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Abstract: 

The full-vector Maxwell's equations Unite-difference time-domain (FDTD) method is employed to calculate 

diffraction coefficients of vibrating conducting and dielectric wedges. Two-dimensional FDTD models of 

right-angle wedges are constructed to include total-field scattered-field incident plane-wave source 

conditions as well as convolutional perfectly matched-layer boundary conditions. These models are first 

validated by calculating the diffraction coefficient of a stationary perfect electrical conducting (PEC) right-

angle wedge for comparison to uniform geometrical theory of diffraction (UTD) analytical solutions. Next, a 
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brute-force FDTD technique for modeling wedge vibrations is utilized to calculate the Doppler diffraction 

coefficients of vibrating lossless and lossy  

SECTION I. Introduction 
Stratis et al. [1] have employed the full-vector Maxwell's equations finite-difference time-domain (FDTD) 

method [2], [3] to calculate diffraction coefficients of right-angle conducting and dielectric wedges. Their work is 

motivated by the fact that classical theories such as the uniform geometrical theory of diffraction (UTD) can be 

utilized to solve diffraction coefficient problems for perfect electrical conducting (PEC) wedges, but there is no 

analytical solution for the diffraction coefficient of problems that involve dielectric or imperfectly conducting 

wedges. 

We extend the FDTD modeling of Stratis et al. to calculate diffraction coefficients of vibrating conducting and 

dielectric wedges. From an applied perspective, this letter is in support of recently developed signal-processing 

algorithms designed to estimate ground-object vibrations using synthetic-aperture radar platforms [4]. 

We employ two-dimensional (2-D), transverse magnetic(TMz) FDTD models containing the wedge of interest, a 

total-field scattered-field (TFSF) incident plane-wave source condition [3], and a convolutional perfectly matched 

layer(CPML) boundary condition [5] to prevent unwanted reflections from the outer grid boundaries. 

A brute-force method of modeling the object vibrations is implemented. This approach requires two FDTD 

simulations in which the diffracted and scattered fields are computed for the same plane-wave illumination, but 

for different stationary scattering wedges comprising: 1) the unperturbed wedge; and 2) the same wedge under 

peak applied strain. This brute-force technique requires that we employ a high-resolution FDTD grid in order to 

resolve the vibrations of the wedge. Note that, for efficiency, the recently developed surface impedance 

boundary condition (SBC) [6], [7] may be employed to model object vibrations in FDTD models instead of the 

brute-force technique. Previously, benchmark comparisons between results of FDTD models employing SBC 

have shown good agreement with corresponding analytical results [6] and [7] as well as with brute-force FDTD 

results [8]. 

This letter has application to a number of situations involving electromagnetic (EM) wave interactions with 

arbitrary vibrating material objects. Of particular interest is the interaction of synthetic aperture radar signals 

with buildings having characteristic vibration signatures due to internal operating machinery and activities. 

SECTION II. Calculation of the Diffraction Coefficient 

A. Methodology 
Stratis et al. [1] implement time-gating in their FDTD models to obtain diffracted-only signals for subsequent 

calculations of the diffraction coefficient. Time-gating takes advantage of the different arrival times at specific 

observation points of the incident, reflected, near-edge diffracted, and far-edge diffracted waveforms. As a 

result, only the diffracted fields from the intended edge are extracted from FDTD models in a straightforward 

manner. These time-gated waveforms may subsequently be used to calculate the diffracted impulse 

response, ℎ(𝜌, 𝜙, 𝑡). Taking the discrete Fourier transform of the diffracted impulse response to 

yield 𝐻(𝜌, 𝜙, 𝜔) would provide, in turn, the variation of the diffracted field over the spectral range of the 

incident wave. The diffraction coefficient 𝐷 is then calculated via the following: 

𝐷(𝜌, 𝜙, 𝜔) = 𝐻(𝜌, 𝜙, 𝜔)√𝑟𝑒𝑗𝛽𝑟 (1) 

where (𝜌, 𝜙) is the observation point and 𝑟 is the distance from the scattering edge to the observation point. 



B. Model Geometry and Validation Study 
A validation study for the FDTD-calculated diffraction coefficient is performed for the case of a stationary PEC 

right-angle wedge. The FDTD-calculated results are compared to the analytical solutions obtained via UTD [9]. 

A 2-D TMz FDTD model is generated having a total grid size of 4908×4908 cells and containing a square PEC 

object of dimension 2400×2400 cells. The bottom of the square PEC (−y-direction side) is located 2184 grid cells 

from the bottom of the grid, and the right side of the square PEC is located 2184 grid cells from the right side of 

the grid. The incident plane-wave source is a Gaussian modulating a sinusoid at a center frequency of 850 MHz 

and having a 1.3-ns duration (full width at half-maximum). The angle of incidence is 80°. The grid cell increment 

in the 𝑥- and 𝑦-directions is set to 2.9 mm. High resolution is chosen so that the small-amplitude vibrations 

considered in Section III may be resolved by this same grid. 

 
Fig. 1. Layout of the FDTD grid for computing the diffraction coefficient at Point F. 

The model is run for a total of 11 039 time-steps, and the time-step increment is set to 6.8 ps (Courant limit [3]). 

An observation point, denoted by Point F in Fig. 1, is chosen to be located slightly to the right of the square PEC 

at 𝜌 = 6.3 and 𝜙 = 262.37∘, in the diffracted-field-only region (Region III). The edge yielding the diffracted 

waves considered in this letter is located at the bottom right of the square PEC (here, a 90° wedge angle), edge 

A. This arrangement is analogous to the wedge scenario of [1]. 

In order to obtain the diffraction coefficient, the Fourier transform is taken of the electric field time-waveform 

at the observation point F and normalized relative to the incident plane-wave source 

𝐻(𝜌, 𝜙, 𝜔) =
𝐹{𝑋dif(𝜌,𝜙,𝑡)}

𝐹{𝑋inc(0,𝜙,𝑡)}
 (2) 

where the subscript “dif” denotes the diffracted field values at Point F and the subscript “inc” denotes the 

incident field values. 

The diffraction coefficient is then computed via (1). Note that Point F is in the shadow scattering region, which is 

of practical interest for diffraction problems. 
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Fig. 2. Comparison between the analytical UTD solution and the FDTD results for the diffraction coefficient for 

right-angle PEC wedge at Point F(𝜌 = 6.3, 𝜙 = 262.37∘). 

 
Fig. 3. Comparison between the diffraction coefficients for lossless, unperturbed dielectric right-angle wedges 

having a relative permittivity of 2, 5, and 7, respectively. 

To obtain the UTD analytical solution for comparison to the FDTD results, the computer code provided in [9] is 

utilized. This computer code computes the diffraction coefficient for TM (soft) polarization using the equation 

𝐷𝑠(𝜌, 𝜙, 𝜙′, 𝜔)

=
−𝑒

−𝑗
𝜋
4

2𝑛√2𝜋𝛽
[(cot(

𝜋+𝜉−

2𝑛
) 𝐹(𝛽, 𝜌, 𝑔+(𝜉−))

+cot (
𝜋−𝜉−

2𝑛
)𝐹(𝛽, 𝜌, 𝑔−(𝜉−)))

−(cot (
𝜋+𝜉+

2𝑛
)𝐹(𝛽, 𝜌, 𝑔+(𝜉+))

+cot (
𝜋−𝜉+

2𝑛
)𝐹(𝛽, 𝜌, 𝑔−(𝜉+)))]

 (3) 

where 𝜉+ = 𝜙 + 𝜙′, 𝜉− = 𝜙 − 𝜙′, 𝑛 is the wedge factor, which is 1.5 for a right-angle wedge, and F(X) is the 

Fresnel's transition function computed by the asymptotic expressions for large and small arguments 
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As shown in Fig. 2, there is very good agreement between the analytical UTD results and the FDTD simulated 

results. Specifically, the relative error is less than 1% from ∼50 to 1500 MHz. 

 
Fig. 4. Comparison between the Doppler diffraction coefficients for the lossless dielectric wedges 

of Fig. 3 vibrating horizontally, by 6 mm in the +x-direction under peak applied strain. 

SECTION III. Diffraction Coefficients of Vibrating Conducting and Dielectric 

Wedges 
The model described in Section II-B is now employed to calculate the diffraction coefficients of vibrating wedges 

composed of different materials. For comparison, the diffraction coefficients of the unperturbed stationary 

wedges are also shown. 

 
Fig. 5. Comparison between the Doppler diffraction coefficients for the lossless dielectric wedges 

of Fig. 3 vibrating vertically, by 6 mm in the −y-direction under peak applied strain. 
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Fig. 6. Comparison between the diffraction coefficients for lossy, unperturbed dielectric right-angle wedges 

having a relative permittivity 7 and a conductivity 0, 10, and 3.0E7, respectively. 

First, Fig. 3 shows the FDTD-calculated diffraction coefficient at Point F for three unperturbed dielectric right-

angle wedges of relative permittivity 2, 5, and 7. Fig. 4 then shows the FDTD-calculated Doppler diffraction 

coefficient at the same Point F for the same wedges vibrating 6 mm (two grid cells) horizontally to the right (in 

the +x-direction). To obtain the Doppler diffraction coefficient, the electric field time-waveform at Point F from 

the FDTD model having the unperturbed wedge is subtracted from that of the FDTD model having the wedge 

under peak applied strain (shifted 6 mm to the right), as shown in (6) at the bottom of the page. 

𝐻Doppler(𝜌, 𝜙, 𝜔) =
𝐹{𝑋dif,unpertured(𝜌,𝜙,𝑡)−𝑋dif,peakappliedstrain(𝜌,𝜙,𝑡)}

𝐹{𝑋inc(0,𝜙,𝑡)}
.(6) 

The Doppler diffraction coefficient is then calculated as 

𝐷Doppler(𝜌, 𝜙, 𝜔) = 𝐻Doppler(𝜌, 𝜙, 𝜔)√𝑟𝑒𝑗𝛽𝑟. (7) 

Note in this case the surface of the wedge is not deformed. Under peak applied strain in this scenario, the entire 

right, straight side of the wedge is shifted to the right by 6 mm. However, arbitrary deformations may be 

considered, either through higher resolution FDTD brute-force models or via lower resolution FDTD models 

employing the SBC method to resolve the vibrations. 

 
Fig. 7. Comparison between the Doppler diffraction coefficients for the lossy dielectric wedges of Fig. 6 vibrating 

horizontally, by 6 mm in the +x-direction under peak applied strain. 
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Fig. 8. Comparison between the Doppler diffraction coefficients for the lossy dielectric wedges of Fig. 6 vibrating 

vertically, by 6 mm in the −y-direction under peak applied strain. 

We first notice by comparing the results of Figs. 3 and 4 that the amplitude of the Doppler diffraction coefficient 

is reduced by an order of magnitude relative to the stationary diffraction coefficient. Also, the amplitude of the 

Doppler diffraction coefficient increases with increasing frequency. 

Fig. 5 shows the Doppler diffraction coefficient at Point F for the same wedges of Fig. 3, but this time vibrating 6 

mm vertically downward (in the −y-direction). Comparing Fig. 5 to Fig. 4, we see that the Doppler diffraction 

coefficient is reduced by another order of magnitude when the wedge is vibrating downward versus to the right. 

Next, Fig. 6 illustrates the FDTD-calculated diffraction coefficients at Point F for three unperturbed right-angle 

wedges of permittivity 7 and conductivity 0, 10, and 3.0E7, respectively. Figs. 7 and 8then illustrate the FDTD-

calculated Doppler diffraction coefficient at Point F for the same wedges of Fig. 6 vibrating 6 mm horizontally to 

the right (in the +𝑥-direction) and 6 mm vertically downward (in the −𝑦-direction), respectively. 

SECTION IV. Conclusion 
The diffraction coefficient of stationary and vibrating lossless and lossy dielectric wedges have been calculated 

via brute-force 2-D FDTD models. Depending on the direction of vibration, the Doppler diffraction coefficients 

are found to be between one and two orders of magnitude lower than the diffraction coefficient of the 

stationary wedge. Furthermore, the Doppler diffraction coefficient amplitude increases with increasing 

frequency over the spectrum of interest. 

Although right-angle wedges are considered in this letter, note that FDTD modeling permits diffraction 

coefficient calculations for wedges and objects of arbitrary shapes and vibration characteristics. For instance, 

diffraction coefficients for a 45° stationary wedge were calculated using FDTD in [10]. Also, the recently 

developed SBC algorithm provides an efficient means of modeling arbitrary vibration characteristics in FDTD 

models. For example, in [6] and [7], a variety of vibration modes of both square and circular objects are 

accounted for in the FDTD models using SBC. 
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