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Abstract 

 
The concept recently postulated by Stein and co-workers (Science2017, 355, 966) that mu opioid receptor 

(MOR) agonists possessing amines with attenuated basicity show pH-dependent activity and can selectively act 

at damaged, low pH tissues has been additionally supported by in vitro studies reported here. We synthesized 

and tested analogs of fentanyl possessing one or two fluorine atoms at the beta position of the phenethylamine 

side chain, with additional fluorines optionally added to the benzene ring of the side chain. These compounds 

were synthesized in 1 to 3 steps from commercial building blocks. The novel bis-fluorinated analog RR-49 

showed superior pH sensitivity, with full efficacy relative to DAMGO, but with 19-fold higher potency (IC50) in a 

MOR cAMP assay at pH 6.5 versus 7.4. Such compounds hold significant promise as analgesics for inflammatory 

pain with reduced abuse potential. 

KEYWORDS: 
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Agonism of the mu opioid receptor (MOR), originally via the natural product morphine, has been utilized for 

millennia as the most effective form of analgesia for acute pain.(1) The potential for addiction and abuse with 

sustained use of narcotic MOR agonists, combined with the dangerous side effect of respiratory depression, has 

driven the present opioid epidemic, with more than 70,000 overdose deaths in the U.S. in 2017.(2) Fortunately, 

new approaches to MOR agonism have been investigated that could lead to analgesics with improved safety 

profiles.(3−7) Stein and co-workers have recently added an additional strategy worthy of careful consideration: 

the use of pH-dependent ligands designed to have a higher affinity for receptors in damaged tissues with lower 

pH. This strategy leverages the fact that a protonated amine is generally required in MOR agonists to form an 

ion pair with Asp147 of human MOR, as suggested by site-directed mutagenesis(8) and confirmed by the X-ray 

structure of BU72 bound to MOR.(9) A fluorinated version of fentanyl(10−12) (1, Chart 1) called (±)-N-(3-fluoro-

1-phenethylpiperidine-4-yl)-N-phenyl propionamide (NFEPP) (2), was reported by Stein et al. to have increased 

affinity for MOR and activity in functional Gi-driven assays at pH 6.5 versus normal pH (7.4).(13) Notably, NFEPP 

was also reported to be effective in rat models of acute and/or persistent inflammatory pain and may have 

lower CNS-related side effects than fentanyl.(13,14) The relative stereochemistry of this compound was not 

disclosed. 
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Chart 1. Fentanyl and Fluorinated Analogs 

We reasoned that other MOR ligands with carefully attenuated basicities could be effective peripheral 

analgesics; such compounds (3, Chart 1) could be easier to prepare than NFEPP, are easily accessible in pure 

isomeric forms, and can be prepared via flexible synthetic routes that offer the opportunity to identify analogs 

with superior pH sensitivity and drug-like properties. The potential to selectively activate MORs at damaged 

peripheral sites at lower pH, over central MORs known to mediate undesirable effects such as euphoria and 

respiratory depression, makes this approach worthy of further investigation. 

The introduction of pKa-lowering electronegative fluorine atoms beta to amines is a well appreciated tactic that 

has been frequently used to improve drug-like properties.(15−17) We continued with this strategy applied to the 

fentanyl scaffold by aiming to place fluorine(s) beta to the piperidine nitrogen, but on the phenethyl side chain, 

rather than on the piperidine itself, as in NFEPP (Chart 1). We synthesized β-fluorofentanyl 6a and β,β-

difluorofentanyl 6b via simple substitution reactions between the commercially available phenethyl 

halides 4a and 4b and piperidine 5 (Scheme 1). These analogs were compared to fentanyl and NFEPP in an MOR 

assay in transfected HEK 293 cells measuring relative cAMP concentrations. In this assay, MOR agonists induce 

Gi-mediated inhibition of adenylyl cyclase, and the resulting changes in cAMP concentration are measured 

indirectly via changes in luminescence from a luciferase enzyme engineered with a cAMP binding region.(18) 

 

Scheme 1. One-Step Synthesis of β-Fluorofentanyls 

In this assay, NFEPP and 6a performed nearly identically, with both acting as full agonists (data not shown) 

relative to fentanyl, both with IC50s of 0.71 nM at pH 6.5. As a measure of pH sensitivity, we define the “pH 

ratio”, which is simply the ratio of IC50s at pH 7.4 and 6.5. Importantly, both NFEPP and 6a showed significantly 

higher potencies at pH 6.5 than 7.4, with pH ratios of 10.6 and 8.2, respectively, compared to fentanyl with a 

measured pH ratio of 1.9 (Figure 1 and Table1). The bis-fluorinated compound 6b, with a calculated pKa of 5.5, 

was expected to be only weakly active even at low pH, and this was consistent with the experimental results, 

with an IC50 nearly 4 orders of magnitude higher than 6a (Table1). During the course of this work, Stein 

reported in vitro and in vivo analgesia data with 6a (aka FF3), though details of its synthesis and characterization 

were not disclosed. A pH ratio was reported to be 4.9 for 6a in an MOR GTPγS assay.(19) 
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Figure 1. Concentration–response curves of (A) fentanyl; (B) NFEPP; and (C) 6a in GloSensor MOR cAMP assay. 

Data was individually normalized to each compound to show % response. 

Table 1. Summary of MOR Agonist Activitiesa 

compound calcd pKa
b (exptl) pIC50 (pH 7.4)c pIC50 (pH 6.5)c pH ratiod 

DAMGO   9.10 ± 0.07 8.71 ± 0.07 0.4 

fentanyl (1) 8.77 (8.4) 7.97 ± 0.08 8.26 ± 0.12 1.9 

NFEPP (2) 7.30 (6.82) 8.12 ± 0.03 9.15 ± 0.04 10.6 

6a 7.18 (7.22) 8.23 ± 0.03 9.15 ± 0.04 8.2 

6b 5.48 4.50 ± 0.07 5.24 ± 0.06 5.4 

RR-49 (12a) 6.60 6.98 ± 0.07 8.26 ± 0.07 19.0 

12b 6.64 7.11 ± 0.09 8.19 ± 0.07 12.0 

12c 6.94 6.99 ± 0.07 7.60 ± 0.06 4.0 

12d 6.38 7.05 ± 0.11 7.93 ± 0.07 9.0 
aAgonist activities were measured with a GloSensor cAMP assay with HEK 293 cells in 384-well plates transiently 

expressing MOR. See Supporting Info for full details. Results were independently normalized, with 0% and 100% 

activity defined for each compound as the top and bottom of curves fit with 4-parameter nonlinear regression 

(GraphPad Prism v. 8). 
bpKa of protonated amine calculated with ChemAxon Marvin v.18.3. 
cpIC50 = −log(IC50). Uncertainty is indicated by SEM for the curve fitting to a minimum of 16 measurements. 
dpH ratio = IC50 (pH 7.4)/IC50 (pH 6.5). 
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Stein reported that 6a showed impressive dose-dependent analgesia in rat models of inflammatory pain, though 

of limited duration. Unfortunately, it also showed similar conditioned place preference to fentanyl, suggesting 

that it could suffer from similar abuse liabilities,(19) which is likely also an issue with NFEPP. We reasoned that 

molecules with pKas less than 6a (measured by Stein to be 7.22)(19) but greater than 6b (calculated to be 

5.48, Table1) could offer substantially better selectivity for inflamed tissues and a larger therapeutic window. 

With these promising results in hand for 6a, we aimed to prepare molecules with amine pKas closer to 6.5, i.e., 

the pH that may be present in inflamed tissues. To do this, we simply added fluorine(s) to the benzene of the 

phenethyl side chain. Since the required alkyl halides were not commercially available, we pursued alternative 

routes that could also support the preparation of enantiopure materials, if desired. Since styrene oxides are 

potentially available in highly enantioenriched forms via asymmetric epoxidation methods, we first attempted 

epoxide opening reactions with piperidine 5, with alcohol products that could be subsequently converted to the 

desired fluorides in a single step. 

Somewhat unexpectedly, the ring opening reactions under basic conditions yielded regioisomeric products that 

were surprisingly difficult to separate. For example, treatment of epoxide 7 with 5 generated a mixture of the 

desired secondary alcohol 8a and undesired primary alcohol 9a (Scheme 2). Alternatively, piperidine 5 was 

cleanly alkylated with α-bromoacetophenones 10, then the resulting ketones 11 reduced with sodium 

borohydride to generate the desired amino alcohols 8 (Scheme 3). Finally, these were converted to the final β-

fluorofentanyl analogs 12 by treatment with both DAST and Et3N-3HF, which presumably protonates the basic 

amine to minimize formation of fluoroamine byproducts. The 2,5-difluorophenyl analog 12d was generated 

without isolation of the intermediate ketone 11d, which was particularly unstable (Scheme 4). 

 

Scheme 2. Epoxide Opening Reaction 

 

Scheme 3. Three-Step Synthesis of β-Fluorofentanyls 
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Scheme 4. Synthesis of 12d 

The analogs 12a–d were tested in the GloSensor assay along with the standard MOR agonist DAMGO and 

fentanyl (Figure 2; Table1). As expected, the pH ratio tracks with the amine pKa, as the ortho-fluoro 

analog 12a (called RR-49), with its lower pKa value of 6.60, showed better pH sensitivity (pH ratio = 

19.0, Figure 3) relative to the para-fluoro 12c (calcd pKa = 6.94; pH ratio = 4.0). However, the 2,4-difluoro 

analog 12d is the exception to the trend, as it had a lower pH ratio than 12a (9.0). We cannot rule out the fact 

that a fluorine in the para position may have additional effects on receptor activation. 
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Figure 2. Concentration–response curves (fold activity) of DAMGO, fentanyl, and agonists 12a–d in the 

GloSensor MOR cAMP assay at pH 7.4 (A) and 6.5 (B). Results were normalized with basal activity as 1.0 and 

analyzed in Prism using the built-in 4-parameter logistic function. 

 

Figure 3. pH-dependent activity of 12a (RR-49) (% response). 

In summary, we have identified 12a (RR-49) as a more highly pH-sensitive MOR agonist than the prior reported 

compounds NFEPP (2) and 6a. Compound 12a also maintains full agonist activity relative to DAMGO and 

fentanyl, as estimated in Figure 2. In vivo studies are underway to confirm that it may impart lower CNS effects 

and abuse liabilities than prior compounds of this class. pH-sensitive MOR agonists may represent a promising 

strategy for the treatment of inflammatory pain with decreased risks relative to current opioids. 
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