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Prediction of acute kidney injury using artificial intelligence:
are we there yet?
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Management of acute kidney injury (AKI) is suboptimal and
often opportunities for AKI prevention are missed [1]. AKI is
frequently associated with other underlying conditions and will,
in most cases, be handled by non-nephrologists in the hospital
setting who are less experienced in diagnosing AKI. This
has made the development of detection or prediction models
of AKI a hot topic. Most of these models are restricted to esti-
mating the risk for AKI at baseline, e.g. on admission or preop-
eratively, and/or in specific settings, e.g. cardiac surgery or
sepsis, thus hampering their generalizability [2]. Recently a ma-
chine learning-based algorithm was shown to perform as well
as physicians in predicting AKI stages 2–3 on the day of
admission, albeit in the restricted setting of the intensive care
unit (ICU), on the basis of which the algorithm was developed
[3]. More advanced prediction models have shown increased
clinical usefulness by allowing continuous, and nearly real-time,
risk prediction, taking into account longitudinal patient data,
and thereby the dynamic status of the patient, thus making im-
plementation of an (automated) electronic alert system highly
attractive [4]. In addition, many models predict only advanced
stages of AKI or the need for renal replacement therapy, thus
missing the opportunity to prevent or mitigate AKI.

In Nature, Toma�sev et al. [5] reported the development of a
continuous prediction model for AKI based on artificial intelli-
gence (AI). The authors used longitudinal data from electronic
health records of >700 000 inpatients, as well as outpatients,
across all specialties to train a deep learning recurrent neural
network model. The system was trained using not only current
medical data, but also previous data for up to 2 years before ad-
mission, resulting in a flabbergasting 6 billion independent data
entries. For every case, presence or absence of AKI was labelled
to allow supervised learning. The resulting model was able to
predict AKI in 55.8% of all inpatient cases of diagnosed AKI,
with a lead time of up to 48 hours and a ratio of two false alerts
for every true alert.

This project illustrates the potential of using AI trained in
big data in medicine. However, it also reveals the limitations
and pitfalls of such an approach and the issues that need further
research and attention.

First, the performance of the model is not that impressive.
The model has a low sensitivity of 55.8%, meaning half of the
AKI episodes are missed. This may be a deliberate choice to in-
flate the specificity. In settings with a low prevalence of AKI,
even highly performing models will have to strike a balance be-
tween high sensitivity, and thus missing fewer cases, and specif-
icity, and thus reducing false positives and tackling alert fatigue.
Further research is needed to explore which approach will, in
clinical practice, result in substantial improvement in outcomes
[6]. Of particular note, in a general hospital setting, missing
AKI cases might be considered more problematic than alert fa-
tigue. However, it is important to consider that low sensitivity
might simply be due to the fact that a large proportion of AKI
cases simply cannot be predicted, just like one cannot predict
the side on which a coin will land in a coin toss experiment.
These drawbacks are inherent to the laws of probability and
hence apply to all diagnostic and prediction models, whether
traditional or machine learning based [7].

Toma�sev et al. [5] used supervised learning, in which input
features are associated with pre-specified output labels based on
a mathematical algorithm. This implies that during training the
model is provided with the correct label for each case and also
during training the model learns from its ‘mistakes’ by adapting
the weights that associate the data with the label in the algo-
rithm. Such an approach presumes that the categorization
used is: (i) ‘transparent’ and ‘uniform’, implying everybody
understands clearly and unequivocally what the category label
represents exactly; (ii) ‘relevant’, with categories making a
meaningful distinction between cases; (iii) ‘unique’, meaning
that every case belongs to one, and only one, category and (iv)
‘exhaustive’, meaning that all cases that exhibit meaningful dif-
ferences can be assigned to a different category. Last, it also pre-
sumes that all cases in the training set are labelled correctly.
When these assumptions are violated, the resulting algorithm
will achieve a poor performance in practice.

Most AKI prediction algorithms claim to be based on
Kidney Disease: Improving Global Outcomes criteria, but in re-
ality they are based only on the creatinine level, and not on the
urinary output criterion. This implies AKI predicted by these
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models might differ from AKI as understood in clinical practice
and, as such, the definition of what is predicted by the algorithm
is not transparent nor uniquely defined. Importantly, urinary
output could represent the cheapest continuously available pre-
dictor of AKI we have, and instructing healthcare staff to moni-
tor diuresis might be more effective in improving AKI
management than searching for new AKI biomarkers or devel-
oping prediction algorithms for AKI [8].

An electronic alert for AKI would have the most added value
in those settings with the highest risk for missing an AKI diag-
nosis. However, in a retrospective data set, cases where a diag-
nosis of AKI was not considered by the physician are highly
likely to lack the data to ground the diagnosis. One can opt to
consistently label these cases as ‘no AKI’, as in Toma�sev et al.’s
paper [5]. In this case, the label of ‘no AKI’ would have no rele-
vance since it does not distinguish between ‘confirmed no AKI’,
as grounded in the available data, and ‘uncertain AKI’, i.e. data
are not available to ground the diagnosis. ‘Uncertain AKI’
might represent missed AKI cases or incorrect labelling in the
training set, thus resulting in false negatives in the test set
through supervised learning—in this way, cases missed by the
physician will also be missed by the prediction model. One
could also opt to exclude cases that miss the data to ground the
diagnosis. However, this would mean the training set will not
include cases of ‘easily missed AKI’ and, as a consequence, will
not be exhaustive. The typical pattern of these cases will not be
recognized in the test set, resulting in their random classifica-
tion as either AKI or no AKI.

Furthermore, the model is not only trained in using test
results, but also in the use of metadata, such as whether tests are
ordered, as well as their timing, regardless of the test results.
There is evidence these metadata are more informative than ac-
tual test results for predicting outcomes, including survival [9].
However, such metadata rely heavily on the expertise of the
physician who will order the test because of a presumed risk of
AKI. This will result in the creation of a vicious circle within the
model. During training the model will blindly (i.e. without any
knowledge about the problem) associate the request of the phy-
sician for a test to detect AKI with the later occurrence of AKI.
The model will thus generate an alert for a potential AKI prob-
lem that the physician already recognized himself.

Furthermore, implementing such a model could have other
unexpected ‘side effects’ in daily clinical practice. If a user
strongly trusts in the performance of the electronic alert system,
they might choose to ‘wait’ for an alert trigger from the model
before taking action, while the model, in fact, ‘needs’ these
actions to be taken first so it can estimate the risk of AKI and
trigger the alert. This may, of course, have detrimental effects
on timely AKI recognition. Alternatively, users can order, as a
default setting in practice, all the necessary tests to feed the
algorithm for all patients. However, in this default setting, the
relationship between the results of these tests and AKI will shift
due to a change in the pre-test probability distributions between
the training set and the clinical practice data set. The model
might not be calibrated to this new setting. In addition, it can
also lead to the well-known ‘neural net tank urban legend’ [10],

as illustrated in an AI-based chest X-ray diagnosis model [11]
in which the diagnosis was largely driven by the type of X-ray
machine used, with differences in the machine used in the out-
patient setting (low incidence of pneumonia) compared with
the ICU setting (high incidence of pneumonia).

Last, an alert trigger needs to be timely to avoid or mitigate
the risk for AKI. Although a 48-hour prediction window would
seem adequate, not all AKI diagnoses are predicted within 48
hours before the onset of AKI by the prediction system. In fact,
only 20% of AKI cases are predicted >24 hours before AKI on-
set [5]. For the majority of cases, this might prove to be too late
for an effective intervention [2]. In addition, in the case of
AKI, intervention would consist of preventive measures that
should be provided to all patients, not only to those with
impending AKI.

The points mentioned above could unveal the Achilles tendon
of this type of prediction models based on retrospective observa-
tional datasets, and could jeopardize their clinical usefulness.
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