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Abstract

We develop a decimation-decomposition processing technique that consists of judiciously selecting certain decima-
tion-decomposed components of an image and then performing inter-component processing. For a (k

x
, k

y
)-decimation

decomposition, there may be up to k
x
k
y

decimation-decomposed components. The minimal surviving and maximal
non-surviving lengths associated with inter-component processing algorithm allows for clutter suppression. By removing
detection redundancies, one can locate the target at high speed. A `where-then-whata model is proposed for target
tracking and recognition. It locates the target by-image decimation-decomposition processing "rst and then recognizes
the target in question using a suitable image recognition technique. ( 2001 Pattern Recognition Society. Published by
Elsevier Science Ltd. All rights reserved.

Keywords: Image decimation; Target location; `Where-then-whata model; Clutter suppression; Target tracking

1. Introduction

When searching or tracking a target, it is desirable to
have a wide "eld of view. Consequently, targets often
occupy a relatively small area in the acquired image. On
the other hand, high spatial resolution for both image
sensor and frame grabber is preferred for successful rec-
ognition [1]. Obviously, it is undesirable to identify a tar-
get in a lower spatial resolution image. Typically, more
accurate recognition of an object is obtained with de-
tailed image. However in target tracking and recognition,
it is not necessary to "nd the target and identify it
simultaneously. Since there is less computation need for
locating a target in the lower spatial resolution image,
one can locate an object in coarser resolution "rst, and
then recognize the object by focusing on the local region
in its "ner resolution versions. Accordingly, we propose

a `where-then-whata model for target tracking and rec-
ognition which consists of two steps: (i) locate a candi-
date target in the scene as an answer to `where is the
targeta; and, (ii) perform recognition by focusing on the
localized area as an answer to `what is the targeta.

Correlation-based and template matching techniques
have been found to be e!ective in target tracking and
recognition; however, they are highly computation-inten-
sive and not suitable for real-time applications [2]. Op-
tical correlation technique [3] may provide alternate
solutions but typically the processes need bulky optical
systems. In this paper, we develop a novel technique
called decimation-decomposition processing for locating
the target in a digital image at high speed.

Decimation is a sampling-rate conversion technique
that is based on selecting equi-spaced elements in
a digital signal to generate its down-sampled representa-
tion [4}6]. It is widely used in subband image coding [5],
multirate signal processing [6}9], and multiresolution
image processing [10}14]. These techniques involve a
tree data structure representation at various resolution
levels, and the processing pertains primarily to multi-
resolution linkage from parent-level to children-level or
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vice versa. In this paper, instead of pursuing parent}
children processing between di!erent levels, we employ
an inter-children processing approach at a low spatial
resolution level, called image decimation-decomposition
processing, for locating target at high speed.

For a Nyquist-sampled image, decimation may result
in information loss and aliasing due to undersampling.
Since the goal of image detection is di!erent from that of
image representation, the computation-intensive low-
pass anti-aliasing pre"ltering [5] may be avoided as long
as the target data survives the image decimation-de-
composition process. For a single-object image, the tar-
get (corresponding to the largest patch) presence will
outlive all other smaller patches with decreasing spatial
resolution.

Moreover, since any two points determine a line and
any three non-collinear points determine a plane, addi-
tional points are considered as redundancies. In digital
image processing and recognition, a line or a region
consists of more pixels than the minimum required by the
geometrical axioms, which means that high redundancies
are associated with detecting the presence of a line or
region. To detect the presence of a target without an
accurate recognition, it seems reasonable to rapidly lo-
cate a candidate target position with the least redundan-
cies. We show in this paper that this clever approach
reduces the complexity drastically.

The paper is organized as follows. Section 2 introduces
decimation decomposition which yields multiple poly-
phase components, and inter-component processing
using simple logic operations. Section 3 provides estima-
tions of line length and target area, and target location in
a scene. In Section 4, we show that our technique reduces
the computation cost signi"cantly when the detection
redundancies are removed. Based on this decimation-
decomposition processing, we develop in Section 5 the
`where-then-whata pattern recognition model. Finally, in
Sections 6 and 7, we provide an illustration for fast
locating a target and a summary.

2. Image decimation decomposition

2.1. Dexnition

Let f (m, n) represents a binary quantization of an
M]N digital image. Assume that the pixel index assign-
ment is in accordance with the left}right and top}down
convention. The top-left pixel at (m, n)"(1, 1) is treated
as the reference or origin pixel. For an input image
f (m, n), the decimation with a decimator factor k

x
in

x direction and a decimator factor k
y

in y direction is
given by

g(p, q; i, j)"f (pk
x
#i, qk

y
#j), 0)p(P, 0)q(Q,

1)i)k
x
, 1)j)k

y
, (1a)

where

P"ceil A
M

k
x
B#1, (1b)

Q"ceil A
N

k
y
B#1, (1c)

ceil (x) denotes the ceiling function which takes the lar-
gest integer less than or equal to x, and (p, q) are the
indices of the decimation-decomposed image g(p, q)
which is represented by a P]Q matrix in a reduced
resolution. The parameters (i, j) are the indices of the
top-left pixel of children g(p, q; i, j) inherited from the
indices of the same pixel in the top-left corner block (with
size k

x
]k

y
) of the parent f (m, n). There are up to k

x
k
y

possible children resulting from a (k
x
, k

y
)-decimation de-

composition. In accordance with notations used by Vet-
terli [5] and Suter [6], each child g(p, q; i, j) is a poly-
phase representation component of the original parent
image. We hereby refer to it as component (i, j) for short.
Obviously, each component is a collection of equally-
spaced pixels in the original digital image. The element
indices (p, q) of component (i, j) are de"ned in the range:
pk

x
#i)M, and qk

y
#j)N; otherwise, it is possible

for some elements to outstretch the original matrix be-
yond the right and bottom margins. Such marginal prob-
lems are overcome by appending zeros as follows:

g(p, q; i, j)"

G
f (pk

x
#i, qk

y
#j),

0

1)pk
x
#i)M, 1)qk

y
#j)N,

otherwise.
(2)

Zero-appending, however, is not required when

mod (M, k
x
)"k

x
!1, (3a)

mod (M, k
y
)"k

y
!1, (3b)

where mod (a, b) is the remainder of a divided by b.
To understand image decimation decomposition, we

illustrate a (4, 3)-decimation as shown in Fig. 1. The
reference component (1, 1) is the collection of all boxed
elements of the original image, component (2, 1) is the
collection of elements marked by single strike-through,
and component (3, 2) is the collection of elements marked
by double strike-through. In accordance to Eq. (2), the
right-most two columns in the original image and, corre-
spondingly the last column of components (3, 2) are aug-
mented by zeros (shown in bold).

2.2. Component selection and intra-set processing

A maximum of k
x
k
y

components are associated with
a (k

x
, k

y
)-decimation decomposition. To reduce compu-

tation time, in practice, only some of the components are
used. We adopt the set-theoretic notation to simplify
the manipulation of selected components. The set of all
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Fig. 1. Illustration of a (4, 3)-decimation decomposition showing three components and their elements.

Fig. 2. An inter-component processing where intra-set process-
ing is followed by inter-set postprocessing.

component labels is denoted by )"M(i, j )D i"
1, 2,2, k

x
, j"1, 2,2, k

y
N whereas a collection of se-

lected components is represented by a subset )@L).
There are di!erent ways to select components from this
universal set of labels. For simplicity, the reference com-
ponent (1, 1) is included in each such subset as common
reference. We can identify a collection of all possible
selections by a collection C of subsets of ). An admissible
of selections C must obey the following rule:

Y
){|C

)@"), (4)

where Y denotes a union. Note that for )@ and )A3C, )@
and )A are not necessarily disjoint.

There are a variety of algorithms that can perform
inter-component processing within the set. This is refer-
red to as intra-set processing. The point-to-point inter-
frame processing requires the operands to have the same
frame size as given by Eq. (2). In addition, an inter-set
postprocessing which is based on the intra-set results
may also be used to yield desirable results. For simplicity,
we consider herein only the case of single-object binary
image. We show in that the target can be located at high
speed by simple logic operations for two types of inter-
component processing: the intra-set processing and in-
ter-set processing. The intra-set inter-component pro-
cessing is associated with only one set while the inter-set
processing involves multiple sets.

An inter-component logical AND operation for a sub-
set )

s
L), is de"ned by

G(p, q)" R
(i, j)|)s

g(p, q; i, j), (5)

where ' denotes AND logic. Fig. 2 shows an example of
the inter-component processing. Decimation decomposi-

tion is followed by intra-set processing and then by
inter-set postprocessing.

In the appendix, we list some pertinent inter-compon-
ent processing algorithms suitable for detecting the pres-
ence of a line. If a line is detected by more than two
points, we say the line detection has redundancy. Accord-
ingly, detecting a line by two points and detecting a rec-
tangular or triangular region by three non-collinear
points are said to have no redundancy. In practice,
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Fig. 3. Line detection with (a) full redundancy, (b) reduced
redundancy, and (c) no redundancy.

more points are preferred for improving accuracy and
robustness. The redundancy-reduced detection strategy
provides an e$cient way to detect a target's presence.
This strategy is realized by decimation-decomposition
processing. There are more degrees of freedom to select
components from the plenary for redundancy-reduced
detection. In the case of (k

x
, k

y
)-decimation decomposi-

tion processing, it is possible to detect a horizontal,
vertical and diagonal lines, respectively, with set )

h
"

M(1, 1), (k
x1

, 1)N, )
v
"M(1, 1), (1, k

y1
)N, and )

d
"M(1, 1),

(k, k)N such that k
x1

)k
x
, k

y1
)k

y
, and k ) min(k

x
, k

y
).

The corresponding inter-component processing algo-
rithm are given by

h(p, q)" R
(i,j)|)h

g(p, q; i, j)"g(p, q; 1, 1) ' g(p, q;, k
x1

, 1),

(6a)

v(p, q)" R
(i,j)|)v

g(p, q; i, j)"g(p, q; 1, 1) ' g(p, q; 1, k
y1

),

(6b)

d(p, q)" R
(i,j)|)d

g(p, q; i, j)"g(p, q; 1, 1) ' g(p, q;, k, k).

(6c)

Since there are no redundancies in Eqs. (6a)}(6c), the
algorithms are optimally e$cient in detecting lines. The
redundancies for the detection of line are graphically
shown in Fig. 3 for the cases of (a) full redundancy as
given in the appendix, by Eqs. (A.1)}(A.3); (b) reduced
redundancies; and (c) no redundancy using Eqs.
(6a)}(6c). All other component set selection strategy and
inter-component processing algorithm lies in between the
two extremes.

2.3. Inter-set postprocessing

We have pointed out already that horizontal, vertical,
and diagonal lines can be detected by inter-component
processing with a selected component set. It is possible to
further combine intra-set processing results together for
improving e!ectiveness. The general combination algo-

rithm for an admissible components collection C is given
by

GK (p, q)"C R
(i,j)|)1

g(p, q; i, j)D #
1 C R

(i,j)|)2

g(p, q; i, j)D #
2

'C '
(i,j)|)s

g(p, q; i, j)D #
s
', (7)

where for each 1)s)cardMCN, (cardMCN represents car-
dinality of the set C, which is equal to the number of its
elements), and )

s
denotes an inter-set operation. Also

note that for 1)s)cardMCN, )
s
3C. For example,

#
s
"' and #

s
"s refer, respectively, to logical AND

and OR operators. The #@
s
s can be the same or di!erent.

It is understood in Eq. (7) that the intra-set operations
are performed prior to the inter-set operations.

It is possible to detect a convex region by subjecting
the results of line detection to inter-set postprocessing. If
the two-dimensional region of interest is of diamond
shape, for example, then one may choose two diagonal
lines to detect the region. Herein we provide the corre-
sponding inter-set postprocessing algorithms as follows:

GK
1
(p, q)"H(p, q) #

1
<(p, q) #

2
D(p, q) (8)

and

GK
2
(p, q)"h(p, q) #

1
v(p, q) #

2
d(p, q). (9)

In some cases, e!ectiveness can be improved by a mixed
processing algorithm such as

GK
3
(p, q)"H(p, q) #

1
v(p, q) #

2
d(p, q), (10)

where the horizontal line detection has full redundancy
and the vertical and diagonal line detection has no re-
dundancy for (k

x
, k

y
)-decimation decomposition proces-

sing. The results indicate that more considerations are
given to the horizontal direction. When designing the
inter-set postprocessing algorithms, it is instructive to
keep in mind that the logical AND operation provides
high discrimination but is sensitive to salt-and-pepper
noise, and that the OR logic operation contributes to
robustness [15].

3. Target size and location estimation

Due to the logical AND operations in Eqs. (A.1)}(A.3)
and Eqs. (6a)}(6c), one-dimensional decimation-
decomposition processing is associated with a minimal
length that survives inter-component processing. This is
referred to as the minimal surviving length. Meanwhile,
there is a maximal length that could be missed and is
referred to as the maximal non-surviving length. The
minimal surviving and maximal non-surviving lengths
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Fig. 4. Illustrations of (a) minimal surviving length (area) and
maximal non-surviving length (area) as de"ned in Eqs. (11a),
(11b), (14a), (14b) and (15); and (b) implementation of Eq. (13a)
and (13b).

Fig. 5. Digital image reduction using (a) template matching,
and (b) decimation decomposition.

are associated with the (k
x
, k

y
)-decimation decomposi-

tion processing and are

d
x
"k

x
, D

x
"2(k

x
!1), (11a)

d
y
"k

y
, D

y
"2(k

y
!1), (11b)

where d
x
, and d

y
respectively, denote the minimal surviv-

ing length and D
x
, and D

y
denote maximal non-surviving

length along x- and y-directions, as shown in Fig. 4(a).
For the case of no-redundancy, the minimal surviving

and maximal non-surviving lengths follow the relation-
ships

d
x1

"k
x1

(k
x
, D

x1
"D

x
, (12a)

d
y1
"k

y1
(k

y
, D

y1
"D

y
. (12b)

With the minimal surviving and maximal non-surviving
lengths, the estimate for line length along x and y, i.e.,
¸
x

and ¸
y
, can be obtained:

R
x
k
x
)¸

x
)R

x
k
x
#D

x
, (13a)

R
y
k
y
)¸

y
)R

y
k
y
#D

y
, (13b)

where R
x

and R
y
, respectively, represent the run lengths

of non-zero pixels in an inter-component-processed im-
age (at a low resolution), along x- and a y-directed lines.
The uncertainty of the estimate is given by the maximal
non-surviving length. Fig. 4(b) shows an example per-
taining to Eq. (13a) where R

x
"8, k

x
"4, and D

x
"6 for

decimation decomposition processing as given in Eq.
(A.1). Correspondingly, the minimal surviving area s and
the maximal non-surviving area S associated with the
(k

x
, k

y
)-decimation decomposition-processing shown in

Fig. 5(a) are given by

s"k
x
k
y
"d

x
d
y
, (14a)

S"2(k
x
!1)2(k

y
!1)"D

x
D

y
. (14b)

Since a plane is speci"ed uniquely by two non-collinear
lines, one can detect a two-dimensional region by a com-
bination of two one-dimensional line detection algo-
rithms. Accordingly, the area of a region of interest is
estimated by combining two line estimates given in Eqs.
(13a) and (13b) wherein the uncertainty D

x
D

y
is given by

R
x
k
x
R

y
k
y
)a)R

x
k
x
R

y
k
y
#D

x
D

y
. (15)

According to Eq. (1a), the relationship between the pixel
indices (m, n) and (p, q) associated with (k

x
, k

y
)-decima-

tion decomposition is given by

m"pk
x
, (16a)

n"qk
y
. (16b)

Using Eqs. (13a) and (13b), one can estimate the window
size for location identi"cation by

w
x
"¸

x
#*w

x
, (17a)

w
y
"¸

y
#*w

y
, (17b)
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Table 1
Cost comparisons

Multiplicationd Additiond Comparisonsd

Template matching C
C
"(M!P)(N!Q)PQ C

`
"(M!P)(N!Q)PQ C

;
"(M!P)(N!Q)

Algorithm of Eqs. (A.1) and (A.2) C"MN(k
x
#k

y
)/(k

y
k
y
) C

`
"0 C

;
"MN/(k

x
k
y
)

Algorithm of Eqs. (6a) and (6b) C"2MN/(k
y
k
y
) C

`
"0 C

;
"MN/(k

x
k
y
)

where w
x
]w

y
denotes the window size with border al-

lowances *w
x

along x and *w
y

along y. It is safe to
consider border allowances for segmenting the target
region in the original image by

*w
x
*D

x
, (18a)

*w
y
*D

y
. (18b)

4. Computation cost

To appreciate the computational saving in the image
decimation decomposition processing, it is instructive to
make a comparison with the conventional template
matching technique. For an M]N binary image f (m, n)
and a P]Q template t (p, q), the template matching is
given by

f
1
(m

1
, n

1
)"

P
+

p/1

Q
+
q/1

f (m
1
#p, n

1
#q)t(p, q),

m
1
"0, 1, ', M!P, n

1
"0, 1, ', N!Q, (19)

where the number of multiplication and addition opera-
tions are, respectively, given by

C
C
"(M!P)(N!Q)PQ, (20a)

C
`
"(M!P)(N!Q)PQ. (20b)

As shown in Fig. 5, the template matching yields an
(M!P)](N!Q) matrix with a reduction in matrix
order resulting from the exclusion of the right and bot-
tom margins in the template. To "nd the maximum
element a loop with C

;
comparisons is required, where

C
;
"(M!P)(N!Q). (21)

The decimation decomposition is realized by data selec-
tion manipulation that only involves accessing data from
the memory. The corresponding time cost is negligible. It
corresponds to the time for point-to-point inter-compon-
ent processing and locating the maximum within a com-
ponent-size image.

For an M]N binary image, the (k
x
, k

y
)-decimation

decomposition produces components with a reduced

matrix order M/k
x
]N/k

y
and, the number of point-to-

point inter-component AND operations is given by

C
\
"

MN

k
x
k
y

. (22)

In comparison, the multiplication-related computation
cost is considerably small. In particular, the search area
associated with decimation technique is smaller than that
for the brute-force template matching by a factor of
1/(k

x
k
y
). Table 1 lists the computation costs for both

template matching and decimation decomposition pro-
cessing. The algorithms of Eqs. (6a) and (6b) and Eqs.
(A.1) and (A.2), respectively, represents the no-redund-
ancy and full-redundancy cases dealing with both hori-
zontal and vertical lines. The proposed image-decima-
tion-decomposition processing cuts down computation
requirements signi"cantly, especially in the cases of re-
dundancy-reduced detection. Strictly speaking, the com-
putation costs listed in Table 1 account only for the
detection of target. Additional computation cost should
be considered to account for the recognition of target
following the detection of target location.

5. 99Where-then-what:: target recognition model

We propose a `where-then-whata target recognition
model as shown in Fig. 6 where a CCD camera grabs the
scene and produces a digital image, namely, the original
image. The `where-then-whatamodel is characterized by
the following steps:

Step 1: The `where "rmwarea estimates the target loca-
tion in a low spatial resolution image using image-deci-
mation decomposition processing. While accessing the
original gray image, a binarization is employed to gener-
ate its binary version. The `wherea "rmware is imple-
mented by either software, hardware, or both. The
"rmware generates parameters such as target location
indices (m, n), horizontal width ¸

x
, and vertical height

¸
y

to locate the candidate target.
Step 2: The `what recognizera identi"es the target by

focusing on a subimage, in full-spatial resolution, at the
location of target already pointed out by the `where
"rmware.a

690 Z. Chen et al. / Pattern Recognition 34 (2001) 685}694



Fig. 6. `Where-then-whata model for tracking target.

Fig. 7. A candidate original image for the detection of vertical
line.

Fig. 8. (a1)}(a4) Examples of selected components associated
with (6, 6)-decimation decomposition of the original shown in
Fig. 7; (b) the result of inter-component processing (using Eq.
(23a)); and (c) the result of inter-component processing (using
Eq. (23b)).

As identi"ed in Section 2, there are di!erent implemen-
tation algorithms for (k

x
, k

y
)-decimation decomposition

processing. These involve judiciously selecting compo-
nents and designing inter-component processing. For
adaptive applications, the process becomes sophisti-
cated since the decimation factors k

x
and k

y
and inter-

component processing algorithms may be determined
dynamically. Further, it is possible to develop the
decimation-decomposition technique for multistage
decimation processing by adopting a pyramid trans-
formation [16].

6. Simulation

To exhibit the e!ectiveness of image-decimation-de-
composition processing, we consider two examples. Figs.
7}9 show the results pertaining to vertical line detection.
Fig. 9 shows the original image which is a 64]64 binary
image. For (6, 6)-decimation decomposition, we select
a set )

s
"M(1, 1), (2, 1), (3, 1), (5, 1)N as shown in Fig. 8

(a1}a4). By employing inter-component processing algo-
rithms given by

v
1
(p, q)"g(p, q; 1, 1) ' g(p, q; 2, 1) ' g(p, q; 3, 1)

' g(p, q; 5, 1), (23a)

v
2
(p, q)"g(p, q; 1, 1) ' g(p, q; 5, 1), (23b)

we obtain the results shown in Figs. 8(b) and (c), respec-
tively. Note that Eq. (23a) has redundancies while
Eq. (23b) has no redundancy. In this case, both results are
the same. Fig. 9 illustrates the vertical line detection
result pertaining to Eqs. (23a) and (23b), in full spatial
resolution. All clutters smaller than the minimal surviv-
ing length are suppressed as well as a horizontal line is
suppressed as a clutter.

Figs. 10}13 illustrate the results of a more comprehens-
ive decimation decomposition processing. In Fig. 10, the

target plane is present in the scene along with clutter.
Fig. 11 shows examples of selected components asso-
ciated with (6, 6)-decimation decomposition. The results
shown in Fig. 12 are obtained by implementing the
following inter-component processing algorithms:

G
a1

(p, q)"g(p, q; 1, 1) ' g(p, q; 2, 1) ' g(p, q; 3, 1)

' g(p, q; 5, 1), (24a)

G
a2

(p, q)"g(p, q; 1, 1) ' g(p, q; 5, 1), (24b)

G
b1

(p, q)"g(p, q; 3, 1) ' g(p, q; 3, 2) AND g(p, q; 3, 4)

' g(p, q; 3, 5), (24c)

G
b2

(p, q)"g(p, q; 3, 1) ' g(p, q; 5, 1), (24d)
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Fig. 9. Results corresponding to Figs. 8(b) or (c) in the same
resolution as original image.

Fig. 10. An image for a comprehensive study of decimation-
decomposition processing.

Fig. 11. Representative components associated with (6, 6)-deci-
mation decomposition of the original image shown in Fig. 10.

Fig. 12. Results generated by the inter-component processing
using Eq. (24a)}(24h) of the image of Fig. 11.

G
d1

(p, q)"g(p, q; 2, 2) ' g(p, q; 3, 3) AND g(p, q; 4, 4)

' g(p, q; 5, 5), (24e)

G
d2

(p, q)"g(p, q; 2, 2) ' g(p, q; 5, 5), (24f )

G
s1

(p, q)"G
a1

(p, q) ' G
b1

(p, q), (24g)

G
s2

(p, q)"G
a2

(p, q) ' G
b2

(p, q), (24h)

Figs. 12(a1), (b1) and (c1) show line detection results with
redundancies as de"ned by Eqs. (24a), (24c) and (24e),
respectively. Figs. 12(a2), (b2), and (c2) show alternative

results with no redundancy as de"ned by Eqs. (24b), (24d)
and (24f). Figs. 12(d1) and (d2) show the region detection
results as obtained using Eqs. (24g) and (24h). It is seen
that the no-redundancy case, as in Eq. (24h), produces the
same result as that of the redundancy case (as in Eq.
(24g)). The results are the same again. A good and robust
algorithm often leads to more cases of identical results.
Fig. 13 shows the localized region for (*w

x
, *w

y
)"

(3k
x

,3k
y
) with the top-left allowance of (2k

x
,2k

y
) and the

bottom-right allowance of (k
x
, k

y
).
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Fig. 13. Subimage location using Eq. (17a) and (17b) with
(*w

x
, *w

y
)"(3k

x
, 3k

y
).

7. Summary

The proposed image-decimation-decomposition pro-
cessing exploits interframe processing among the
decimation-decomposed subimages (components) thus
rendering clutter suppression with reduced computation
cost. The process consists in resampling down a digital
image without low-pass "ltering as required otherwise in
the conventional decimation processing [5]. The algo-
rithm involves selecting decimation-decomposed compo-
nents and then rendering inter-component processing.
The component selection could have full redundancy,
reduced redundancy, or no redundancy depending on the
number of the selected components. The inter-compon-
ent processing includes logical AND, OR, and their
combination.

The proposed method can be used to detect the pres-
ence of a target without anti-aliasing pre"ltering. In the
extreme case of decimation-decomposition processing,
the detection of presence of a line or a region is realized
with minimum computation in the case of no redund-
ancy. By using decimated data, removing detection re-
dundancy, and executing simple logic inter-component
operations, a target can be located at high speed. The
uncertainty associated with the target estimates can be
overcome by designing ad hoc inter-component process-
ing algorithms.

Although the technique is immune to stationary noise
(clutter), it is susceptible to spot noise as in the multipli-
cation or AND operations. To remove spot noise, thus, it
will be necessary to preprocess the binary image using
hole "lling and morphology-based techniques [17].
Sophisticated algorithms involving logical AND can also
be used to combat this noise sensitivity.

Sophisticated algorithms are needed to reduce the
maximal non-surviving length and, thus, improve accu-
racy and robustness. To be more general and complete,
the sensor detection theory based on statistics and sensor
fusion [18,19] may be considered. Multistage decimation
processing can provide for more e$cient solutions. To

develop a general `where-then-whata target tracking and
recognition system, the decimation factors (k

x
, k

y
) should

be adaptively determined. This may be developed in the
same way as the pyramid transformation [16] for multi-
stage decimation processing.

Appendix A

Selected inter-component processing algorithms for
line detection (with full-redundancy) are listed below.

(1) Horizontal line detection:

H(p, q)" R
(i,j)|)H

g(p, q; i, j)"g(p, q; 1, 1) ' g(p, q; 2, 1)

' g(p, q; k
x
, 1), (A.1)

where the set )
H

is given by M(i, j )D i"1, 2,2, k
x
, j"1N.

This algorithm involves an 1-D k
x
-decimation-decompo-

sition processing. It is equivalent to moving a non-over-
lapping window of size equal to the decimation factor k

x
.

(2) Vertical line detection:

<(p, q)" R
(i,j)|)V

g(p, q; i, j)"g(p, q; 1, 1) ' g(p, q; 1, 2)

" ' g(p, q; 1, k
y
), (A.2)

where the set )
V

is given by M(i, j )D i"1, j"1, 2,2, k
y
N.

(3) Diagonal line detection:

D(p, q)" R
(i,j)|)D

g(p, q; i, j)

"g(p, q; 1, 1) ' g(p, q; 2, 2)

" ' g(p, q; min(k
x
, k

y
), min(k

x
, k

y
)), (A.3)

where the set )
D

is given by M(i, j )D i"j"1,
2,2, min (k

x
, k

y
)N, and min (a, b) denotes the minimum

of a and b.
Eqs. (A.1)}(A.3) are special cases of the general formula

given by Eq. (5) with )
s
")

H
, )

s
")

V
, and )

s
")

D
,

respectively. They are obtained by a judicious selection of
the components.
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