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Abstract: 
Average service time, quality-of-service (QoS), and service reliability associated with heterogeneous parallel and 

distributed computing systems (DCSs) are analytically characterized in a realistic setting for which tangible, 

stochastic communication delays are present with nonexponential distributions. The departure from the 

traditionally assumed exponential distributions for event times, such as task-execution times, communication 

arrival times and load-transfer delays, gives rise to a non-Markovian dynamical problem for which a novel age 

dependent, renewal-based distributed queuing model is developed. Numerical examples offered by the model 
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shed light on the operational and system settings for which the Markovian setting, resulting from employing an 

exponential-distribution assumption on the event times, yields inaccurate predictions. A key benefit of the 

model is that it offers a rigorous framework for devising optimal dynamic task reallocation (DTR) policies 

systematically in heterogeneous DCSs by optimally selecting the fraction of the excess loads that need to be 

exchanged among the servers, thereby controlling the degree of cooperative processing in a DCSs. Key results on 

performance prediction and optimization of DCSs are validated using Monte-Carlo (MC) simulation as well as 

experiments on a distributed computing testbed. The scalability, in the number of servers, of the age-dependent 

model is studied and a linearly scalable analytical approximation is derived. 

Keywords 
Servers, Reliability, Measurement, Stochastic processes, Analytical models, Vectors, Load modeling 

SECTION 1 Introduction 
In the analysis of performance and reliability of applications executed on heterogeneous DCSs, analysts, 

designers, and users alike need formal methods to assess and compare different designs and implementations 

before deciding on a specific solution. Modeling DCSs and assessing application's performance and reliability are 

complicated tasks due to several reasons. First, servers in a DCS offer heterogeneous processing capabilities to 

their users. Second, the communication network of a DCS connects geographically dispersed servers, as in the 

case of wide area networks, peer-to-peer (P2P) networks and donation grids, where significant stochastic, 

heterogeneous communication delays may be imposed to the exchange of information. Finally, a DCS comprises 

a large number of elements that interplay in a collective and stochastic manner creating a complex system 

dynamics [1], [2], [3]. 

Because of this unavoidable complexity, simulation, and in particular discrete event simulation (DES), has 

emerged as the most employed method for both modeling as well as performance and reliability analysis in 

heterogeneous DCSs. The most appealing aspect of DES is its simplicity and general application, while its main 

drawback is its high computational cost to achieve accurate results [1]. In addition to DES, modeling has been 

conducted by means of model description languages such as Petri Nets [4] and graphical modeling tools such as 

fault trees [5] and reliability graphs [6]. 

Analytical methods for performance and reliability have also been developed in the literature. To circumvent the 

inherent complexity of the models, researchers usually impose a set of simplifying assumptions and constraints 

so that system's behavior can be characterized in a tractable manner. The most common simplifying 

assumptions employed in the literature are heuristics related to applications' service time [7], [8], [9], 

homogeneous capabilities of servers and/or communication links [8], time-invariant DCS topology [10], and the 

deterministic behavior of the transfer time of tasks [9], [11], [12]. Researchers have argued that these 

assumptions are meaningful solely in parallel computing environments [4], [13], [14]. They further argue that 

performance and reliability analysis in DCSs must consider stochastic models with nonhomogeneous parameters 

due to the large amount of uncertainty introduced by both communication delays and the number of working 

servers. 

The stochastic model most widely used to represent a DCS is the Markovian distributed queuing network. Such 

model is obtained under the assumption that all the timed-events that collectively govern the behavior of the 

DCS (e.g., task-execution times, communication arrival times, load-transfer times and server failure times) follow 

exponential distributions [12], [15], [16], [17], [18], [19]. The vast amount of research on Markovian models has 

yielded several modeling and analysis tools such as TimeNET and WebSPN [12], [17], [18], [19]. The main 

advantages provided by the Markovian assumption are that highly simplifies the calculations, yields tractable 



solutions, avoids the time-dependent behavior of the system dynamics [20], and leads to closed-

form [17], [18], [19] or recursive characterizations [16], [21] of complex performance metrics. 

Modeling and analysis of queuing systems in non-Markovian settings has also been conducted. The classical 

approach is to abstract a DCS in terms of G/G/𝑛 queues [3], [22]. Analysis can be conducted under this model 

using basic principles and standard methods from stochastic processes, such as state-space expansion based on 

phase-type distributions [1] or on the method of supplementary variables introduced by Cox in [23]. Specifically, 

Cox analyzed a completely reliable G/G/𝑛 queuing system that follows distributions with rational Laplace 

transforms, and modeled the probability of finding a server available using the Laplace transform. 

Recently, modeling and analysis of non-Markovian queuing systems has been conducted in terms of non-

Markovian stochastic Petri Nets [4], [24], [25], [26], [27], [28]. In these works non-Markovian stochastic Petri 

Nets have been developed and their capabilities have been exploited to model the performance of web server 

networks [26], queues of embedded systems [26], [27] and the queues of two network terminals [28] among 

other applications. The common approach taken in the aforementioned works is that non-Markovian stochastic 

Petri Nets have been developed by considering both general distributions for the random times firing state 

transitions and continuous supplementary variables, in the form of age variables, to account for the memory of 

the general distributions. 

While the Markovian assumption highly simplifies calculations it is not always appropriate to model practical 

systems. For instance, it is easy to observe that physical constraints of practical systems impose unavoidable 

minimum response times to both service and transfer times of applications. For the service time, this 

unavoidable time results from typical operations carried out by applications, such as loading the data into the 

memory, making system calls and initializing variables. For the transfer times, actual communication networks 

always introduce a nonzero end-to-end propagation delay to any exchange of information. In fact, in earlier 

works we have observed that empirical characterizations for both task service times and task transfer times that 

were obtained from actual DCSs follow power-law distributions like the Pareto distribution [16], [29]. Moreover, 

researchers have shown that Markovian models may introduce significant errors on the calculation of 

performance and reliability metrics [16], [25]. In particular, in [16], we showed by means of Monte-Carlo (MC) 

simulations that the service reliability of a DCS calculated under the Markovian assumption can be highly 

inaccurate in settings where the average task-transfer delays are large compared to the average task service 

times. 

In this paper, we extend the stochastic regeneration-based models presented in [16], [21], and [29] in significant 

ways. (Here, we use the terms regeneration and renewal interchangeably.) First and foremost, we relax the 

assumption on the exponential distribution of the random event times that govern the dynamics of a DCS. To 

this end, we introduce in our analysis auxiliary age variables and constructed a continuous-time age matrix that 

keeps track of the memory of all the nonexponential random times. The age matrix augments the queuing state-

space model presented in [16] and [21] yielding a hybrid continuous and discrete state-space. This hybrid setting 

enables the development of an age-dependent stochastic regeneration theory for the distributed queuing 

problem at hand, which, in turn, leads to the analytical, recursive characterization of the service time of an 

application being executed on a DCS with an arbitrary number of servers. Second, the scalability (in the number 

of servers) of the hybrid state-space model for the application service time is studied and a linearly scalable 

analytical approximation of the model is presented. 

The characterization of the stochastic service time of an application has been employed to calculate three 

performance metrics of great interest to system analysts and designers, namely, the average service time of an 

application, quality-of-service (QoS) guarantees in executing an application, and the service reliability in 

executing an application. Moreover, in order to account for the efficient execution of parallel applications, our 



characterizations have been parameterized by a dynamic task reallocation (DTR) action that is synchronously 

executed by the system servers. This parameterization, in conjunction with a set of DTR policies, yields a flexible 

mathematical framework for systematically devising DTR strategies in heterogeneous DCSs such as grid 

computing systems [3], distributed pattern-searches in DNA databases [30], and reliable distributed computing 

in P2P networks and donation grids [31]. In this paper, we will exploit the developed framework to optimize 

performance and reliability in a distributed computing testbed. Our results indicate that when communication 

delays are severe compared to the average service time of the servers, Markovian approximations not only 

result in prediction inaccuracies of the performance and reliability metrics, but also introduce significant errors 

in the prediction of the number of tasks that need to be reallocated among the servers as DTR is performed. 

Finally, the mathematical framework developed here can be used also to characterize metrics and devise 

allocation policies in parallel computing systems. This is illustrated here by assessing the performance of a 

parallel application executed on a 12-node production cluster. 

This paper is organized as follows: in Section 2, we state formally the problem tackled in this paper. In Section 3, 

we build the novel age-dependent renewal theory for the random service time of applications in a DCS, describe 

the scalability issues and derive analytical approximations for the service time of an application. In Section 4, we 

compare our age-dependent approach with our previous Markovian renewal-based solution with emphasis on 

DTR policies for minimal average service time, maximal QoS and maximal reliability. Our conclusions are given 

in Section 5. 

SECTION 2 Problem Description 
Consider the class of parallel applications that has no data-dependence constraints between operations. Due to 

this data independence, such applications can be arbitrarily partitioned into an integer number, say, 𝑀, of 

indivisible and independent tasks. After this partitioning process, the 𝑀 tasks can be allocated onto the 

heterogeneous computing servers of a DCS for their parallel execution. Suppose that the DCS is composed 

of n servers, and let us suppose that, at 𝑡 = 0, an offline scheduler has allocated 𝑚𝑗 tasks in the queue of the 𝑗th 

server, where 𝑀 = ∑ 𝑚𝑗

𝑛

𝑗=1
 and 𝑚𝑗 is a nonnegative integer. Here, the heterogeneous capabilities of the 

servers have been assumed as of the processor-consistent type [32], [33], that is, the random time taken by any 

server to process any task depends only upon the service time of the server executing the task. 

In order to efficiently parallelize the execution of applications on the DCS, servers are allowed to exchange their 

tasks by synchronously executing, at a prescribed time 𝑡 = 𝑡𝑏, a DTR policy. We have denoted by 𝑙𝑖𝑗(𝑡𝑏) the 

number of tasks to be reallocated from the 𝑖th to the 𝑗th server at time tb. For simplicity of notation, we may 

drop the explicit dependence on tb whenever there is no confusion and write 𝑙𝑖𝑗. By arranging the 𝑙𝑖𝑗  quantities 

in matrix form, the DTR policy is denoted as 𝐋 = (𝑙𝑖𝑗)𝑛×𝑛. To model the limitations of practical communication 

networks utilized by DCSs to transfer data among the servers, we shall assume hereafter that the exchange of 

any task, or any group of tasks, among any pair of servers experiences a stochastic communication delay. Such 

stochastic delay depends upon both the number of tasks exchanged and network parameters such as the 

heterogeneous end-to-end propagation time. 

Additionally, we will assume that computing servers can fail permanently at any random instant following the 

socalled crash-stop failure model [34], [35]. This failure model has the practical implication that avoids the use of 

complicated software and/or hardware replication systems for recovering tasks from failed server. 

Consequently, the application cannot be successfully serviced by the system if at least one task remains 

unprocessed at a failed server. Also, it has been further assumed that upon failure a server broadcasts to the 

network a small fixed-sized failure-notice (FN) message. Such type of messages are required by practical DCSs to 

detect and isolate failed servers. Of course, FN messages faces random end-to-end transfer delays, which 



depends solely on the heterogeneous end-to-end propagation time of each communication link. Finally, we will 

also assume that servers employ any type of reliable message-passing protocol, such as MPI, P4, and PVM. 

These protocols guarantee that tasks are not discarded by the network in situations like the failure of a server 

while exchanging tasks with other nodes. 

For mathematical tractability, Assumptions A1 and A2 (stated below) are imposed on the random times driving 

the events occurring in the DCS. 

2 Assumption A1 
For any 𝑗 ≠ 𝑘, the following times are random and their probability distribution functions (pdfs) are known. 

1. 𝑊𝑘𝑖: the service time of the 𝑖th task at the 𝑘th server, with pdf 𝑓𝑊𝑘𝑖
(𝑥) 

2. 𝑌𝑘: the failure time of the 𝑘th server, with pdf 𝑓𝑌𝑘
(𝑥). 

3. 𝑋𝑗𝑘: the transfer time of an FN message sent from the 𝑗th to the kth server, with pdf 𝑓𝑋𝑗𝑘
(𝑥) 

4. 𝑍𝑖𝑘: the transfer time of 𝑙𝑖𝑘 tasks from the 𝑖th to the 𝑘th server, with pdf. 𝑓𝑧𝑘(𝑥). 

2 Assumption A2 
. All the random times listed in Assumption A1 are mutually independent. 

In this paper, we consider three key performance and reliability metrics: the average service time of an 

application, the QoS and the service reliability in executing an application [2], [3], [16], [22]. While Precise 

Mathematical Definitions of These Metrics Are Presented in Section 3.3, At This Point We Will Briefly 

Introduce Them and Describe Their Scope of Applicability. the Average Service Time Is Critical To Assess the 

Speedup in the Runtime of Applications When Executed in Parallel on a DCS. the Average Service Time Is a 

Reasonable Metric (i.e., It Takes a Finite value) Only in Settings Where Servers Are Completely Reliable or in 

Settings Where Servers Are Allowed To Recover After a Failure. the Qos, Which Is Defined as the Probability of 

Executing An Application By a Prescribed Time Deadline, Is a Reasonable Metric in Settings Where Server 

Nodes May or May Not Fail. the Qos Metric Is of Interest To System Users and Analysts, Specially in Real-Time 

or in Time Constrained Applications. Finally, the Service Reliability, Which Is Defined as the Probability of 

Successfully Executing An Entire Application, Is An Important Metric for Assessing the Dependability of 

Applications Executed on Dcss, and It Is a Reasonable Metric Only When Servers Can Fail Without Recovery 

And/or in Settings Where Applications Cannot Continue Their Execution After a failure. 

The Upcoming Section Is Dedicated To Developing the Mathematics Required for Characterizing the Above-

Referenced Three Metrics analytically. 

SECTION 3 Age-Dependent Queuing Theory 
In [16] and [21], we presented discrete state-space models for the random time taken by the DCS to execute an 

application in a setting where all the stochastic timed events comprising task-execution times, communication 

arrival times, load-transfer times, and server failure times all follow exponential distributions. The exponential-

distribution causes the dynamical queue to be Markovian, which aids the mathematical analysis greatly. 

However, when the distributions of these random events follow alternative probability distributions, memory is 

introduced into the system dynamics and the Markovian property of the underlying stochastic process is 

destroyed. Unfortunately, the departure from the Markovian property makes the analytical tractability of the 

solution far more challenging than that for the Markovian case. The key theoretical contribution of this paper is 

the introduction of a mathematical trick that converts the non-Markovian stochastic distributed queuing process 



to that which is Markovian, albeit in a generalized sense (and with some added overhead, of course), thereby 

making the analysis tractable as in the Markovian case. 

In order to retain the Markovian property of the process in a generalized sense, the memory of all the 

nonexponential distributions will be tracked by means of real-valued age variables. These age variables augment 

the discrete state-space models presented in [16] and [21] yielding a hybrid discrete and continuous state-space 

representation for the underlying stochastic process governing dynamics of the DCS. 

3.1 Supplementary Age Variables 
We begin by illustrating how the concept of age variables is exploited in this paper. Suppose that 𝑇 is random 

variable representing some random time. Loosely speaking, if it is known that a units of time have elapsed for 

the random time 𝑇, then the remaining random time 𝑇𝑎 = 𝑇 − 𝑎 can be introduced as the replacement of the 

random time 𝑇 measured from 𝑎, and also, one can think of 𝑇𝑎 as the aged version of 𝑇 with age a Proceeding 

formally, the age parameter, 𝑎, associated with the random time 𝑇 is defined as the nonnegative, real-valued 

quantity that defines the random variable, 𝑇𝑎 = 𝑇 − 𝑎, on the restriction of the sample space to the event 𝐴 =

{𝑇 ≥ 𝑎}. The random time 𝑇𝑎 has a pdf equal to the conditional pdf of 𝑇 given that 𝐴 has occurred; 

namely, 𝑓𝑇𝑎
(𝑡; 𝑎) = 𝑓𝑇|𝐴(𝑡|𝑎). It must be noted that if 𝑇 is exponentially distributed, then the pdfs 

of 𝑇 and 𝑇𝑎 are identical due to the memoryless property of the exponential distribution. Here, we exploit the 

relationship between a random variable and its aged version as follows: as soon as a random time 𝑇 is triggered 

by some event, its associated age variable is set to zero, and as time elapses, the age variable increases its value 

to track the elapsed time of 𝑇 and adjusts accordingly the pdf of 𝑇 to show the effect of the elapsed time on its 

likelihood. By convention, if a random time has not been triggered by an event, then the age variable associated 

with it is set to infinity. 

3.2 Age-Dependent Configuration of a DCS 
Following the ideas presented in [16] and [21] for a Markovian setting, the configuration of an n-server DCS can 

be partially described by means of one state vector and two state matrices. First, let m be an n-dimensional 

column vector describing the number of unserved tasks in the DCS, where the 𝑖th component of 𝐦 specifies the 

number of tasks queued at the ith server. Second, let 𝐅 be an 𝑛-by-𝑛 binary matrix describing the failed (“O”) or 

functioning (“1”) state of each server, where the 𝑖𝑗th element describes the working or failed state of 

the 𝑗th server as perceived by the 𝑖th server. Third, let C be an 𝑛− 𝑏𝑦 − 𝑛 matrix specifying the number of tasks 

in transit over the network; the 𝑖𝑗th element of 𝑪 is an nonnegative integer determining the number of tasks 

being transferred from the 𝑖th to the 𝑗th server. 

Note that the vector 𝐦 and the matrices 𝐅 and C have finite dimensions and take values on the discrete 

sets Ω1 = {0,1, … , 𝑀}𝑛, Ω2 = {0,1}𝑛 
 and Ω3 = {0,1, … , 𝑀}𝑛 respectively. For Ω = Ω1 × Ω2 × Ω3, we can define 

any one-to-one mapping ℎ: Ω → ℐ such that, for each possible value of the concatenated 

matrix (𝐦, 𝐅, 𝐂)inΩ, ℎ(𝐦, 𝐅, 𝐂) assigns a positive integer in the index set ℐ = {1,2, … , 𝜅}, where 𝜅 is the 

cardinality of Ω. 

In a non-Markovian setting, the vector m and the matrices 𝐅 and 𝐂 must be supplemented with enough age 

variables in order to completely describe the configuration of the DCS. To do so, let 𝑎𝑀𝑖
 and 𝑎𝐹𝑖

 be age variables 

associated with the first stochastic service time of a task at the 𝑖th server and the first random failure time of the 

𝑖th server, respectively, with 𝑖 = 1, … , 𝑛. Also, let 𝑥𝐹𝑖𝑗
 be the age variable associated with the first random 

transfer time of an FN packet from the 𝑖th to the 𝑗th server, with 𝑖, 𝑗 = 1, … , 𝑛, 𝑖 ≠ 𝑗. We can arrange all these 

age variables in the column vector 𝐚𝑀 and the n-by-n matrix aF. The 𝐚𝑀 vector contains the 𝛼𝑀𝑖
 age variables 

and the 𝐚𝐹 matrix contains both the 𝑎𝐹𝑖
 variables (at the diagonal of the matrix) and the 𝑎𝐹𝑖𝑗

 variables (at the 

off-diagonal positions). Similarly, let 𝑎𝐶𝑖𝑘
 be the age variable associated with the random transfer of 𝑙𝑖𝑘 tasks 



from the 𝑖th to the 𝑘th server. We can also arrange these age variables in matrix form to obtain 𝐚𝐶, 

whose 𝑖𝑘th component is 𝑎𝐶𝑖𝑘
. 

We define the system-age as the concatenated matrix 𝐚 ≜ (𝐚𝑀, 𝐚𝐹 , 𝐚𝐶) Further, for a given time 𝑡 we define 

the age-dependent system-state matrix as the concatenated matrix 𝐒(𝑡) ≜ (𝐦(𝑡), 𝐅(𝑡), 𝐂(𝑡), 𝐚(𝑡)), which 

describes completely the state of an n-server DCS. (Note that in a Markovian setting the memoryless property of 

the exponential distribution makes the system-age matrix unnecessary; therefore, the system-state matrix 

reduces to 𝐒(𝑡) = (𝐦(𝑡), 𝐅(𝑡), 𝐂(𝑡)) as in [16].) With this, we can introduce the stochastic process {𝐒(𝑡), 𝑡 ≥

0} characterizing the stochastic dynamics of the DCS. 

3.3 Mathematical Definition of the Metrics 
With the above preliminaries, we can mathematically define the service time of an application as well as the 

performance metrics described earlier. The application service time is defined as the random time taken by the 

DCS to execute the entire application when servers perform a synchronous DTR action at time t=tb and the 

initial system configuration is as specified by 𝐒(0) ≡ (𝐦0, 𝐅0, 𝐂0, 𝐚𝑀0
, 𝐚𝐹0

, 𝐚𝐶0
). More precisely, 

𝑇ℓ0
(𝑡𝑏, 𝐚0) ≜ 𝑖𝑛𝑓{𝑡 > 0: 𝐦(𝑡) = 0and𝐂(𝑡) = 0},,(1) 

where ℓ0 = ℎ(𝐦0, 𝐅0, 𝐂0) and 𝐚0 = (𝐚𝑀0
, 𝐚𝐹0

, 𝐚𝐶0
)Note that since servers can fail permanently with nonzero 

probability, the application service-time is infinite when at least one task remains queued at a server that has 

already failed. Note also that in the special case where servers are completely reliable, the application service 

time is finite with probability one. 

The average service time of an application, denoted as 𝑇ℓ0
(𝑡𝑏, 𝐚0) is defined as the expected value of the 

random application service time; 𝑇ℓ0
(𝑡𝑏, 𝐚0) ≜ 𝐸[𝑇𝑒𝑙𝑙0

(𝑡𝑏 , 𝐚0)]. This metric is defined in the special case of a 

DCS with completely reliable servers; that is, when 𝑌𝑘 = ∞ almost surely for all 𝑘. The service reliability is 

defined as the probability that the application can be entirely executed by the system, that is 𝑅ℓ0
(𝑡𝑏 , a0) ≜

P{𝑇ℓ0
(𝑡𝑏, 𝐚0) < ∞]. Finally, the QoS in executing an application is the probability that the application can be 

entirely executed by the user-specified due time 𝑇𝑀; that is 𝑄ℓ0
(𝑡𝑏 , 𝑇𝑀 , 𝐚0) ≜ P{𝑇ℓ0

(𝑡𝑏 , 𝐚0) < 𝑇𝑀}Note that the 

service reliability is a special case of the QoS for which the due time of the application is infinite. 

In Section 3.4, Lemma 1 and Theorem 1 characterize the average service time in the form of recursively (in the 

discrete variable ℓ) coupled integral equations, and Lemma 2and Theorem 2 do the same for QoS. In addition, 

corollaries to Lemma 2 and Theorem 2provide a characterization for the service reliability. Furthermore, models 

for the approximations of these performance and reliability metrics are also provided. 

3.4 Regeneration-Based Characterization of the Performance Metrics 
Consider the process {𝐒(𝑡), 𝑡 ≥ 0} and suppose that at time 𝑡 = 𝑡0 the system configuration is as specified 

by 𝐒 = (𝐦, 𝐅, 𝐂, 𝐚)We define the age-dependent regeneration time, denoted by 𝜏𝐚, as the minimum of the 

following four random variables: the time to the first task service by any server, the time to the first occurrence 

of failure at any server, the time to the first arrival of an FN packet at any server, or the time to the first arrival of 

a group of tasks at any server. Given the system-age a, for 𝑡 ≥ 𝑡0, we can replace the random times listed 

in Assumption A1 by their aged versions, thereby we can define the age-dependent regeneration time as 

𝜏𝐚 ≜ 𝑚𝑖𝑛(𝑚𝑖𝑛
𝑘

𝑊𝑘1, 𝑚𝑖𝑛
𝑘

𝑌𝑘, 𝑚𝑖𝑛
𝑗≠𝑘

𝑋𝑗𝑘 , 𝑚𝑖𝑛
𝑘,𝑖

𝑍𝑖𝑘),(2) 

where the subscript a emphasizes the dependency of the regeneration time on all the age variables associated 

with the nonexponential random times. The upcoming example illustrates how the age-dependent regeneration 

time and system-state matrix yield a recursive characterization for the application service time. 



Suppose that the first event occurring in the DCS happens to be the execution of a task at the ith server at 𝑡 =

𝑠, for 𝑡0 < 𝑡. The occurrence of this event implies that all the random times governing the DCS have aged 

by 𝑠 units of time (in addition to the ages specified in a) and there is one less task queued at the ith server; all 

the other dynamics remain unchanged. Thus, the occurrence of the event {𝜏𝐚 =, 𝑠, 𝜏𝐚 = 𝑊𝑖1}gives birth to a 

new (regeneration) DCS at 𝑡 = 𝑠, represented by {𝐒(𝑡), 𝑡 ≥ 𝑠} that is statistically identical to the original process 

while having a new initial configuration 𝐒′ = (𝐦′𝐅′, 𝐂′, 𝐚′) resulting from the regeneration event {𝜏𝐚 = 𝑠, 𝜏𝐚 =

𝑊𝑖1} More precisely, the new initial system configuration is as follows: 𝐦′ is identical to 𝐦 but with one unit less 

at its ith element, 𝐅 = 𝐅, 𝐂 = 𝐂, and the new system-age matrix is 𝐚 = 𝐚 + 𝑠 with the ith component of 𝐚𝑀
′  set 

to zero if at least one task remains queued at the ith server. Similar transformations on the initial configuration 

are observed when the regeneration event is any of the other possible events: the failure of the 𝑖 th th server, 

the arrival of an FN packet from server 𝑗 to server 𝑘, or the arrival of the 𝑖th group of tasks to the 𝑘th server. 

Before stating our main results, we introduce some useful definitions. Let us define the term 𝐺𝑋(𝛼) ≜

P{𝑋 = 𝜏a|𝜏a = 𝛼}𝑓𝜏a
(𝛼) where 𝑋 i s any of the random times listed in Assumption 1, 𝑓𝜏a

(𝛼)is the pdf of the age-

dependent regeneration time 𝜏a and P{𝑋 = 𝜏a|𝜏a = 𝛼} is the probability that the regeneration event is {𝜏𝐚 =

𝑋}conditional on the event {𝜏a = 𝛼}. Both, the and the conditional probability P{𝑇(𝑗) = 𝜏a|𝜏a = 𝛼} can be 

computed, either analytically or numerically, using 

𝑓𝜏𝐚
(𝑡) = ∑  

𝑗∈ℐ

𝑓𝑇(𝑗)|𝐴𝑗
(𝑡|𝑎𝑗) ∏  

𝑘∈ℐ,𝑘≠𝑗

(1 − 𝐹𝑇(𝑘)|𝐴𝑘
(𝑡|𝑎𝑘)) ,

P{𝑇(𝑗) = 𝜏𝐚|𝜏𝐚 = 𝛼} = P{𝑇(𝑗) < 𝑇(1), … , 𝑇(𝑗) < 𝑇(𝑗−1),

𝑇(𝑗) < 𝑇(𝑗+1), … , 𝑇(𝑗) < 𝑇(𝑝)|𝜏𝐚 = 𝛼},

 

where 𝐴𝑗 = {𝑇𝑗 ≥ 𝑎𝑗} and 𝐹𝑇(𝑗)|𝐴𝑗
(𝑡|𝑎𝑗) = 𝐹𝑇(𝑗)(𝑡; 𝑎𝑗) [correspondingly, 𝑓𝑇(𝑗)|𝐴𝑗

(𝑡|𝑎𝑗) = 𝑓𝑇(𝑗)(𝑡; 𝑎𝑗)]] is the 

conditional distribution [correspondingly, the conditional density] that defines the cumulative distribution 

function [correspondingly, the pdf] of the aged version of the random time 𝑇(𝑗)whose age parameter is 𝑎𝑗. (For 

the sake of notation, we have indexed all the random times listed in Assumption A1 as well as their associated 

age parameters using an index set ℐ and denoted these random times as 𝑇(𝑗with 𝑗 ∈ ℐ. ).) Finally, let us 

introduce the vector 𝐯(𝑖) (correspondingly, the matrix 𝐀(𝑖𝑗)) which is identical to the vector 𝐯 (correspondingly, 

the matrix 𝐀) but with its 𝑖th (correspondingly, 𝑖𝑗th) component set to zero and the vector 𝛿𝑖  denotes an 𝑛 −

 dimensional vector with all its entries equal to zero except that its 𝑖 th element is equal to one. 

When a DTR action is performed by the 𝑛 servers at time 𝑡𝑏 = 0, and the initial system configuration is 

arbitrarily specified by the vectors m and a𝑀 and the matrices 𝐄, 𝐂, 𝐚𝐹, and 𝐚𝐶, the three performance and 

reliability metrics analyzed here are characterized by the results in Lemmas 1, 2 and Corollary 1, which are 

termed as initial conditions. 

Lemma 1 
Lemma 1 Initial Condition for the Age-Dependent Characterization of the Average Execution Time 

For any ℓ ∈ ℐ, the average application execution time satisfies the system of recursive, coupled integral 

equations 

𝑇ℓ(0, 𝐚𝑀, 𝐚𝐹 , 𝐚𝐶) = E[𝜏𝐚]

+ ∫ [∑  𝑛
𝑖=1 𝐺𝑊𝑖1

(𝛼) × 𝑇ℓ𝑖
(0, (𝐚𝑀 + 𝛼)(𝑖), 𝐚𝐹 + 𝛼, 𝐚𝐶 + 𝛼)

∞

0

+ ∑  𝑛
𝑖=1 ∑  𝑛

𝑗=1,𝑗≠𝑖 𝐺𝑍𝑗𝑖
, (𝛼) × 𝑇ℓ𝑗𝑖

′ , (0, 𝐚𝑀 + 𝛼, 𝐚𝐹 + 𝛼, 𝐚𝐶 + 𝛼)]𝑑𝛼,

(3) 

where ℓ = ℎ(𝐦, 𝐅, 𝐂), ℓ𝑖 = ℎ(𝐦 − 𝛿𝑖 , 𝐅, 𝐂)andℓ𝑗𝑖
′ =  ℎ(𝐦 + 𝑐𝑗𝑖𝛿𝑖 , 𝐅, 𝐂(𝑗𝑖)) 



Remark 
The recursion in Lemma 1 is in ℓ, which depends upon the discrete variables 𝐦, 𝐅, and 𝐂. Throughout the 

remaining lemmas and theorems, recursions are also carried out in these discrete variables. 

Lemma 2 
Lemma 2 Initial Condition for the Age-Dependent Characterization of the QoS 

For any ℓ ∈ ℐ, the QoS in executing an application by the time deadline 𝑇𝑀 satisfies the system of recursive, 

coupled integral equations 

𝑄ℓ(0, 𝑇𝑀 , 𝐚𝑀 , 𝐚𝐹 , 𝐚𝐶) =

∫ [∑  𝑛
𝑖=1 𝐺𝑊𝑖1

(𝛼)𝑄ℓ𝑖
(0, 𝑇𝑀 − 𝛼, (𝐚𝑀 + 𝛼)(𝑖), 𝐚𝐹 + 𝛼, 𝐚𝐶 + 𝛼)

∞

0

+ ∑  𝑛
𝑖=1 ∑  𝑛

𝑗=1,𝑗≠𝑖 𝐺𝑍𝑗𝑖
(𝛼)𝑄ℓ𝑖

′(0, 𝑇𝑀 − 𝛼, 𝐚𝑀 + 𝛼, 𝐚𝐹 + 𝛼, 𝐚𝐶 + 𝛼)

+ ∑  𝑛
𝑖=1 ∑  𝑛

𝑗=1,𝑗≠𝑖 𝐺𝑋𝑖𝑗
(𝛼)𝑄ℓ𝑖𝑗

, (0, 𝑇𝑀 − 𝛼, 𝐚𝑀 + 𝛼, 𝐚𝐹 + 𝛼, 𝐚𝐶 + 𝛼)

+ ∑  𝑛
𝑖=1 𝐺𝑌𝑖

(𝛼)𝑄ℓ𝑖
′(0, 𝑇𝑀 − 𝛼, 𝐚𝑀 + 𝛼, (𝐚𝐹 + 𝛼)(𝑖𝑖), 𝐚𝐶 + 𝛼)]𝑑𝛼,

 (4) 

where ℓ𝑖
′ = ℎ(𝐦, 𝐅(𝑖𝑖), 𝐂)andℓ𝑖𝑗 = ℎ(𝐦, 𝐅(𝑗𝑖), 𝐂). 

Proof of Lemmas 1 and 2 are in Appendix A, which can be found on the Computer Society Digital Library 

at http://doi.ieeecomputersociety.org/10.1109/TPDS.2011.285. 

Corollary 1 
Corollary 1 Initial Condition for the Age-Dependent Characterization of the Service Reliability 

For any 𝑙 ∈ ℐ, the service reliability in executing an application satisfies the system of recursive, coupled integral 

equations 

𝑅ℓ(0, 𝐚𝑀, 𝐚𝐹 , 𝐚𝐶) =

∫ [∑  𝑛
𝑖=1 𝐺𝑊𝑖1

(𝛼)𝑅ℓ𝑖
(0, (𝐚𝑀 + 𝛼)(𝑖), 𝐚𝐹 + 𝛼, 𝐚𝐶 + 𝛼)

∞

0

+ ∑  𝑛
𝑖=1 𝐺𝑌𝑖

(𝛼)𝑅ℓ𝑖
′(0, 𝐚𝑀 + 𝛼, (𝐚𝐹 + 𝛼)(𝑖𝑖), 𝐚𝐶 + 𝛼)

+ ∑  𝑛
𝑖=1 ∑  𝑛

𝑗=1,𝑗≠𝑖 𝐺𝑍𝑗𝑖
(𝛼)𝑅ℓ𝑗𝑖

(0, 𝐚𝑀 + 𝛼, 𝐚𝐹 + 𝛼, 𝐚𝐶 + 𝛼)

+ ∑  𝑛
𝑖=1 ∑  𝑛

𝑗=1,𝑗≠𝑖 𝐺𝑋𝑖𝑗
(𝛼)𝑅ℓ𝑖𝑗

(0, 𝐚𝑀 + 𝛼, 𝐚𝐹 + 𝛼, 𝐚𝐶 + 𝛼)]𝑑𝛼.

 (5) 

When the DTR action is performed by the 𝑛 servers at any time 𝜉 > 0, and the initial system configuration is 

arbitrarily specified by the vectors m and 𝐚𝑀 and the matrices 𝐅, 0, 𝐚𝐹, and 𝐚𝐶, the dynamical characterization of 

the performance and reliability metrics is given by the results in Theorems 1, 2 and Corollary 2, which employ 

the results provided by the initial conditions. 

Theorem 1 
Theorem 1 Age-Dependent Characterization for the Average Execution Time 

For any ℓ ∈ ℐ, the average application execution time satisfies the system of recursive, coupled integral 

equations in 𝜉 

𝑇ℓ(𝜉, 𝐚𝑀, 𝐚𝐹 , 𝐚𝐶)

= ∫  
𝜉

0
∑  𝑛

𝑖=1 𝐺𝑊𝑖1
(𝛼)𝑇ℓ𝑖

(𝜉 − 𝛼, (𝐚𝑀 + 𝛼)(𝑖)𝐚𝐹 + 𝛼, 𝐚𝐶 + 𝛼)𝑑𝛼

+ ∫  
𝜉

0
𝛼𝑓𝜏a

(𝛼)𝑑𝛼 + (1 − 𝐹𝜏a
(𝜉)) × (𝜉 + 𝑇ℓ(0, 𝐚𝑀, 𝐚𝐹 , 𝐚𝐶)),

 (6) 

http://doi.ieeecomputersociety.org/10.1109/TPDS.2011.285


where ℓ = ℎ(𝐦, 𝐅, 0), ℓ𝑖 = ℎ(𝐦 − 𝛿𝑖 , 𝐅, 0)and 𝑇ℓ(0, 𝐚𝑀, aF,aC) is the initial condition related to the ℓth integral 

equation. 

Theorem 2 

Theorem 2 Age-Dependent Characterization for the QoS 

For any ℓ ∈ ℐ, the QoS in executing an application by a predefined time-deadline 𝑇𝑀 satisfies the system of 

recursive, coupled integral equations in 𝜉 

𝑄ℓ(𝜉, 𝑇𝑀 , 𝐚𝑀 , 𝐚𝐹 , 𝐚𝐶) =

∫ [∑  𝑛
𝑖=1 𝐺𝑊𝑖1

(𝛼)𝑄ℓ𝑖
(𝜉 − 𝛼, 𝑇𝑀 − 𝛼, (𝐚𝑀 + 𝛼)(𝑖)𝜉

0
,

𝐚𝐹 + 𝛼, 𝐚𝐶 + 𝛼) + ∑  𝑛
𝑖=1 𝐺𝑌𝑖

(𝛼) × 𝑄ℓ𝑙
′(𝜉 − 𝛼, 𝑇𝑀 − 𝛼,

𝐚𝑀 + 𝛼, (𝐚𝐹 + 𝛼)(𝑖𝑖), 𝐚𝐶 + 𝛼) + ∑  𝑛
𝑖=1 ∑  𝑛

𝑗=1,𝑗≠𝑖 𝑄ℓ𝑖𝑗
(𝜉 − 𝛼,

𝑇𝑀 − 𝛼, 𝐚𝑀 + 𝛼, 𝐚𝐹 + 𝛼, 𝐚𝐶 + 𝛼) × 𝐺𝑋𝑖𝑗
(𝛼)]𝑑𝛼

+𝑄ℓ(0, 𝑇𝑀 − 𝜉, 𝐚𝑀, 𝐚𝐹 , 𝐚𝐶)(1 − 𝐹𝜏a
(𝜉)),

,(7) 

where ℓ𝑖
′ = ℎ(𝐦, 𝐅(𝑖𝑖), 0), ℓ𝑖𝑗 = ℎ(𝐦, 𝐅(𝑗𝑖), 0), 𝑇𝑀 − 𝜉, 𝐚𝑀, 𝐚𝐹 , 𝐚𝐶) is the initial condition related to the lth 

integral equation. 

Proof of Theorems 1 and 2 are deferred to Appendix B, available in the online supplemental material. 

Corollary 2 
Corollary 2 Age-Dependent Characterization of the Service Reliability 

For any ℓ ∈ ℐ, the service reliability in executing an application satisfies the system of recursive, coupled integral 

equations in ξ 

𝑅ℓ(𝜉, 𝐚𝑀, 𝐚𝐹 , 𝐚𝐶) =

∫ [∑  𝑛
𝑖=1 𝐺𝑊𝑖1

(𝛼)𝑅ℓ𝑖
(𝜉 − 𝛼, (𝐚𝑀 + 𝛼)(𝑖), 𝐚𝐹 + 𝛼, 𝐚𝐶 + 𝛼)

𝜉

0

+ ∑  𝑛
𝑖=1 𝐺𝑌𝑖

(𝛼)𝑅ℓ𝑖
′(𝜉 − 𝛼, 𝐚𝑀 + 𝛼, (𝐚𝐹 + 𝛼)(𝑖𝑖), 𝐚𝐶 + 𝛼)

+ ∑  𝑛
𝑖=1 ∑  𝑛

𝑗=1,𝑗≠𝑖 𝐺𝑋𝑖𝑗
(𝛼)𝑅ℓ𝑖𝑗

(𝜉 − 𝛼, 𝐚𝑀 + 𝛼, 𝐚𝐹 + 𝛼, 𝐚𝐶 + 𝛼)]𝑑𝛼

+(1 − 𝐹𝜏a
(𝜉))𝑅ℓ(0, 𝐚𝑀, 𝐚𝐹 , 𝐚𝐶).

.(8) 

To calculate the performance and reliability metrics the initial task allocation, the 𝑡𝑏 instant and a specific DTR 

policy must be defined. To compute the QoS the value of 𝑇𝑀  must also be specified. Here it is assumed that, 

initially, all the random times have age zero; we will be interested in computing the 

values 𝑇ℓ0
(𝑡𝑏 , 0), 𝑄ℓ0

(𝑡𝑏 , 𝑇𝑀 , 0), and 𝑅ℓ0
(𝑡𝑏 , 0). It must be noted that, for any 𝜉 and ℓ, the values taken by the 

metrics are known in the following particular cases: 1) if the application is composed of a single task queued at 

the ith server then 𝑇ℓ(𝜉,a) = E[𝑊𝑖1]; 2) if there are no tasks to be served in the DCS then 𝑇𝑙(𝜉, 𝐚) =

0 while 𝑄ℓ(𝜉, 𝑇𝑀 , 𝐚) = 1 and 𝑅ℓ(𝜉, 𝐚) = 1; 3) if a server fails and contains at least one task in its queue 

then 𝑇ℓ(𝜉, 𝐚) is infinite and 𝑄ℓ(𝜉, 𝑇𝑀 , 𝐚) = 0 and 𝑅ℓ(𝜉, 𝐚) = 0. 

The system of integral equations are solved numerically using simple iterations and by means of an algorithm 

that dynamically constructs the mapping ℎ and creates a sorted list of all the equations and symbols to solve for. 

Next, values are computed by visiting the list in reverse order thereby exploiting the recursive nature of the 

system of equations. The integral equations have been solved using the built-in functions for adaptive numerical 

integration over infinite intervals provided by The GNU Scientific Library [36]. 



Now, we compare our age-dependent model for the performance and reliability of a DCS with the general 

models, based upon stochastic Petri Nets, proposed by German [26], and Telek and Horváth, [28]. The main 

difference between the non-Markovian models in [26] and [28] and our work is that the former models aim to 

develop general tools for evaluating complex stochastic models. Moreover, the authors are interested in 

extending the class of stochastic Petri Nets to a class of non-Markovian stochastic Petri Nets, while in our work 

we are interested in modeling performance and reliability, for the specific case, of a non-Markovian DCS whose 

communication links impose nonnegligible delays and whose computing servers are unreliable. A list of some of 

the theoretical similarities between the works is the following. First, for all the models the state-space 

representation of the queues is finite and must be specified by analyzing the dynamics of the DCS. Second, 

in [26] and [28] state transitions are tracked by the firing times of each random time modeled by the Petri Net, 

while here the state transitions are tracked by a single time: the regeneration time. Third, in all the models the 

memory of the nonexponential distributions has been accounted for using real-valued age variables. Fourth, the 

initial marking, the marking process and the reachability set in [26] and [28] are conceptually similar to our initial 

system-age matrix, our system-age matrix, and the set of valid events occurring after the stochastic 

regeneration takes place. Fifth, the execution policies of the general transitions in [26] and [28] are akin to the 

aging rule defined in Section 3.1. 

3.5 Linearly Scalable Approximation 
Computing the metrics according to the recipes described in Section 3.4 is computationally expensive for large 

systems. First, since the dimension of the age-dependent state vector S is 4𝑛2 + 2𝑛, the age-dependent state-

space model for the execution time scales polynomially in the number of servers. Second, for a fixed number of 

servers in a DCS, since both FN packets and tasks exchanged among the servers may arrive at any random 

instant, every recursion generated from Theorems 1 and 2 must consider a combinatorial number of values for 

the age-dependent state-vector, and as a consequence, the number of recursive equations that must be 

constructed to calculate the metrics scales exponentially in the number of messages exchanged. 

To circumvent the scalability problem of our exact model, we have considered two simplifying assumptions to 

construct an approximated characterization for the service time, which in turn, yields an approximation to the 

metrics characterized in Theorems 1and 2. The first assumption neglects the random transfer time of FN packets 

on the network. This approximation reduces the matrix 𝐅 to a binary vector that we have denoted as 𝐟. The 

second assumption considers that all the tasks in transit to a particular server arrive simultaneously to it. More 

precisely, we assume that the 𝑙𝑘 = ∑  𝑗 𝑙𝑗𝑘tasks being transferred from other servers to the kth server arrive as a 

single batch of tasks to server 𝑘 at a certain random time denoted as 𝑍
~

𝑘. This approximation reduces the 

matrix 𝐂 to a vector that we have denoted as 𝐂. Note that these approximations reduce the dimension of the 

age-dependent state vector to 6𝑛, yielding a model with linear scalability in the number of servers. 

Empowered by these approximations, we introduce the approximated age-dependent random execution time of 

an application, 𝑇ℓ(𝑡𝑏 , 𝐚
~

𝑀, 𝐚
~

𝐹 , 𝐚
~

𝐶), when the system configuration is as specified by the reduced age-dependent 

state vector 𝐒 = (𝐦, 𝐟, 𝐜, 𝐚
~

𝑀, 𝐚
~

𝐹 , 𝐚
~

𝐶)) where 𝐚
~

𝑀; 𝐚
~

𝐹, and 𝐚
~

𝐶  are vectors containing the age variables associated 

with the vectors m, f, and c, respectively, ℓ = ℎ(𝐦, 𝐟, 𝐜)and  ℎ is a mapping akin to ℎ. 

We can apply the principles presented in Section 3.4 mutatis mutandis to obtain regenerative age-dependent 

equations for the approximated random service time. To this end, we suppose that 𝑍
~

𝑖 satisfies Assumption A2, 

that the pdf of these random times are known and denoted as 𝑓
𝑍𝑖

~ (𝑡). For the sake of the space, in Theorems 

3 and 4, we present characterizations solely for the average approximated service time and the QoS. 



Theorem 3 
Consider an n-server DCS whose servers perform a synchronous DTR action at time 𝜉 ≥ 0. For any ℓ ∈ ℐ, the 

average approximated application execution time satisfies the system of recursive, coupled integral equations 

in 𝜉 

𝑇ℓ(𝜉, 𝐚
~

) = ∫ [𝛼𝑓𝜏𝐚
(𝛼) + ∑  𝑛

𝑖=1 𝐺𝑊𝑖1
(𝛼)𝑇ℓ𝑖

(𝜉 − 𝛼, (𝐚
~

𝑀 + 𝛼)(𝑖)𝜉

0
,

𝐚
~

𝐹 + 𝛼, 𝐚
~

𝐶 + 𝛼)]𝑑𝛼 + (1 − 𝐹𝜏a
(𝜉))(𝜉 + 𝑇ℓ(0, 𝐚

~
)),

 (9) 

where the vectors 𝐦, 𝐟, 0, 𝐚
~

𝑀 , 𝐚
~

𝐹, and 𝐚
~

𝐶  denote an arbitrarily specified initial system configuration, 𝐚
~

=

(𝐚
~

𝑀, 𝐚
~

𝐹 , 𝐚
~

𝐶), ℓ = ℎ(𝐦, 𝐟, 0), ℓ𝑖 = ℎ(𝐦 − 𝛿𝑖 , 𝐟, 0), and 𝑇ℓ(0, 𝐚
~

𝑀, 𝐚
~

𝐹 , 𝐚
~

𝐶) is the initial condition related to the lth 

integral equation. Moreover, these initial conditions satisfy the system of recursive, coupled integral equations 

𝑇ℓ′(0, 𝐚
~

) = ∫  
∞

0
∑  𝑛

𝑖=1 𝐺𝑊𝑖1
(𝛼)𝑇ℓ𝑖

(0, (𝐚
~

𝑀 + 𝛼)(𝑖), 𝐚
~

𝐹 + 𝛼, 𝐚
~

𝐶 + 𝛼)

+ ∑  𝑛
𝑖=1 𝐺

𝑍
~

𝑖
(𝛼)𝑇ℓ𝑖

′(0, 𝐚
~

𝑀 + 𝛼, 𝐚
~

𝐹 + 𝛼, 𝐚
~

𝐶 + 𝛼)𝑑𝛼 + E[𝜏𝐚],
 (10) 

where the vectors 𝐦, 𝐟, 𝐜, 𝐚
~

𝑀, 𝐚
~

𝐹, and 𝐚
~

𝐶  denote an arbitrarily specified initial system configuration, ℓ′ =

ℎ
~

(𝐦, 𝐟, 𝐜), and ℓ𝑖
′ = ℎ

~

(𝐦 + 𝑙𝑖𝛿𝑖 , 𝐟. 𝐜(𝑖)). 

Theorem 4 
Consider an n-server DCS whose servers perform a synchronous DTR action at the time 𝜉 ≥ 0 For any ℓ ∈ ℐ, the 

approximated QoS in executing an application by the time 𝑇𝑀 satisfies the system of recursive, coupled integral 

equations in 𝜉 

𝑄ℓ(𝜉, 𝑇𝑀 , 𝐚
~

) = ∫  
𝜉

0
∑  𝑛

𝑖=1 𝐺𝑊𝑖1
(𝛼)𝑄ℓ𝑖

(𝜉 − 𝛼, 𝑇𝑀 − 𝛼, (𝐚
~

𝑀 + 𝛼)(𝑖),

𝐚
~

𝐹 + 𝛼, 𝐚
~

𝐶 + 𝛼) + ∑  𝑛
𝑖=1 𝐺𝑌𝑖

(𝛼)𝑄ℓ𝑖
′(𝜉 − 𝛼, 𝑇𝑀 − 𝛼, 𝐚

~

𝑀 + 𝛼,

(𝐚
~

𝐹 + 𝛼)(𝑖𝑖), 𝐚
~

𝐶 + 𝛼)𝑑𝛼 + (1 − 𝐹𝜏𝐚
(𝜉))𝑄ℓ(0, 𝑇𝑀 − 𝜉, 𝐚

~
),

11) 

where the vectors 𝐦, 𝐟, 0, 𝐚
~

𝑀 , 𝐚
~

𝐹 and 𝐚
~

𝐶  denote an arbitrarily specified initial system configuration, 𝐚
~

=

(𝐚
~

𝑀 , 𝐚
~

𝐹 , 𝐚
~

𝐶), ℓ = ℎ(𝐦, 𝐟, 0), 𝑃𝑖 = ℎ(𝐦 − 𝛿𝑖 , 𝐟, 0), ℓ𝑖
′ = ℎ(𝐦, 𝐟(𝑖), 0)and 𝑄ℓ(0, 𝑇𝑀 − 𝜉, 𝐚

~

𝑀 , 𝐚
~

𝐹 , 𝐚
~

𝐶) is the initial 

condition related to the ℓth integral equation. Moreover, these initial conditions satisfy the system of recursive, 

coupled integral equations 

𝑄ℓ′(0, 𝑇𝑀
′ , 𝐚

~
) =

∫ [∑  𝑛
𝑖=1 𝐺𝑊𝑖1

(𝛼)𝑄ℓ𝑖
(0, 𝑇𝑀

′ − 𝛼, (𝐚
~

𝑀 + 𝛼)(𝑖), 𝐚
~

𝐹 + 𝛼, 𝐚
~

𝐶 + 𝛼)
∞

0

+ ∑  𝑛
𝑖=1 𝐺𝑌𝑖

(𝛼)𝑄ℓ𝑖
′(0, 𝑇𝑀

′ − 𝛼, 𝐚
~

𝑀 + 𝛼, (𝐚
~

𝐹 + 𝛼)(𝑖𝑖), 𝐚
~

𝐶 + 𝛼)

+ ∑  𝑛
𝑖=1 𝐺

𝑍
~

𝑖
(𝛼)𝑄ℓ𝑖

"(0, 𝑇𝑀
′ − 𝛼, 𝐚

~

𝑀 + 𝛼, 𝐚
~

𝐹 + 𝛼, 𝐚
~

𝐶 + 𝛼)]𝑑𝛼,

 (12) 

where the vectors 𝐦, 𝐟, 𝐜, a
~

𝑀, 𝐚
~

𝐹and 𝐚
~

𝐶  denote an arbitrarily specified initial systemconfiguration, 𝑇𝑀
′ = 𝑇𝑀 −

𝜉𝑟ℓ′ =, ℎ(𝐦, 𝐟, 𝐜), 𝑃𝑖 = ℎ(𝐦 − 𝛿𝑖 , 𝐟, 𝐜), ℓ𝑖 = ℎ(𝐦, 𝐟(𝑖),c) and ℓ𝑖 =, ℎ(𝐦 + 𝑙𝑖𝛿𝑖 , 𝐟, 𝐜(𝑖)). 

Proofs of Theorems 3 and 4 are omitted as they are simplified versions of proofs of Theorems 1 and 2. 

We end this section by commenting on the memory requirements of the state-space representation of our 

models and on the computational complexity of the Markovian and non-Markovian models. In a Markovian 

setting [16], [21], the state-space representation for the application execution time is discrete and has a 

dimension 2𝑛2 + 𝑛; the Markovian model needs to store 2𝑛2 + 𝑛 integer numbers. In the non-Markovian case 



such state-space has discrete and continuous components; thus, not only 2𝑛2 + 𝑛 integer numbers must be 

stored for this model but also 2𝑛2 + 𝑛 real values. The computational complexity of our models is evaluated by 

means of the number of equations to be solved in the model. It must be noted that the recursions presented in 

the lemmas and theorems are carried out only in the discrete variables 𝐦, 𝐅, 𝐟, 𝐂 and 𝐜. In the case of our exact 

models, for a given initial workload of 𝑀 tasks, the total number of equations to be solved depends up on all the 

possible values taken by the discrete variables 𝐦, 𝐟,and𝐂 . Since these variables can take at 

most 𝑀𝑛, 2𝑛2
and 𝑀𝑛2

 different values, the computational complexity of our exact models can be bounded 

by 𝒪(2𝑛𝑍
𝑀𝑛2+𝑛). A similar analysis shows that the computational complexity of our approximated models is 

bounded by 𝒪(22𝑛𝑀𝑛). Finally, the runtime complexity of our algorithms can be bounded as follows. Note that 

every integral in the system of equations is parameterized by system-age matrix, consequently, the calculation 

of every integral can be considered as an independent calculation. Hence, if we assume that the maximum time 

taken by the numerical integration of each term is 𝑡𝐼, and the maximum time taken to lookup and retrieve each 

symbol stored in the sorted list is 𝑡𝐿 the runtime complexity of the exact and approximated models 

are 𝒪((𝑡𝐼 +, 𝑡𝐿)2𝑛2
𝑀𝑛2

+ 𝑛) and 𝒪((𝑡𝐼 + 𝑡𝐿)22𝑛𝑀𝑛) respectively. In summary, the computational and the 

runtime complexity of our models scales: 1) exponentially in the number of nodes in the system due to the 

combinatorial nature of the state representation; and 2) polynomially in the number of tasks queued in the 

system. In Fig. 1, we have illustrate the number of equations to be solved in the Markovian and the non-

Markovian cases as a function of the number of servers. Cases labeled as “𝑀 fixed” evaluate a situation where 

an application (composed of 𝑀 = 400) tasks is executed by the DCS using n servers. Cases labeled as 

“𝑀 variable” evaluate a situation when 𝑚𝑖 = 50 tasks are assigned to each server in the system. This explains 

why curves merge for 𝑛 = 8i n each case. Fig. 1 also shows that the number of equations generated by the non-

Markovian model is about two times the number of states in the Markovian case. For comparison, Fig. 1 also 

shows the number of equations to be solved by the approximate method (Theorems 3 and 4) in the non-

Markovian case as a function of the number of system servers. The figure confirms the large savings in 

computational complexity (of the model) that the approximation provides. 

 
Fig. 1. Number of recursions to be solved as a function of the system servers for both markovian and non-markovian 
models. For comparison, the approximated models are also shown. 
 

SECTION 4 Results 

4.1 Predicting Performance and Reliability in Non-Markovian Heterogeneous DCSs 
Now, we compare predictions for the characterized metrics using the non-Markovian models developed here 

and the Markovian models in [16] and [21]. In the examples considered, we assume that the communication 

network is homogeneous with three network-delay conditions to be considered: low, moderate, and severe. 
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Under low network-delay conditions, transferring a task to and processing such task at the fastest server takes, 

on average, the same time as processing the task at the slowest server. For the moderate and severe network-

delay cases, the average transferring and processing times of a task to the fastest server is, respectively, two and 

five times the service time at the slowest server. 

Different stochastic models for the task transfer times have been employed. The Markovian setting is 

represented by the exponential-distribution delay model. The Pareto 1 and 2 models represent the case where 

service and transfer times follow Pareto laws with unity and an infinite variance, respectively. The Pareto 3 

model represents an experimental case were the delay-statistics in a two-server testbed DCS has been 

empirically characterized and its parameters have been adjusted, by means of traffic shapers, so that the 

variance of the transfer times are 5 and the average transfer times satisfy the network delay conditions in every 

case. For fair comparison, all distributions modeling the same random times have identical mean values. For 

simplicity, the Markovian and non-Markovian models are compared in a heterogeneous DCSs composed of two 

servers. 

The accuracy of the predictions has been assessed by means of theoretical calculations, and in the case of the 

Pareto 3 model experimental results are also shown. Figs. 2, 3, and 4 show the service reliability as a function of 

the number of tasks reallocated from server 1 to 2 for the three network-delay cases under analysis, when an 

application composed of 150 tasks is executed (initially, 𝑚1 = 100 tasks are allocated at server 1 and 𝑚2 =

50 at server 2). The mean service time per task is 2 and 1 s for servers 1 and 2, respectively, while the mean 

failure times are 𝜆𝑓1

−1 = 1,000 and 𝜆𝑓2

−1 = 500. It can be noticed that the Markovian approximations for the 

service reliability are extremely accurate in the low network-delay condition in all the cases (the maximum 

relative approximation error is approximately 1 percent) but in the case of the Pareto model with infinite 

variance, which exhibits an approximation error of about 7 percent. Interestingly, the accuracy of the Markovian 

approximation is reduced in the case of moderate delays (approximation errors increase up to a 17 percent). In 

particular, when communication times are large the Markovian approximation becomes inaccurate, with 

approximation errors up to a 120 percent, as evidenced in Fig. 4. 

 
Fig. 2. Service reliability as a function of the number of tasks reallocated from server 1 to 2: low delay case. 
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Fig. 3. Service reliability as a function of the number of tasks reallocated from server 1 to 2. Moderate delay case. 

 

 
Fig. 4. Service reliability as a function of the number of tasks reallocated from server 1 to 2. Severe delay case. 

 

Figs. 2, 3, and 4 also show the effect of the network-delays on the performance metric. As the mean transfer 

time increases the service reliability decreases considerably. In addition, to the reliability in Fig. 6, we show the 

theoretical predictions for the QoS metric when the due time is 140 s, as a function of the number of tasks 

exchanged. In this figure, the Pareto 1 model is employed to abstract moderate network delays. As expected, 

the QoS in executing the entire application increases as more tasks are transferred from server 1 to 2. The 

maximal QoS is only 0.471, which is attained when 33 to 35 tasks are transferred to the second server. 
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Fig. 5. Service reliability as a function of the task reallocation instant in the moderate delay case. 

 
Fig. 6. Qos in executing an application by the due time tm = 140 s as a function of the number of tasks exchanged. 

 

Next, the service reliability of the two-server experimental DCS are calculated, in the moderate network-delay 

case, for the different event-time stochastic models as a function of the instant to trigger the DTR policy. Fig. 

5 shows the theoretical predictions as well as the experimental results obtained for the Pareto 3 model. Note 

that in this dynamical situation, the Markovian approximations offer, once again, a fairly good approximation of 

the service reliability. It must be noted that the predictions yielded for the experimental case (Pareto 3 model) 

are remarkably accurate. 

We now turn to evaluating the accuracy of the linear approximation for the random service time using 

theoretical calculations and Monte-Carlo simulations. Note that the simultaneous arrival of tasks to a server 

(which is the essence of the approximation) at a random time can be defined in several different ways. For 

instance, a conservative approximation can be obtained by defining 𝑍
~

𝑖  as the maximum of all the random task-

arrival times, that is 𝑍
~

𝑘 = 𝑚𝑎𝑥
𝑖

𝑍𝑖𝑘. A less conservative approximation can be obtained by defining 𝑍
~

𝑘  as 

any ℓth order statistics, where 𝑍
~

𝑘 = 𝑚𝑖𝑛
𝑖

𝑍𝑖𝑘  corresponds to most aggressive approximation. In the evaluations 

presented here, the minimum random arrival time as well as the maximum random arrival time approximations 

are considered. 

Results for different initial allocations of an application partitioned in 𝑀 = 250 t asks have been calculated. The 

DCS considered is composed of five servers whose processing times following Pareto distributions, with average 

processing times of 1, 2, 3, 4, and 5 seconds for the first, second, third, fourth, and fifth node, respectively. The 

communication network has been considered to be homogeneous and the network delays are assumed to be 

moderate. Two different initial allocations for the tasks have been considered: a uniform allocation 𝑚1 = ⋯ =

𝑚5 = 50 tasks for all 𝑖 and nonuniform allocation (𝑚1, … 𝑚5) = (150,0,0,0,100). Note that the execution times 

are expected to be longer in the imbalanced case of a nonuniform initial allocation because more tasks must be 

exchanged over the network in order to improve the QoS metric as compared to the uniform initial allocation. 

This behavior is clearly observed in Figs. 7 and 8, which show the results for the exact and approximated QoS 

metric. Note that the approximation based on the maximum random arrival time per server introduces less 

approximation errors than the aggressive approximation based on the minimum arrival time. This behavior is 

expected because as the task transfer time increases, either by transferring more tasks or by an increased 

average transfer delay, assuming that all the tasks arrive as a batch at the fastest time does not reflect the 

behavior of the network thereby impacting more severely on the service reliability as compared to the less 

aggressive approximation of the maximum transfer time. 
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Fig. 7. Exact and approximated qos as a function of the time deadline. Initial task allocation is balanced. 

 

 
Fig. 8. Exact and approximated qos as a function of the time deadline. Initial task allocation is unbalanced. 

 

Finally, we have employed our model to approximate the QoS in a parallel computing environment. To this end, 

we have considered a regime where the average transfer delays are 10 percent of the fastest average service 

time, and we have considered different stochastic models for the service times, thereby approximating 

a G/G/𝑛 queuing system. The application served by the DCS has been partitioned into 𝑀 = 250 tasks, which are 

assigned uniformly to a DCS composed of five servers. The average service time of the servers are 1, 2, 3, 4, and 

5 seconds. The stochastic models evaluated in this example are Pareto with finite (“Pareto 1”) and infinite 

(“Pareto 2”) variance and a uniform distribution with a coefficient of variation (standard deviation divided by the 

mean) of 2 percent, which aims to approximate a deterministic service times. As in the previous comparisons all 

the stochastic models have the same mean. Fig. 9 compares predictions using the exact stochastic models with 

the predictions generated by a Markovian approximation (“Exponential”) for the QoS metric as a function of the 

due time. It can be observed from the figure that, once again, the Markovian approximation yields inaccurate 

results. Notably, larger approximation errors are obtained for those models that depart the most from an 

exponential distribution, that is, Pareto 2 and the uniform model with narrow variance. Note that the QoS 

metric is reduced in the case of the Pareto 2 model as compared to other models for the service times. This is 

due to the fact that the Pareto 2 model has an infinite variance; as such, large service times are more likely to 

occur and a reduction in the QoS, as compared to other models, is expected. Finally, the steep change for the 

QoS around 𝑇𝑀 = 120s in the uniform model is attributed to the narrow variance specified for such distribution, 

which eliminates the likelihood of extremely short and long service times. 
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Fig. 9. The qos in executing an application in a parallel computing system as a function of the due time. Several stochastic 
models and the markovian approximation are considered for the service time. 

 

4.2 Application of the Theory to Optimal Task Reallocation in DCSs 
In order to account for the efficient execution of parallel applications in heterogeneous DCSs, the 

characterizations developed here have been parameterized by a DTR action that is synchronously executed by 

the system servers. This parameterization allows us to pose optimization problems, which, in turn, enable us to 

optimally devise a task migration scheme such that the metrics characterized in Theorems 1 and 2 are 

optimized. More precisely, the following mixed-integer optimization problems can be formulated 

𝑚𝑖𝑛
(𝑡𝑏)𝐋)

𝑇𝑙0
(𝑡𝑏 , 0),

𝑚𝑎𝑥
(𝑡𝑏,𝐋)

𝑄ℓ0
(𝑡𝑏, 𝑇𝑀 , 0),

𝑚𝑎𝑥
(𝑡𝑏,𝐋)

𝑅ℓ0
(𝑡𝑏 , 0),

 (13)(14)(15) 

which are subject to: 1) ∑  𝑛
𝑗=1,𝑗≠̸𝑖 𝑙𝑖𝑗 ≤ 𝑚𝑖, 𝑖 = 1, … , 𝑛,;2) 𝑙𝑖𝑗 ∈ {0,1, … , 𝑚𝑖}, 𝑖, 𝑗 = 1, … , 𝑛, 𝑖 ≠ 𝑗; and 3) 𝑡𝑏 ≥ 0. 

Each problem has 𝑛(𝑛 − 1) nonnegative integer-valued variables, one nonnegative real-valued variable 

and 𝑛2 + 1 restrictions. This type of optimization problem is known to be NP-hard due to the combinatorial 

explosion of the search space. 

To provide a scalable, efficient, yet accurate solution to the problem of devising task migration policies for 

heterogeneous DCSs, we follow here the pairwise decomposition presented in [29] and [37] to find feasible 

optimal DTR policies. The idea consists in decomposing an n-server DCS into several two-server systems every 

time tasks must be exchanged between pairs of servers, and the optimal number of tasks to be migrated among 

the servers is computed in an iterative manner. To account for the the non-Markovian dynamics of the 

DCS, Theorems 1 to 4 are employed in the pairwise decomposition to compute the performance and reliability 

metrics. With this, the complexity of the solution remains bounded to the complexity of a two-server case, while 

the scalability turns out to be linear in the number of servers as shown in [29] and [37]. 

Distributed Task Reallocation Policy 
We have employed a flexible class of distributed task reallocation policies developed in [29] and [37]. The policy 

estimates, at time 𝑡 = 𝑡𝑏, the amount of load imbalance, which is denoted by 𝐿𝑗
𝑒𝑥(𝑡𝑏), that each server has with 

respect to the estimated total system load, 𝑀
^

. The imbalance estimator considers a general parameter, denoted 

as Λ𝑗, which represents different imbalance criteria. For example, if Λ𝑗 is associated with the processing speed of 

the servers, the imbalance is determined by the relative computing power of the servers. Alternatively, if Λ𝑗 is 
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associated with the reliability of the servers, then the relative resilience of the servers determines the amount of 

imbalance in the DCS. Next, each imbalanced server determines the initial amount of tasks to reallocate among 

the remaining servers in the system. This step is carried out by partitioning the excess load among all the 

candidate task-receiver servers listed in the set 𝒲𝑗 

𝑙𝑖𝑗
(0)

≡ 𝑙𝑖𝑗
(0)

(𝑡𝑏) = ⌊𝑚𝑖(𝑡𝑏) −
Λ𝑗

∑ℓ∈𝒲𝑗
Λℓ

𝑀
^

𝑖(𝑡𝑏)⌋,,(16) 

where ⌊⋅⌋ is the floor function and 𝑚(𝑡𝑏) is the load at the 𝑗th server at time 𝑡 = 𝑡𝑏. The values 𝑙𝑖𝑗
(0)

will be used 

as initial values in the search algorithm. 

Table 1 Average service time and service reliability for different models under severe network-delay conditions 

   �̅�ℓ0
(0,0), 𝑠   

Initial load 
(𝑚1, … , 𝑚5) 

Pareto 1 Pareto 2 Shft. Exp. Uniform Exp. 

(250,0,0,0,0) 171.13 191.21 171.38 186.05 218.28 

(0,0,0,0,250) 179.91 199.79 172.11 185.71 215.75 

(50,50,50,50,50) 170.12 199.70 175.11 184.02 212.92 

(23,26,38,54,109) 165.10 171.39 157.92 171.28 195.39 

   𝑅ℓ0
(0,0)   

Initial load 
(𝑚1, … , 𝑚5) 

Pareto 1 Pareto 2 Shft. Exp. Uniform Exp. 

(250,0,0,0,0) 0.505 0.513 0.518 0.453 0.271 

(0,0,0,0,250) 0.454 0.480 0.461 0.512 0.250 

(50,50,50,50,50) 0.519 0.559 0.559 0.517 0.392 

(78,60,45,37,30) 0.643 0.612 0.621 0.551 0.410 

 

The average service time and the service reliability of a heterogeneous, five-server DCS have also been 

optimized by solving the optimization problems (13) to (15). It has been assumed that the parallel application is 

partitioned in 𝑀 = 250 tasks. To assess the service reliability, it has been assumed that failure times follow 

Weibull distributions with means 1,000, 800, 600, 500, and 400 s, for servers 1 to 5, respectively. The average 

service times were set to be 5, 4, 3, 2, and 1 s for servers 1 to 5, respectively. 

Table 1 lists both the average service time and the maximal service reliability obtained under severe network-

delay conditions. Both performance metrics were obtained by solving the system of equations generated by the 

recursion presented in Theorem 3 and Corollary 2. For comparison, the column “Exponential” presents results 

yielded using the optimal policies devised under Markovian assumptions. Also for comparison, the last row on 

each part of the table represents a benchmark for each performance metric, since the initial allocation of tasks is 

actually the optimal allocation. These optimal task allocations were obtained by performing an MC-based 

exhaustive search over all the DTR policies. It can be noted from Table 1 that the exponential approximation 

produces relative errors between 15 and 85 percent. Remarkably, using incorrect models for the random times 

yield not only inaccurate results, but also specifies inappropriate reallocation policies that, in turn, reduce the 

performance metrics under study. For example, when all the initial load is allocated at the first server, a DTR 

devised using the non-Markovian model specifies that, in total, 232 and 182 tasks must be reallocated to the 

remaining servers in order to minimize the average service time and maximize the service reliability, 

respectively. However, when the Markovian models are employed to devise a DTR policy, only 201 and 157 tasks 

must be transferred to the other four servers. This behavior is also observed in the evaluations conducted for 

the two-server systems. Consider, for example, the Pareto 3 model in Figs. 3 and 4, the maximal service 
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reliability is achieved when, respectively, 27 and 10 tasks are transferred from server 1 to 2. However, the 

exponential approximation wrongly dictates that the maximal reliability is obtained when 25 and 7 tasks are 

transferred from server 1 to 2. 

Table 2 Comparison between models in predicting the average service time and the service reliability under 
severe delays 

  �̅�ℓ0
(0,0), 𝑠   Avg. Comp Time, s  

Initial load (𝑚1, … , 𝑚5) Exact Approx. Exp. Exact Approx. Exp. 

(250,0,0,0,0) 171.13 196.01 218.28 1940 520 58.39 

(0,0,0,0,250) 179.91 204.95 215.75 1896 535 59.49 

(50,50,50,50,50) 170.12 181.64 212.92 1900 536 56.08 

(23,26,38,54,109) 165.10 172.97 195.39 1873 600 54.21 

  𝑅ℓ0
(0,0)   Avg. Comp Time, s  

Initial load (𝑚1, … , 𝑚5) Exact Approx. Exp. Exact Approx. Exp. 

(250,0,0,0,0) 0.505 0.429 0.271 2053 728 64.79 

(0,0,0,0,250) 0.454 0.377 0.250 2263 729 76.13 

(50,50,50,50,50) 0.519 0.478 0.392 2335 730 68.03 

(78,60,45,37,30) 0.643 0.590 0.410 2178 757 66.31 

 

In Table 2, we have listed results for the average service time and the service reliability of the five-server DCS, 

under severe network-delay conditions, when the exact and the approximated model have been employed to 

solve for the optimization problems stated in (13) and (15). The stochastic model evaluated in this example is 

Pareto with finite variance (“Pareto 1” model). For the approximate model, we have assumed that all the tasks 

in transit to the servers arrive, as a single batch, at the maximum of all the random task-arrival times. In Table 2, 

columns labeled as “Exact” list the results obtained when the exact model of the DCS is employed. The time 

measurements have been obtained using a standard nondedicated desktop computer, equipped with a 2.20 GHz 

dual core processor, 8 GBytes of RAM and running a 64 bits, Linux-based operating system. Equations and 

algorithms to solve the optimization problems (13) and (15) were coded in C, and the GNU scientific library was 

exploited in order to efficiently calculate the integrals of each equation. The average computing times reported 

in Table 2 correspond to averaging ten executions of the software that solves the optimization problems. It can 

be noticed that the values for the metrics obtained by means of the approximated metrics incur in a maximum 

error of approximately 14 percent in the case of the average service time and 17 percent in the case of the 

service reliability. Notably, it can be observed from comparing Tables 1 and 2 that the approximation errors 

obtained by the approximated models are lower than those obtained by the Markovian models, for the case of 

severe network delays. Regarding the computing time of the models, our evaluations show that when the 

approximated models are used in solving the optimization problems (13) and (15), computing times are reduced 

in approximately 3 to 3.5 times with respect to the computing time taken by the exact models. From Table 2, it 

can be observed that the accuracy provided by the age-dependent non-Markovian model comes at the expense 

of a notorious increment in the computing time. Our calculations show that, as compared to the Markovian 

approximations, a computing-time overhead of approximately 10 times is demanded by the approximated 

models while an overhead 30 times is required by the exact models. 

Finally, we have validated our theory in a larger DCS environment. To do so, we have used ten out of the 12 

nodes available in the ristra cluster of the Center for Advanced Research Computing at the University of New 

Mexico. From experimentally characterizing the DCS, we have found that the empirical pdfs of the service times 

of the servers follow shifted gamma distributions with average service times between 2 and 5 seconds. Since we 

have employed in our experimental set-up a cluster with a high-speed communication network, traffic shapers 

have been used to artificially introduce transfer delays. Pareto distributions were fitted for the empirical pdfs of 
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the task transfer times, whose average transfer times per task range between 1 to 3 seconds. As in the previous 

evaluations, it has been assumed that failure times follow Weibull distributions, whose average failure times are 

between 3,000 and 5,000 seconds. The initial workload in the DCS was set to 10,000 tasks. We have initially 

allocated the tasks in four different manners. The “Uniform” initial allocation means that all the servers have in 

their queues the same number of tasks at time t = 0. The “Unbalanced 1” and “Unbalanced 2” initial allocations 

represent, respectively, cases where all the tasks are allocated at the slowest and at the fastest server. The 

initial “Random” allocation assigns a random allocation to the servers at time t = 0. Also as in the previous 

evaluations, the service reliability in the experimental case was calculated by averaging a total of 500 

independent samples. 

Table 3 The average service time and the service reliability of a 10-server non-markovian DCS 

 �̅�ℓ0
(0,0), 𝑠  𝑅ℓ0

(0,0)  

Initial Load Theoretical Experimental Theoretical Experimental 

Uniform 3272.1 3653.5 0.7743 0.7001 

Unbalanced 1 2928.9 3551.4 0.7901 0.7467 

Unbalanced 2 2743.1 3375.8 0.6259 0.6174 

Random 3100.2 3417.0 0.7810 0.7502 

 

Table 3 shows the theoretical predictions, and the experimental results, obtained for the average service time 

and the service reliability of a 10-server non-Markovian DCS. These results have been obtained when the 

optimal task reallocation policy is executed by the servers in the system. The reallocation policy has been 

calculated by solving the optimization problems (13) and (15) using the two-server age-dependent models and 

the pairwise decomposition algorithm. Results in Table 3 for the predicted and the experimental metrics exhibit 

a maximum error of approximately 18 percent in the case of the average service time and 10 percent in the case 

of the service reliability. Regarding the computing time of the solution, the optimization process took an average 

time between 10 and 16 hours to produce the results on the standard nondedicated desktop computer 

previously specified. 

SECTION 5 Conclusions 
We have presented a novel, age-dependent analytical characterization of the average service time of an 

application, the service reliability and the QoS in executing an application in heterogeneous DCSs in the 

presence of stochastic communication delays with general probability distributions. In addition, the 

characterization is parameterized by a DTR action in order to efficiently execute parallel applications. This work, 

therefore, offers a general and rigorous mathematical framework for both assessing performance and reliability 

and systematically devising DTR polices for maximal performance and reliability in heterogeneous DCSs with 

non-Markovian dynamics. The developed age-dependent framework constitutes a major generalization of our 

earlier Markovian models for the tandem distributed queuing system, reported in [16] and [21], to a non-

Markovian and hence more realistic settings. Our results indicate that when the network delays are relatively 

large compared to service times, the error in estimating any of these metrics, as a result of falsely assuming 

exponentially distributed random delays becomes significant, thereby necessitating the use of our age-

dependent model. Similarly, when distributions of the random service times depart from the theoretical 

exponential distribution, the performance and reliability metrics are inaccurately approximated by the 

Markovian models. For example, our calculations show relative errors as large as 120 percent in estimating the 

average service time and the service reliability, respectively. It must be mentioned that the accuracy provided by 

the age-dependent model comes at the expense of increased computational complexity as compared to its 

Markovian counterpart. To alleviate such computational burden, an analytical approximation of the model was 
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also developed. The approximation has the appealing feature that dimensionality of the space-state vector 

characterizing the system scale linearly in the number of system servers. 

In future works, refinements to the approximation of the exact age-dependent model can be derived using a 

probabilistic dimension-reduction technique, which exploits the likelihood of the regeneration events. Methods 

that exploit the concept of bisimulation, which are known for its effectiveness in reducing the state space of 

large hybrid systems, can also be employed to refine the approximations of the exact age-dependent model. 
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