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Abstract—Partial-response signaling is known to facil-
itate the equalizer design because a controlled amount
of residual interference is permitted. The design of the
target impulse response of the partial-response precoder
often assumes perfect channel state information, which is
unfortunately not available at the transmitter in most prac-
tical applications. Consequently, this contribution focuses
instead on the robust and joint design of a spatio-temporal
target impulse response and the equalization coefficients for
a frequency-selective fading multiple-input multiple-output
communication channel based on current and/or previous
noisy channel estimates. More precisely, the error in the
channel estimates is statistically modeled, and robustness is
achieved by minimizing the mean-squared estimation error
averaged over the joint distribution of the actual channel
and the available channel estimates. Numerical results
of the bit error rate confirm that the proposed robust
partial-response signaling not only provides a significant
performance gain compared to traditional full-response
signaling, but also outperforms the naive approach, which
ignores channel estimation errors.

I. INTRODUCTION

Compared to single-input single-output (SISO) trans-
mission, multiple-input multiple-output (MIMO) trans-
mission is a satisfactory solution to cope with the
continuously growing demand for bit rate in modern
communication systems. However, intersymbol interfer-
ence (ISI) caused by the mutually interfering frequency-
selective (FS) channels can considerably deteriorate the
communication link quality, especially when the signal
bandwidth exceeds the channel coherence bandwidth.
Several techniques have therefore been proposed to
counteract this unfavorable impact of the ISI. First, the
optimal maximum-likelihood sequence detector (MLSD)
is mostly impractical due to its excessive complexity
that exponentially grows with increasing channel length
[1]. Consequently, state-of-the-art transceivers envisage
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more practical MIMO equalization techniques such as
linear MIMO equalizers, which can be implemented at
the transmitter (TX) and/or the receiver (RX). Combined
with a symbol-by-symbol detector, linear equalizers
serve as a suboptimal but low-complexity alternative to
the MLSD. Including additional feedback from either
previous decision at the RX (MIMO decision feedback
equalizer [2]) or previously transmitted symbols at the
TX (MIMO Tomlinson-Harashima precoding [3]) can
further enhance the performance of these equalizers.

Partial-response signaling (PRS) offers a particularly
interesting alternative to the traditional full-response
signaling (FRS) as the former can handle large amounts
of ISI [4], [5]. PRS is characterized by a target impulse
response (TIR) with integer coefficients, enabling to per-
form the symbol-by-symbol detection in a periodically
extended symbol set. This facilitates the design of the
equalizer since a controlled amount of residual ISI is
allowed. In [6], the joint optimization of an infinite-
length linear zero-forcing equalizer and a real-valued
TIR has been discussed in the context of a FS SISO
channel with a whitened-matched filter RX front-end.
Recently, this optimization problem has been extended
to the MIMO FS channel with a finite-length, linear
minimum-mean-squared error (MMSE) MIMO equalizer
and a more general complex-valued PRS precoder with
spatio-temporal components [7].

As the FS MIMO channel is time-variant, a new set
of equalization and TIR parameters must be computed at
regular intervals to ensure proper performance. Ideally,
this computation is executed using perfect channel state
information (CSI). However, the assumption of perfect
CSI at the TX (CSIT) is often unrealistic due to im-
perfections such as the noise impact on the channel
estimates and the limited feedback between RX and
TX. In general, the naive approach of determining the
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Figure 1. System model of a FS MIMO channel with a spatio-temporal MIMO PRS precoder and linear MIMO pre-equalizer at the TX.

equalization and TIR parameters without taking channel
estimation errors into account yields adequate perfor-
mance only when the available CSIT is sufficiently
accurate. Instead, superior performance is usually at-
tained by robust equalization designs, which incorporate
the imperfections of the CSIT in the design of the
equalization and TIR parameters. Two main classes of
robust designs exist. As for the worst-case designs,
the channel estimation error is assumed to be within
a bounded uncertainty region, and a performance level
is guaranteed for all errors within that region ([8], [9],
[10]). Alternatively, the uncertainty of the CSIT can be
modeled statistically such that a performance measure
averaged over the actual channel and the available CSIT
can be optimized ([11], [12]). In the sequel, the latter
concept of robustness is employed.

Although the joint optimization of the TIR and equal-
ization coefficients has been discussed in [7] for a FS
MIMO channel with perfect CSIT, to our knowledge,
no robust joint optimization has been presented in the
literature yet for imperfect CSIT. As the performance
of PRS depends greatly on the selection of the TIR, a
robust design is of particular importance in practice.

In this paper, statistically robust PRS over a FS and
time-variant L × L MIMO link is investigated. More
precisely, the TX applies L streams of M -QAM data
symbols to a spatio-temporal MIMO PRS precoder char-
acterized by its complex-valued TIR, after which the
precoded signal is equalized by a linear MIMO pre-
equalizer (Section II). Both the TIR and the pre-equalizer
are obtained by minimizing the mean-squared error
(MSE) between the desired response and the decision
variable. However, as only imperfect CSI is available,
the joint optimization problem is based on the current
estimate and/or previous estimates of the time-variant
MIMO channel (Section III). In section IV, numerical
results illustrate the performance of this robust design.
Finally, conclusions are drawn in section V.

In the sequel, the notations (·)T , (·)H , Tr(·), and ⊗
denote the transpose, the conjugate transpose, the trace,
and the Kronecker product, respectively. Moreover, the
all-ones column vector is denoted by 1 and all optimized
variables are indicated by (·)?.

II. SYSTEM MODEL

This contribution considers the digital transmis-
sion over a discrete-time wide-sense stationary slowly

Rayleigh fading L × L MIMO channel. Its impulse
response matrix related to the kth symbol interval is
denoted by H(m, k), where m is the delay expressed
in symbol intervals. Consecutively transmitted blocks
span each Ntot symbol intervals, and contain both pilot
symbols (for channel estimation) and data symbols. With
the assumption that the channel coherence time is much
larger than the block duration, H(m, k) is approximated
by Hq(m) = H(m, qNtot) during the qth block, i.e., for
qNtot ≤ k < (q+ 1)Ntot. In the following, we describe
the TX and RX processing related to the data symbols in
a generic block, and drop the block index q for notational
convenience. The channel estimation based on the pilot
symbols is treated in Appendix A.

The equalized communication link is schematically
depicted in Figure 1. The TX input comprises L streams
of complex-valued data symbols, which are uniformly
and independently drawn at a symbol rate 1/T from
the symbol set C = {0, 1, . . . ,

√
M}+j{0, 1, . . . ,

√
M},

where M is assumed to be an integer power of 4. All
input symbols at the kth symbol interval are combined
into the vector c(k), and the corresponding sequence
{c(k)} related to a given block is subsequently converted
by the spatio-temporal PRS precoder, described in [7],
into the sequence {b(k)} according to

b(k) =

[
T−1(0)

(
c(k)−

LT∑
m=1

T(m)b(k −m)

)]
√
M

,

(1)
where the L × L matrices T(m), m ∈ {0, · · · , LT}
define the spatio-temporal TIR of the PRS precoder, and
[·]X represents the element-wise modulo-X reduction of
both the real and the imaginary part to the interval [0, X).
Characteristic to this PRS precoder is that all elements
of T(0) and T(m) are restricted to the set of Gaussian
integers (which are complex numbers with integer real
and imaginary parts), and that |det(T(0))| is constrained
to 1 (making T(0) unimodular). Consequently, T−1(0)
also contains only Gaussian integers and all entries of the
vector b(k) are independently and uniformly drawn from
the set C [7]. The vector b(k) is mapped to the normal-
ized M -QAM constellation, i.e., a(k) = 2∆b(k) + (1 +
j)∆(−

√
M + 1)1, where ∆ is selected for normalizing

the symbol energy (E[a(k)aH(k)] = IL). Next, the TX
employs a linear, spatio-temporal MIMO pre-equalizer to
combat the ISI generated by the FS channel. This pre-



equalizer has a finite-length impulse response {P(m)}
with P(m) = 0 ∀m /∈

{
L

(1)
P , · · · , L(2)

P

}
and satisfies

an energy constraint that limits the average energy per
transmitted symbol, i.e.,

Tr(PHP) = LETX (2)

with P = [PH(−L(1)
P ) . . .PH(−L(2)

P )]H .
Subsequently, the pre-equalizer output signal s(k) is

transmitted over the discrete-time MIMO channel with
impulse response {H(m)}. As the channel duration is
essentially finite in practice, L(1)

H and L
(2)
H are defined

such that H(m) = 0 ∀m /∈ {−L(1)
H , · · · , L(2)

H }, which
indicates that the channel consists of LH = L

(1)
H +

L
(2)
H + 1 symbol-spaced taps. The channel also adds a

noise vector n(k), whose components are spatially and
temporally uncorrelated and have variance σ2

n.
To compensate for the constrained transmit energy per

symbol, the RX scales the signal y(k) by a factor α
before performing symbol-by-symbol detection on the
resulting decision variable u(k) = αy(k), yielding

u(k) = α

L
(2)
G∑

m=−L(1)
G

G(m)Pa(k −m) + αn(k), (3)

where L(x)
G = L

(x)
H +L

(x)
P with x ∈ {1, 2}, and G(m) =

[H(m+ L
(1)
P ) · · ·H(m− L(2)

P )]. As the target response
vector

uT (k) =

LT∑
m=0

T(m)a(k −m), (4)

is related to the original data c(k) by

c(k) =

[
uT (k)

2∆
+

(1 + j)(
√
M − 1)

2

∑
T(m)1

]
√
M

.

(5)
the decision ĉ(k) is obtained by first rounding the
bracketed expression in (5), with uT (k) replaced by
u(k) from (3), to the nearest constellation point from
the extended symbol set. Next, the modulo-

√
M operator

reduces this decision in the extended symbol set to the
original symbol set CL. Satisfactory error performance is
achieved when the pre-equalizer yields a small difference
between u(k) and uT (k).

III. ROBUST MMSE EQUALIZER DESIGN

A. MMSE optimization problem

The TIR and the pre-equalizer for the qth block
are optimally designed with perfect CSIT, i.e., perfect
knowledge of Hq = [Hq(−L(1)

H ), · · · ,Hq(L
(2)
H )] at the

TX. To acquire this CSIT, pilot symbols are commonly
employed to estimate Hq for given q at the RX, after
which the corresponding estimate Ĥq is communicated
to the TX over a return channel with possibly lim-
ited bandwidth. However, this CSIT is often inaccurate

(because of channel estimation errors caused by noise)
and/or delayed (because of the propagation times on the
actual channel and the return channel, and the process-
ing time needed for computing Ĥq at the RX). This
contribution discusses three particular CSIT scenarios,
which differ in the available estimates at the TX: (S1)
both the current estimate Ĥq and the past K estimates
Ĥq−1, · · · , Ĥq−K are available; (S2) only the current
estimate is available; (S3) only the past K estimates are
available.

A frequently employed performance measure in the
design of the TIR and the equalizer is the MSE between
the decision variable u(k) and desired response uT (k),
which is defined by

MSE ,
E
[∥∥u(k)− uT (k)

∥∥2
]

Lσ2
a

. (6)

In case of perfect CSIT, P and T are functions of Hq ,
so that the expectation E[·] in (6) is over the channel
impulse response Hq and over all data symbols and noise
samples contributing to either u(k) or uT (k). However,
P and T are, in practice, functions of the imperfect
CSIT. In this case, the robust design of the equaliza-
tion and TIR parameters takes these imperfections into
account by additionally including all channel estimates
used by the TX during the qth block in the expectation in
(6). Because of the wide-sense stationary fading, MSE
from (6) does not depend on the block index q.

Plugging (3) and (4) into (6) one obtains

MSE =

∫∫
J(hq)f(hq,

ˆ̄hq)dhqd
ˆ̄hq, (7)

where f(hq,
ˆ̄hq) represents the joint probability density

function (PDF) of the channel vector hq and the esti-
mation vector ˆ̄hq . The channel vector hq results from
stacking the columns of Hq into a single column vector
with L2LH × 1 components. The vector ˆ̄hq depends on
the considered CSIT scenario:

ˆ̄hq =


[ĥ
H

q · · · ĥ
H

q−K ]H S1

ĥq S2

[ĥ
H

q−1 · · · ĥ
H

q−K ]H S3

, (8)

where the L2LH × 1 vector ĥq denotes the estimate of
hq . Moreover, J(hq) in (7) is given by

J(hq) =
1

L
Tr

[
α2PHGH

q GqP + α2Rn

σ2
a

+ THT

− αTHGT,qP− αPHGH
T,qT

]
(9)

with
Gq = [GH

q (−L(1)
G ) · · ·GH

q (L
(2)
G )]H , (10)

GT,q = [GH
q (0) · · ·GH

q (LT)]H , (11)



T = [TH(0) · · ·TH(LT)]H , (12)

and Rn = E[n(k)nH(k)].
With the consideration that the TIR and the pre-

equalizer are functions of ˆ̄hq , the MSE (7) is minimized
by selecting(

T?
q ,P

?
q , α

?
q

)
= arg min

T,P,α
Q(ˆ̄hq), (13)

where Q(ˆ̄hq) = E
[
J(hq)|ˆ̄hq

]
is the a posteriori expec-

tation of J(hq), given the imperfect CSIT ˆ̄hq . In the case
of perfect CSIT, we have ˆ̄hq = hq , so that (13) reduces
to the minimization of J(hq).

From (9) it follows that

Q(ˆ̄hq) =
1

L
Tr

[
α2PHEGG(ˆ̄hq)P + α2Rn

σ2
a

+ THT

− αTHEGT(ˆ̄hq)P− αPHEHGT
(ˆ̄hq)T

]
, (14)

where
EGG(ˆ̄hq) = E

[
GH
q Gq|ˆ̄hq

]
(15)

and
EGT(ˆ̄hq) = E

[
GT,q|ˆ̄hq

]
. (16)

Appendix A discusses how to analytically obtain the a
posteriori expectations EGG(ˆ̄hq) and EGT

(ˆ̄hq) for the
considered CSIT scenarios in the case of MMSE channel
estimation from pilot symbols.

B. Calculation of equalization and TIR parameters
As mentioned above, the optimal set of parameters

(P?q , α?q , T?
q) is obtained by minimizing Q(ˆ̄hq) from

(14) for a given estimation vector ˆ̄hq . First, the optimal
pre-equalizer and scalar factor are derived for given T.
Substituting this solution into Q(ˆ̄hq) yields QP,α(ˆ̄hq),
which is further optimized over T.

To obtain (P?q , α
?
q) under the energy constraint (2)

for given T, the Lagrangian Λ(ˆ̄hq) with multiplier λ is
introduced, i.e.,

Λ(ˆ̄hq) = Q(ˆ̄hq) + λ(Tr(PHP− LETX)). (17)

At optimum, the multiplier λ is determined by equating
to zero the derivatives of Λ with respect to P and α, and
is given by

λ? = α2ζ, (18)

where ζ =
σ2
n

LETX
. The corresponding P?q and α?q are

subsequently derived by evaluating the derivatives of the
Lagrangian Λ with λ = λ?. This approach yields

P?q =
1

α?q
D−1EHGT

(ˆ̄hq)T (19)

and

α?q =

√
1

LETX
Tr
(
THEGT(ˆ̄hq)D

−1D−1EHGT
(ˆ̄hq)T

)
(20)

with D = EGG(ˆ̄hq) + ζI. After plugging (19) and (20)
into (14), the optimized QP,α(ˆ̄hq) is written as

QP,α(ˆ̄hq) = Tr(THZT) (21)

with Z = I−EGT
(ˆ̄hq)D

−1EHGT
(ˆ̄hq).

In the case of FRS, LT = 0 and T equals the identity
matrix. In the case of PRS, the precoder T?

q that mini-
mizes QP,α(ˆ̄hq) from (21) must be determined with the
additional constraint that all entries of T?

q are Gaussian
integers and T?

q(0) is a unimodular matrix. As the search
over all feasible T involves an infinite computational
complexity, a suboptimal iterative algorithm is proposed
instead, in which exactly one column of the TIR matrix
is incremented in each iteration. More specifically, the
TIR matrix in the ith iteration is denoted by Ti and the
lith column, tli,i, is incremented according to

tli,i+1 = tli,i + tinc, (22)

while all other columns remain unaltered. Since all
elements of T are restricted to the set of Gaussian
integers, all elements of tinc must be Gaussian integer
as well. Moreover, |det (Ti+1(0)) | remains equal to 1
when the first L elements of tinc are a linear combination
of the first L elements of the other columns tl,i with
l 6= li. Therefore, tinc is decomposed as

tinc = [(t
(0)
inc)H (λ

(1)
inc)H ]H , (23)

where t
(0)
inc contains the first L elements of tinc and λ

(1)
inc

contains the remaining elements. Since t
(0)
inc must be a

linear combination of columns from Ti(0), it is further
decomposed as

t
(0)
inc =

L∑
l=1
l 6=li

λ
(0)
l,inct

(0)
l,i = T

(0)
li,i

λ
(0)
inc, (24)

where λ
(0)
inc is the column vector containing the L − 1

coefficients λ(0)
l,inc, t

(0)
l,i is the lth column of Ti(0), and

T
(0)
li,i

is constructed by removing the lith column from
Ti(0). Subsequently, when the Hermitian and positive-
definite matrix Z is factorized according to its Cholesky
decomposition, i.e., Z = LLH with L lower triangular,
QP,α,i+1(ˆ̄hq) in iteration i+ 1 can be rewritten as

QP,α,i+1(ˆ̄hq) = Tr(TH
i+1LL

HTi+1)

=

L∑
l=1

‖LHtl,i+1‖2. (25)

In (25), the ith iteration alters only the term correspond-
ing to l = li and, after plugging (22), (23), and (24)
into (25), the optimal λ?inc = [(λ

(0)
inc)H (λ

(1)
inc)H ]H can

then be found by solving the following lattice decoding
problem

λ?inc = arg min
λinc

‖Glatλinc + x‖2, (26)
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Figure 2. MSE (right plot) and BER (left plot) performance of
optimized spatio-temporal PRS with Ēp = 10ETX. The robust
scenarios S1, S2, and S3 are compared to the cases of perfect CSIT
and delayed CSIT (K = 2), and to the naive approach which ignores
channel estimation errors. Clearly, the robust scenarios outperform their
naive counterparts.
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optimized spatio-temporal PRS with Ēp = 100ETX. The same
scenarios as in Fig. 2 are compared. The increase of Ēp ensures that
the performances for both the robust and naive approach get closer to
the performances with perfect CSIT (scenarios S1 and S2) or delayed
CSIT (scenario S3).

where Glat =
[
L(0)T

(0)
li,i

L(1)
]
, x = −LHT

(0)
li,i

, and

L(0) and L(1) contain the first L and last LLT columns
of LH , respectively. To solve the minimization problem
in (26), the closest point search algorithm described
in [13] can readily be applied after the decomposition
of all quantities into their real and imaginary parts. In
each iteration, li corresponds to the largest term in the
summation of (25) for which an increment can be found
that reduces QP,α,i+1(ˆ̄hq). When none of the terms can
be reduced, the algorithm terminates.

IV. NUMERICAL RESULTS AND DISCUSSION

To investigate the performance of the proposed robust
MIMO PRS, this section presents numerical results per-
taining to the transmission of precoded 4-QAM symbols
over a FS Rayleigh fading channel at a symbol rate
1/T = 20 MHz. The TX consists of (i) a PRS precoder
with LT = 2 feedback taps; (ii) a 21-tap (L(1)

P =

L
(2)
P = 10) pre-equalizer; and (iii) L = 3 antennas. The

discrete-time channel impulse response matrix Hq(m)

is related to the impulse response matrix H
(q)
ch (τ) of

the underlying continuous-time Rayleigh fading channel
by Hq(m) =

∫
hc(mT − τ)H

(q)
ch (τ)dτ , where hc(u)

is the impulse response of the cascade of the TX and
RX filters; we take for hc(u) a cosine-rollof pulse with
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Figure 4. MSE (right plot) and BER (left plot) performance of FRS
with Ēp = 10ETX. The same scenarios as in Fig. 2 are compared.
A significant performance degradation compared to optimized spatio-
temporal PRS is observed.

30% rolloff. The elements of H
(q)
ch (τ) are assumed to

be independent zero-mean circular-symmetric Gaussian
random variables, characterized by

E
[(

H
(q+k)
ch (τ + u)

)
l1,l2

(
H

(q2)
ch (τ2)

)∗
l1,l2

]
= pd(τ)RD(kXT )δ(u), (27)

where pd(τ) is the power-delay profile (with∫
pd(τ)dτ = 1), and RD(w) is the inverse Fourier

transform of the Doppler spectrum pD(ν) (with ν
the Doppler frequency and

∫
pD(ν)dν = 1). We

take pd(τ) = (1/T ) exp(−τ/T ). As for the Doppler
spectrum pD(ν), a zero-mean Gaussian with a standard
deviation equal to fD = 50 Hz is selected. Taking
symbol blocks of Ntot = 104 symbols, we obtain
NtotTfD = 0.025 � 1, indicating that the channel
variations over a symbol block are small. The relation
between Hq(m) and H

(q)
ch (τ) and the property (27)

allow to numerically compute the covariance between
(Hq1(m1))l1,l2and (Hq2(m2))l1,l2 for the relevant
values of m1, m2, q1 − q2; these covariances do not
depend on (l1, l2). Channel estimation is accomplished
using Zadoff-Chu (ZC) sequences, with Ep = 10ETX

or Ep = 100ETX (see Appendix B).
Both the MSE performance and the BER performance

are averaged over 2000 channel realizations and depicted
in Figs. 2, 3 and 4 for the optimized PRS with Ēp = 10,
the optimized PRS with Ēp = 100 and FRS with
Ēp = 10, respectively. The signal-to-noise ratio (SNR) is
defined as the ratio ETX/σ

2
n. In all figures, the proposed

robust scenarios S1, S2, and S3 (with K = 2) are
compared to the following cases:
• Perfect CSIT, where the actual channel hq is avail-

able. This case outperforms all other scenarios.
• Delayed CSIT, where the K previous channels

are available and collected in the vector h̄q,K =
[hHq−1, · · · ,h

H
q−K ]H . To determine the optimal

equalizer and TIR, the a posteriori expectation
E[·|ˆ̄hq] in (15) and (16) is replaced by the a posteri-
ori expectation E[·|h̄q,K ] such that Q(·) defined in
(14) becomes a function of h̄q,K instead of ˆ̄hq . The



associated conditional PDF can directly be derived
from the channel statistics. The case of delayed
CSIT outperforms scenario S3.

• The naive approach, where channel estimation er-
rors are ignored. More precisely, in S2 the equalizer
and TIR coefficients minimize J(hq) from (9),
but with hq replaced by the current estimate ĥq .
Similarly, in S3, Q(h̄q,K) defined in the case of
delayed CSIT is minimized, but with h̄q,K replaced
by the delayed estimates ˆ̄hq,K . Both cases are
inferior to their robust counterparts.

An especially noteworthy observation is the significant
performance gain of PRS compared to FRS. For the
cases with perfect CSIT and delayed CSIT, PRS indeed
achieves not only a considerably lower MSE than FRS
in the high SNR region, but also significantly lowers the
BER floor (on the order of 10−5 for FRS) to (far) below
10−6, emphasizing the potential of spatio-temporal PRS.
Likewise, all robust strategies in the case of PRS, includ-
ing S3, not only outperform their robust counterparts in
FRS, but also reach (considerably) lower BER values
(at high SNR) than FRS with perfect CSIT, even for
the rather poor estimation quality of Ēp = 10ETX. This
observation thus confirms that a suitable set of TIR and
pre-equalizer is obtained by all robust PRS scenarios.

Not surprisingly, the more channel estimates available
at the TX, the better the performance of the robust
scenario becomes, which is illustrated by the superior
performance of S1 and S2 compared to S2 and S3,
respectively. When the estimation quality improves, e.g.,
Ēp = 100ETX in Fig. 3, the performance gap between
robust S1 and robust S2 diminishes and both strategies
get close to the case with perfect CSI, because an (ex-
cellent) estimate of the current channel is available. Al-
though the MSE and BER of S3 reduces with increasing
Ēp, a performance loss compared to S1/S2 is noticeable
for both PRS and FRS; a similar observation holds when
comparing perfect CSIT with delayed CSIT (which are
the performance limits for S1/S2 and S3 when Ēp grows
infinitely large). This performance gap between S1/S2
and S3 is due to the rather large uncertainty about the
current channel given the estimates of only K = 2 prior
channel realizations, and verified to nearly disappear for
increasing K (results not shown for conciseness).

Figs. 2 and 4 reveal that the difference between the
performances of the robust strategies (S1/S2 and S3) and
their limits for infinite Ēp (perfect CSIT and delayed
CSIT) is larger for PRS than for FRS. This is caused by
the additional optimization over the TIR in PRS. Indeed,
whereas the TIR for FRS is the same for all strategies,
for PRS the robust TIR is not necessarily identical to the
TIR derived with perfect CSIT (S1/S2) or delayed CSIT
(S3); these TIR differences could induce a considerable
difference in both MSE and BER, since both the real and
imaginary part of the TIR are not continuous because

they take integer values only.
In the naive approach, the equalization and TIR pa-

rameters are computed assuming that the current estimate
ĥq (S2) or the previous estimates ˆ̄hq,K (S3) are without
estimation error. Figs. (2) - (4) clearly demonstrate that
the naive approach is inferior to the robust approach.
The difference between the robust and naive approach
is particularly prominent when the channel estimates
are rather poor, whereas the difference between the two
approaches reduces, as expected, with increasing Ēp.
Hence, the robust approach is preferable, especially since
the complexity of both approaches is comparable as it
is dominated by the computation of T and not by the
evaluation of the expectations in (15) and (16).

V. CONCLUSION

This paper applies the concept of robust equalization
to spatio-temporal PRS over a FS and time-variant
MIMO channel. More precisely, the TX designs both
the TIR of the PRS and the linear pre-equalizer, based
solely on the available imperfect CSIT, which consists
of noisy estimates of the MIMO channel of the current
and/or previous blocks. The robustness in the design
is accomplished by statistically modeling the error of
the estimates and subsequently minimizing the MSE be-
tween the decision variable and the target response; this
MSE incorporates the joint PDF of the actual channel
realization and the available CSIT. Numerical results
confirm that the proposed robust PRS significantly im-
proves the performance compared to the naive approach
that ignores channel estimation errors. Compared to FRS,
PRS also improves the MSE and BER performance for
both the robust design and the design with perfect CSIT,
making the proposed robust PRS an interesting technique
to handle considerable amounts of ISI in practice.

APPENDIX A
LINEAR MMSE ESTIMATION FROM PILOT SYMBOLS

During the qth symbol block, each antenna transmits
Np pilot symbols (besides the data symbols) to allow
channel estimation at the RX. To avoid that the chan-
nel dispersion gives rise to interference from the pilot
symbols to the data symbols in the same block, the
TX inserts a guard interval of LH − 1 all-zero symbols
between the pilot symbols and the data symbols1. Thus,
the block size Ntot is given by Np+Nd+LH−1, where
Nd denotes the number of data symbols per block.

Only the signals received at the Np − LH + 1 con-
secutive instants, where the channel memory is entirely
filled with pilot symbols, are exploited for channel
estimation. This yields the L×(Np−LH+1) observation
matrix Yq = HqAp + Nq , where the ith column of
the LLH × (Np − LH + 1) pilot symbol matrix Ap

1As the channel covariance matrix is assumed to be known, the value
of LH can be derived



equals
(
aHp (LH + i− 2), ...,aHp (i− 1)

)H
, with ap(n)

the L×1 pilot symbol vector transmitted during the nth
symbol interval in the qth block. This observation can
equivalently be represented as yq = Ahq + nq , where
A = AT

p ⊗ IL and yq , nq , and hq are obtained by
stacking the columns of Yq , Nq , and Hq , respectively.
The covariance matrix of the noise contribution nq is
given by Rn = σ2

nIL(Np−LH+1). The resulting linear
MMSE estimate of hq is ĥq = Xyq with

X =
(
σ2
nR
−1
hq

+ AHA
)−1

AH , (28)

where Rhq is the covariance matrix of hq . Introducing
the LH × LH matrices U(i), where

(U(i))m,m′ = E
[
(Hq+i(m))l,l′ (Hq(m

′))
∗
l,l′

]
(29)

for (m,m′) ∈ {−L(1)
H , ..., L

(2)
H }2, we obtain Rhq

=
U(0) ⊗ IL2 . Defining h̄q = hq for CSIT scenario S2,
and h̄q = [hHq · · ·h

H
q−K ]H for scenarios S1 and S3, it

follows from the decomposition ĥq = XAhq+Xnq that
ˆ̄hq = Eh̄q + Fn̄q, where

E =


IK+1 ⊗ (XA) S1

XA S2

[0 IK ⊗ (XA)] S3

(30)

and F is obtained by replacing in (30) XA by X, and n̄q
results from stacking the vectors nq, ...,nq−K . Hence,
conditioned on h̄q , ˆ̄hq is Gaussian with mean Eh̄q and
covariance matrix σ2

nFF
H . The vector h̄q is zero-mean

Gaussian with covariance matrix Rh̄q
= U⊗IL2 , where

U is a (K + 1)LH × (K + 1)LH block matrix, with
the LH × LH block at position (i, j) ∈ {1, ...,K + 1}2
given by U(i−j). It can be verified that, conditioned on
ˆ̄hq , h̄q is Gaussian with mean R

h̄q|ˆ̄hq
EH(σ2

nFF
H)−1 ˆ̄hq

and covariance matrix R
h̄q|ˆ̄hq

, where

R
h̄q|ˆ̄hq

=
(
R−1

h̄q
+ EH(σ2

nFF
H)−1E

)−1

(31)

Based on (10) and (11), it follows that the elements
of EGG(ˆ̄hq) and EGT

from (15) and (16) can be
straightforwardly expressed in terms of the a posteriori
expectations and covariances of the elements of hq;
these a posteriori moments are obtained by extracting
the proper elements from the a posteriori mean and the
a posteriori covariance matrix of h̄q .

APPENDIX B
ORTHOGONAL PILOT SEQUENCES

As an example, the considered pilot sequence is
derived from a ZC sequence [14], [15]. The pilot se-
quence for the first antenna is constructed by cyclically
extending a ZC sequence of length Np − LH + 1 with
LH−1 symbols, which yields a pilot sequence of length
Np. The pilot sequence for the lth antenna is obtained

by applying (l− 1)LH cyclic shifts to the ZC sequence
from the first antenna, and adding a cyclic extension of
LH−1 symbols. For Np−LH+1 ≥ LHL, all rows from
Ap are orthogonal, yielding ApA

H
p = EpILLH , where

Ep = (Np−LH+1)Ep and Ep is the transmitted energy
per pilot symbol.
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