading from j to i and Aji = 0 otherwise. As a common simplification,

self-loops are excluded, i.e. Aii = 0 for all i; kin,i =
∑N
j=0Aji is the i’s total

in-degree. Moreover, the contribution of the individual’s neighbors is maintained
close to ±1.0 by the piece-wise continuous function

G(〈oi(t)〉) =
1

2
[〈oi(t)〉+ sgn(〈oi(t)〉)] , (4)
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with sgn () being the sign-function. Note that for G(〈oi(t)〉) = 〈oi(t)〉, Eq. (3)
would be similar to the majority vote model. Finally, δs in Eq. (3) is a binary
digit that is δs = −1 with probability ps and δs = 1 otherwise. While the Czirók
model is obtained for ps = 0, setting ps > 0 extends this model and represents
the ability of each individual to spontaneously change its opinion [4,8,11]. This
spontaneous opinion switch does not necessarily represent noise but can also be
attributed to the individual’s drive to explore alternatives and perpetuate self-
organization. Alternatively, it could be a malicious behavior originating from
external attacks or a similar underlying mechanism unknown to the observer [16].

Similar to [11,16], the collective opinion of the N individuals, i.e. the collec-
tive state of the system is given by:

φ(t) =
1

N

N∑
i=0

sgn (oi(t)) . (5)

The collective coherence degree |φ(t)| is defined as the absolute value of the
collective opinion. When all individuals agree on an option the system reaches
consensus with |φ(t)| = 1.

Beside the spontaneous switching, there are two further significant differences
between the standard locust marching model and the decision-making model
considered here. First, unlike the previous studies, we do not include the spatial
information of the individuals. Instead, we only focus on the opinion dynamics
from an abstract network-driven perspective. While previously the neighbors
were selected from the spatial proximity of an individual, i.e. within a certain
range ∆ around the individual [2,3,6,16,22], or from an adaptive network [4,8],
here the neighbors are assigned by the adjacency matrix of a predefined static
network. Thus, we intentionally isolate the problem from spatial correlation and
dynamic link rewiring to focus exclusively on the impact of the subtle differences
between the triadic motifs. Second, due to to the directed nature of the triadic
motifs, the considered networks are directed which is in contrast to most previous
works that focused mainly on bidirectional communication.

4 Results and Discussion

First, we demonstrate that Eq. (3)-Eq. (5) can qualitatively reproduce the main
characteristics of the empirically observed locust alignment trajectories [2,6,22].
For this, we simulated the collective decision making on TGs in various config-
urations. The initial number of individuals with oi > 0 and oi < 0 was always
dN2 e and N − dN2 e, respectively. The example shown in Fig. 3 is the simulation
outcome for three instances of T1 — which differ only in T— that illustrates
the qualitative similarities to three major empirical findings: (i) for high enough
communication degree, φ(t) fluctuates around a non-trivial stable state with a
residence time τ ≥ τtot (dark blue data with 〈ktot〉 = 24); the residence time
τ represents the time interval between two state transitions while τtot is the
total experiment duration, with τtot = 5000ts for all our experiments; (ii) collec-
tive state may repeatedly undergo rapid transitions between temporary stable
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states with 1 � τ < τtot (blue data with 〈ktot〉 = 12); (iii) lower communi-
cation degree leads to lower group alignment and τ → 1 (light blue data with
〈ktot〉 = 6) [11,16].

〈ktot〉=24 〈ktot〉=6 〈ktot〉=12

0 1 2 3 4 5
-1.0

-0.5
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0.5

1.0

t [103 ts]

ϕ
(t
)

τ

regular complete ϕm

0.0 0.2 0.4 0.6 0.8 1.0
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0.6

0.8

1.0
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ϕ

Fig. 3. Left: Collective state trajectories for ps = 0.05 and three T1 instances with
different T leading to different values of 〈ktot〉. Each trajectory represents one sample,
i.e. here the simulations were run with the same random number generator seed. An
example of the residence time τ is illustrated for one of the temporary states. Right:
Coherence degree |φ(t)| = |φ| over ps for a complete and a regular network with
〈ktot〉 = 48, both networks with N = 343. The inset shows the period over which the
time average |φ| of the collective state was taken.

Moreover, the maximum value of |φ(t)| obtained from simulation agrees well
with previous theoretical findings [16] suggesting an upper bound of:

|φm| =
|0.5− ps|

1− |0.5− ps|
. (6)

Fig. 3 (right) showcases this agreement for complete and regular networks. Each
|φ| trajectory was averaged over 50 simulation runs. As illustrated in the inset
of Fig. 3 (right), each data point represents the time average of |φ| obtained over
the last 1000 time steps to account for a transient period occurring in the early
stages of the simulations. Similar to [16], the global coherence degree does not
exceed the limit given by Eq. (6) for the regular network of 〈ktot〉 = 48 (this
〈ktot〉 value is comparable to the high-degree simulations in [16]). Additionally,
as expected for the complete network, |φ| exceeds |φm| only for ps ≈ 0.5, i.e.
where Eq. (6) is not well defined. Note that for ps > 0.5, |φ| increases. For
these ps the agent is likely to switch its opinion within the same time step as its
neighbours, leading to exceedingly synchronous switching and higher |φ| [16].

To investigate the influence of the motifs, it is worthwhile examining the
collective ability to achieve |φm| for different Ti. Fig. 4 (left) shows the simulation
outcome for different values of the spontaneous switch probability ps. As Fig. 4
suggests, |φ| can be influenced by the choice of Mi although the results are
comparably similar for most motifs. The differences between the TGs with motifs
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M1−2 andM3−7 are particularly apparent withM1 andM2 having the largest
inhibitory impact. This is reflected in the deviation of |φ| from |φm|. On the one
hand, for some values of ps, this deviation more than doubles between the TGs
T1 and T3−7 (see inset of Fig. 4 (left)). On the other hand, the coherence degree
results are remarkably similar from T3 to T7.

1 2 3 4 5 6 7

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

ps

ϕ
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0.8
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ps
ϕ

Fig. 4. Coherence degree as a function of ps ∈ [0, 1] and the network topology. For
all networks, N = 343 and 〈ktot〉 = 24; The curve represents the theoretical value of
maximum coherence degree |φm|. Left: TGs Ti, Right: Null-models of Ti. The insets
show the respective differences between the theoretical value |φm| and the measured
time averaged coherence degree |φ|.

To obtain a more detailed view on the impact of the motif topology, we
generated null-models (i.e. degree-preserving TG randomizations as described
in Sec. 2.3). The decision-making results for the null-models are shown in Fig. 4
(right). Strikingly, the simulation outcomes for T3−7 are very close to their ran-
domized counterparts and the only noticeable difference is observed for T1, i.e.
the TG generated from feedforward loops M1. This observation indicates that
the kin and kout distributions have a more critical impact on |φ| than Mi, with
the exception of M1. In Fig. 4 (right) one can see that despite the absence
of motifs, the null-models of T1 and T2 still have an inhibitory impact on |φ|
in comparison to the other graphs. A shared characteristic of T1 and T2 is the
presence of nodes with kout = 0 that are unable to communicate their opinion.
Interestingly, the inhibitory effects of nodes with kin = 0 are lower as evidenced
by the comparison with T5 where all nodes have kout > 0 but some nodes may
have kin = 0. Nodes with kin = 0 are not affected by their neighborhood and
are thus similar to ’stubborn’ individuals commonly referred to as zealots [5].

Moreover, as was shown previously, the coherence degree is strongly corre-
lated with 〈ktot〉 [16]. Higher 〈ktot〉 leads to higher |φ|, up to |φm|. This behaviour
can also be observed for TGs by increasing T , as shown in Fig. 5 for T1 (left)
and T3 (right). One can see that for a range of ps values even after increasing
〈ktot〉 by a factor of eight (i.e. for T = 343 × 8 = 2744), T1 is associated with
lower |φ| than T3.
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Fig. 5. Left: Simulation outcome for T1. Right: Simulation outcome for T3. In both
plots, the lines between the data points are guides to the eye. The V-shaped curve
indicates the theoretical |φm|. In each panel the insets show the corresponding difference
|φm| − |φ| as well as an illustration of the building block motif Mi.

Transitioning from T1 to T3 by means of gradually replacing quantities of
M1 with M3 leads to a decrease of nodes with kin = 0 and kout = 0 together
with an increase of |φ|. This observation is demonstrated in Fig. 6 (left) where
the data was collected for a set of heterogeneous TGs with T3 motifs of typeM3

and T1 = T − T3 motifs of type M1 (and for ps = 0.05). Each heterogeneous
TG had on average k0out nodes with kout = 0 that decreased linearly with T3 and
reached zero for T3 ≈ 231 (with |φ| ≈ 0.64). In contrast, the coherence degree
increased with T3 non-linearly. Thus, the inhibitory impact of M1 and M2 can
only partially be explained by the presence of nodes with kout = 0.
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Fig. 6. Left: Number of nodes with kout = 0 and |φ| for the transition from T1 to T3
by replacing T3 motifs of type M1 with M3 for ps = 0.05. Inset: Current parameter
ξ as a function of T3. Right: Number of state transitions within 5000 time steps of
simulation. The inset shows the average residence time 〈τ〉 and a related close-up view
for ps ≥ 0.2. The lines are guides to the eye.
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Another relevant feature that changes with the transition from T1 to T3 is the
current parameter ξ. It is a measure for the hierarchality or the inherent direc-
tionality of the system [7]. In the presence of nodes with kout = 0 it can be easily
obtained and it essentially represents the fraction of links that point upwards
the hierarchical node ordering. Consequently, ξ = 1 in a perfectly hierarchical
structure with very strong inherent directionality and ξ ≈ 0.5 in a random graph
with a vanishing level of inherent directionality and hierarchy [7]. For the set of
homogeneous TGs Ti (as those used in Fig. 4), our measurements yielded ξ =
{0.85±0.03, 0.50±0.01, 0.54±0.01, 0.51±0.01, 0.63±0.07, 0.50±0.01, 0.50±0.00},
where the first element, ξ1, corresponds to T1, the second, ξ2, to T2, etc.. Note
that while ξ1 ≈ 0.85, indicating strong hierarchality, ξ2 ≈ 0.5 indicating that
the hierarchical property of T2 is almost non-existent. This suggests that the
inhibitory impact of M2 on group coherence is mainly due to the presence of
nodes with kout = 0 (of which there are k0out = 34± 11). This is in line with the
observations that in contrast to T1, degree-preserved randomization of T2 does
not significantly improve |φ| (see Fig. 4).

Finally, Fig. 6 (right) shows that M1 and M2 increase the number of state
transitions and, consequently, decrease the average residence time 〈τ〉. The dif-
ferences between the Ti rapidly vanish for ps > 0.2 (see inset of Fig. 6 (right)).
However, for ps ≤ 0.2 the higher number of state transitions of T1 suggest a po-
tentially higher level of group adaptivity. Changing the state enables the group
to explore the properties of this state and reassess its quality. Conversely, main-
taining a stable state enables exploitative behavior. MotifsM3−M7 appear to
be beneficial for the latter while M1 and M2 for the former behavior.

5 Conclusion

In a binary collective decision-making task, noise coupled with social feedback
mechanisms allow an initially symmetric system to self-organize and converge
towards one of the two options. Social feedback mechanisms are defined by the
interactions between the individuals, i.e. their underlying communication net-
work. Therefore, it is paramount to understand the role of the network topology
in promoting or inhibiting collective decision-making and coordination.

To investigate the impact of particular network types that include an abun-
dance of triadic motifs, we generated random graphs that consist exclusively
from such motifs. These graphs were then applied in simulations of binary col-
lective decision-making scenarios. The results have shown that two specific types
of motifs, in particular the feedforward loop, have a strong inhibitory impact on
the coherence of collective behavior |φ|. In contrast, with motifs such as the
feedback loop or the bidirectional loop (the motif in which all links are bidirec-
tional), the system was able approach maximum coherence. Moreover, through
comparison to null-models we have shown that the latter motif types achieve
similar |φ| to their degree-preserved randomizations, indicating that the in- and
out-degree distributions may be the more critically influential properties.
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More importantly, these results demonstrate that a number of motifs influ-
ence collective decision-making similarly to the bi-directional motif that can also
be interpreted as undirected. On the one hand, this suggests that, depending on
the purpose of the study, increasing the system complexity by including direc-
tionality may not be necessary. On the other hand, it appears that a group can
reach maximum coherence even when local relationships are considerably asym-
metric (compare the feedback loop to the bi-directional loop). This observation
essentially lifts the constraint of symmetric relationships in which both nodes
along an edge need to communicate to each other.

However, not all motifs lead to similar results and, particularly, the feedfor-
ward loop stands out with having a comparably inhibiting impact on the group
coherence. We identified two possible characteristics, resulting from the motif
topology, that contribute to such influence on collective decision-making. First,
it is the presence of nodes with zero out-degree, i.e. nodes that do not communi-
cate their opinion to their neighborhood. Surprisingly, their counterparts, nodes
with zero in-degree, appear to not have similar inhibitory impact on collective
decision-making. In fact, the motif where one node has zero in-degree but all
three nodes have above-zero out-degree leads to similar group coherence as the
feedback loop or the bi-directional loop but not as the feedforward loop. Second,
the abundance of feedforward loops leads to hierarchical structures that are not
beneficial to opinion alignment in group decision-making. Moreover, it leads to
comparably unstable group commitment and a higher number of transitions be-
tween the options. Therefore, our results suggest that in certain cases the motif
topology can have important consequences on collective decision-making.

In future research, it is worthwhile investigating in more detail the precise
reasons behind the inhibitory influence of the prominent feedforward loop on
collective decision-making, particularly with focus on the role of nodes with zero
out-degree and hierarchality. Other network properties such as the path length
or centrality may be relevant and should be included in the analysis. Moreover,
the ability to lift the constraints of symmetrical relationships allows to examine
scenarios of heterogeneous societies in which nodes are assigned particular roles
based on the motif topology. Finally, the study can be further extended to include
stochastic models as well as other motif types such as open triadic or quadratic
motifs.
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