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Abstract 

Background- High volume power training (HVPT) involves high volumes of high velocity resistance training, 

with the aim to improve repeated high intensity efforts (RHIE). Repeat power ability (RPA) is the ability to 

repeatedly produce maximal or near maximal efforts. Assessments of RPA using external loading may 

determine the ability to perform repeat high intensity efforts (RHIEs) typical of many sports and therefore 

provide useful information on the effectiveness of training. 

Objectives- 1) Identify the different HVPT protocols; 2) Examine the acute responses and chronic 

adaptations to different HVPT protocols; 3) Identify different lower body RPA assessment protocols and 

highlight similarities, differences and potential limitations between each protocol, and; 4) describe the 

reliability and validity of RPA assessments. 

Methods- An electronic search was performed using SportDiscus, PubMed, CINAHL and Embase for 

studies utilising HVPT protocols and assessments of RPA. Eligible studies included peer reviewed journal 

articles published in English.  

Results- Twenty studies met the inclusion criteria of the final review.  Of the eight longitudinal studies, 

three were rated as fair and five were rated as poor methodological quality, respectively.  In contrast, all 

12 cross-sectional studies were considered to have a low risk of bias. Preliminary evidence suggests that 

HVPT can enhance RHIE, RPA, anaerobic capacity, anaerobic power and aerobic performance. HVPT 

generally consists of 2-3 sessions per week, utilising loads of 30-40% 1 repetition maximum (RM), for 3-5 

sets of 10-20 repetitions, with inter set rest periods of 2-3 minutes. RPA assessments can be valid and 

reliable and may provide useful information on an athlete’s ability to perform RHIE and the success of 

HVPT programmes. 

http://dx.doi.org/10.1007/s40279-020-01273-0
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Conclusions- HVPT can be used to improve a number of physical qualities including RPA and RHIE; while a 

variety of RPA assessments provide valid and reliable information regarding the athlete’s ability to 

perform RHIEs. Considering the heterogeneity in the HVPT protocols currently used and the relatively low 

volume and quality of longitudinal publications in this area, further studies are needed to identify the 

effects of a variety of HVPT methods on RPA, RHIE and other performance outcomes and to identify the 

most valid and reliable RPA outcomes to use in such studies. 

Key Points 

During HVPT, maximal power output can be achieved at the beginning of each set 

followed by within-set reductions in power with additional repetitions. 

HVPT appears to be a time effective training modality in improving a number of 

physiological capacities including maximal anaerobic power, anaerobic capacity and 

repeated high intensity sporting actions. However, studies are limited and 

implications for performance of elite athletes unclear. 

Dependent on the variable of interest, some RPA tests appear to be valid and 

reliable measures of the effectiveness of HVPT and the ability of athletes to perform 

RHIEs. 

http://dx.doi.org/10.1007/s40279-020-01273-0
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1 Introduction 

1.1 Training for repeated high intensity efforts 

The ability to perform repeated, lower body dominated, high intensity efforts (RHIE) with minimal rest 

during accelerating, changing direction, sprinting, jumping, and physical contact situations like striking, 

tackling or wrestling are important physical qualities for many sports (1,2). These different high intensity 

sporting actions can be characterised by the high relative physical effort required to accomplish the task 

and the rate and magnitude of fatigue experienced as a result of the task (3–5). A wide range of 

technology, for example global positioning systems and tri-axial accelerometers, can be used to describe 

RHIE sporting actions where thresholds can be established to quantify the level of intensity achieved (6,7). 

Strength training using external resistance, is commonly used to promote morphological and/or 

neurological adaptations in skeletal muscles and enhance the intensity of muscular actions; with high 

intensity training loads, greater than 80-85% 1RM (one repetition maximum), with a range of prescription 

schemes and volumes often utilised (8). During strength training, intensity is typically described by how 

the resistance load compares to the athlete’s directly assessed or estimated 1RM (9,10). However, such 

simple measures of intensity are unable to be used when the goal is to maximise power over a range of 

submaximal loads, where peak power output can be defined as the maximum rate of work produced per 

unit time or the greatest product of instantaneous force and velocity (11). One approach to quantify 

intensity when performing power training may be to base the intensity of training on the load at which 

peak power output is obtained by the athlete for a given exercise (11,12).   

Power training is a sub classification of high intensity strength training where the goal is to lift a range of 

loads as fast as possible (12,13). Traditional power training incorporates both non-ballistic and ballistic 

lifts and also weightlifting exercises (12). Non-balllistic lifts are traditional strength training lifts, like the 

back squat and the bench press, performed with low to moderate loads and lifted at maximal velocity 

http://dx.doi.org/10.1007/s40279-020-01273-0
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(14). In ballistic lifts the system mass (the lifter and the load) or the object (for example a barbell) are 

projected into flight, as in a squat jump and bench throws respectively (14). The weightlifting exercises, 

the clean, the snatch, the jerk, and their derivatives are also used in traditional power training (12,15). 

Traditional power training commonly consists of working sets of between one to six repetitions and are 

generally characterised by relatively lengthy inter-set rest periods, of between two to five minutes (11,16–

18). Cluster loading, with the use of inter-set rest periods lasting from 5-100 seconds, are used in 

traditional power training to maintain power-output across sets with multiple repetitions (19–24).  

An alternative power training option, high volume power training (HVPT), typically consisting of higher 

volumes of work and potentially limited rest in comparison to traditional power training, may be an 

effective training method to enhance the ability to perform RHIE sporting actions (25). This is perhaps 

similar to recent approaches using high intensity training to elicit cardiovascular improvements (26). 

Different variations of HVPT have been used in the field and have also been described in coaching 

manuals, text books and in the description of the training of participants in peer reviewed publications 

(16,25,27,28). Although this method of power training has been described it is not commonly utilised in 

physical development training programmes and this warrants further investigation into this training 

method.  

A description of the training protocols and prescription guidelines for HVPT will be examined in this 

review. The effect of different lower limb HVPT protocols on enhancing the ability to repeatedly produce 

maximal or near maximal efforts against external loads and the concomitant effect on RHIEs in a sporting 

context are also examined in this review.   

Traditional training to enhance RHIEs often involves training methods focusing on the development of the 

cardiorespiratory system and the neuromuscular system in relative isolation (29). For example, the 

development of the cardiorespiratory system can be done in isolation, through either continuous steady-

http://dx.doi.org/10.1007/s40279-020-01273-0
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state training or through high intensity interval training methods. Aerobic capacity can therefore be 

enhanced and the aerobic driven recovery between high intensity bouts improved (4,30,31). It is 

important to note however, that aerobic capacity has been found to be at best moderately correlated to 

repeated sprint ability (32). The importance of aerobic capacity in affecting repeated sprint ability seems 

to be dependent on the type of repeated effort/volume/distance/rest intervals used to assess it  (33–37).  

 The development of the neuromuscular system in order to improve RHIEs can also be done in isolation, 

through sprint training, plyometrics and strength training.  These forms of training may improve the ability 

of the lower limbs to produce force rapidly (12,13). The increase in the ability to produce force more 

rapidly, may enhance power output and speed in every effort of a RHIE bout (38,39). Anaerobic power 

has been found to be the strongest predictor of repeated sprint efforts that are low in volume and 

duration and short in recovery time (36,38). Despite these findings, strength, aerobic capacity and 

repeated sprint ability have all been shown to be poor individual predictors of RHIE (40). The discrepancy 

between these findings is likely due to differences in volume, sprint distance, recovery time and the varied 

mechanical demands, like change of direction, grappling and tackling, associated with the assessment of 

RHIEs (36). As such, training interventions that are more specific to RHIEs have been recommended (2). 

Beyond a threshold level of strength and fitness, muscular endurance may be more associated with RHIE 

sporting actions than maximal strength or aerobic fitness (40). This may be why strength training focused 

on the development of muscular endurance, with high repetition volumes, relatively slow muscle actions 

and short rest periods has previously been found to enhance RHIEs (41,42). However, considering RHIEs 

by definition are high intensity sporting actions, then the development of muscular endurance of the 

lower body using high velocity, high intensity muscular actions may provide a more effective strength 

training solution to improve RHIEs. 

http://dx.doi.org/10.1007/s40279-020-01273-0
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1.2 Assessing the ability to repeat high power outputs 

In order to understand the effect of training on the development of a particular physical quality, in this 

case the ability of the lower body to repeatedly produce high levels of mechanical power, a reliable and 

valid assessment must first be established. It is suggested that the ability to perform RHIEs is due to the 

ability to maintain relatively high levels of maximal power output. Again, maximal power output is the 

optimal product of force and velocity, where in a practical sense, it is the greatest instantaneous power 

in a movement where the goal is to achieve maximal velocity at release, takeoff or impact (12,43).  This 

review introduces the term repeat power ability (RPA) as the ability to repeatedly produce maximal or 

near maximal efforts against external resistance training loads. 

The distinction between the maintenance of high levels of power output with and without external load 

is important. Not only does movement velocity decrease with an increase in load but fatigue-related 

reductions in power and force have also been found to occur earlier as external load increases (16,44,45). 

There is likely a greater metabolic cost in repeated maximal efforts with additional loads. The physical 

demands of a number of sports, like rugby union, rugby league, American football, Judo and mixed martial 

arts, require RHIEs against external loads like the mass of an opposing player (40,46,47). The high force 

demands associated with change of direction and acceleration tasks might also be best represented with 

the addition of external loads (48,49). An assessment protocol for RPA that does not utilise external loads 

may lack the specificity or sensitivity for many high intensity sporting demands.  

The importance of this systematic review is to examine the quality and quantity of available research on 

HVPT protocols and RPA assessments. The results of this systematic review may either warrant the 

inclusion or exclusion of HVPT protocols and RPA assessments in physical development, routine 

monitoring and physical testing of athletic populations respectively.  This systematic review will:  1) 

examine the acute responses to HVPT protocols; 2) examine the chronic adaptations to this method of 

power training; 3) identify the different lower body RPA assessment protocols and highlight the 

http://dx.doi.org/10.1007/s40279-020-01273-0
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similarities, differences and the potential limitations between each protocol; 4) describe the reliability and 

validity of each RPA assessment protocol. 

2. Methods 

2.1 Search strategy and inclusion criteria 

A systematic review of the literature was conducted in order to find applicable studies utilising different 

HVPT protocols and also studies examining acute and chronic physiological adaptations to this type of 

training. RPA type assessments and the different procedural approaches were also investigated in this 

systematic review. The scientific databases searched were PubMed, Embase, SPORTDiscus and CINAHL 

and the search criteria included the terms:  power endurance, power training, ballistic, explosive, high 

volume, resistance, training, conditioning, power output, anaerobic capacity, power capacity, maximal 

power, repeat power, decrement, power and fatigue. The full search strategy for the PubMed search was 

(“power endurance” OR “power training” OR ballistic OR explosive OR (“high volume” AND resistance)) 

AND (training OR conditioning) AND (“power output*” OR “anaerobic capacity” OR “power capacity” OR 

“maxim* power” OR (repeat* AND power) OR (decrement* AND power) OR fatigue). The database search 

was initially conducted on the 25th of November 2015 and then an updated search was conducted on the 

7th of April 2019. 

To be included in this review, the studies had to use resistance training exercises of the lower body with 

external loads. Studies that included upper body exercises were only included if lower body exercises 

were also performed. Importantly the study had to state that the exercises were performed with maximal 

intent to move the resistance or system mass as fast as possible or words to that effect. Both HVPT and 

RPA protocols required ≥ 8 repetitions per set and where multiple sets were used, inter-set recovery 

needed to be ≤ 3 minutes. In the absence of quantification of internal or external loads, at least a clear 

outline of the training or assessment protocol along with the outcome or results of the intervention was 

http://dx.doi.org/10.1007/s40279-020-01273-0


The effect of HVPT on RHIE and RPA 
 

9 
 

This is a post-peer-review, pre-copyedit version of an article published in Sports Medicine. 
The final authenticated version is available online at: http://dx.doi.org/10.1007/s40279-020-01273-0 

 

required to meet the inclusion criteria.  There were no restrictions on the year of publication; however, 

the studies needed to be full articles printed in English.  All studies involved adults, except for that of 

Gonzalo-Skok et al. (50), who examined elite young basketball players aged 16-18 years. 

The rationale for study inclusion and exclusion based on the body part trained or assessed was determined 

by the locomotive demands of most able-bodied land-based sports and activities, meaning that exercises 

and assessments had to involve the use of the lower limbs to be included in this review. The requirement 

for the studies to utilise resistance training external loads was due to; 1) the development of power in 

traditional power training is commonly achieved using ballistic or weightlifting exercises with moderate 

to high external loads; 2) many sports require the production of high forces against external loads; 3) the 

application of external loads cause an earlier onset of fatigue and reductions in power and force; and 4) 

the application of external load differentiates this form of exercise or assessment from more traditional 

cardiorespiratory forms of training. The execution intent of the exercise was important so to differentiate 

between training and assessment protocols that were muscular endurance focused, where the intention 

may be to complete a number of repetitions or as many repetitions as possible within a time limit, versus 

HVPT and RPA assessment protocols that are focused on executing each repetition at maximal velocity. 

The inclusion of studies based on the number of repetitions and inter-set rest periods was to ensure there 

was a clear differentiation between a traditional power training protocol and a HVPT protocol. By only 

including studies that outlined the training or assessment protocols in detail and provided either 

quantification of internal or external load or the outcomes and results of the intervention, an initial screen 

of applicable research related to this review was established.  

2.2 Study quality assessment and risk-of- bias assessment 

The first and last author (initials AN and JK) of this review each independently assessed the risk of bias 

and research quality of each longitudinal study using the Physiotherapy Evidence Database (PEDro) scale. 

http://dx.doi.org/10.1007/s40279-020-01273-0
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The PEDro checklist was deemed not to be entirely suitable for the cross-sectional studies included. 

Therefore, a risk of bias assessment, developed by Hindle et al. (51) and based upon several other 

checklists was used, for all cross-sectional studies included (52–54). The longitudinal studies were 

evaluated against the 11 items described in the PEDro scale criteria and the cross-sectional studies were 

evaluated against the 16 items described in the risk of bias assessment developed by Hindle et al. (51). If 

there were any disagreements between the two assessors a consensus meeting was conducted, and the 

disagreements were resolved.  

Briefly, both the PEDro scale and the risk of bias assessment (Hindle et al. (51)) include items that describe 

the internal validity and interpretability of the relevant study design. The sum of the PEDro scale items 

have been shown to be a valid measure of the study’s methodological quality (55,56) and the checklist in 

the risk of bias assessment developed by Hindle et al. (51) has been based on a number of systematic 

reviews that include literature with similar study designs. All items within the two scales were scored as 0 

or 1 for studies with a low or high ROB and research quality, respectively. The item was scored as 0 if no 

clear information was provided regarding the item or if it was unclear whether the criterion for an item 

was met. Longitudinal studies scoring 9-10, 6-8, 4-5 and 0-3 on the PEDro scale were classified as excellent, 

good, fair and poor, respectively (57) and cross sectional studies scoring ≥ 67%, 34-66% and ≤ 33% 

considered as having a low, satisfactory and high risk of bias respectively (Hindle et al. (51)). 

2.3 Data analysis 

The HVPT variables, exercise modality, load, volume, recovery and number of training sessions, were the 

primary variables of interest from a training prescription perspective. Outcome measures such as maximal 

power and force, average power, % decrement of power or speed and blood lactate accumulation were 

also primary variables of interest from both an RPA assessment and HVPT perspective. Statistical data 

http://dx.doi.org/10.1007/s40279-020-01273-0
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reporting the reliability and validity of RPA assessments were also of interest for this review.  Due to the 

conflicting and heterogeneous nature of the variables assessed, effect sizes were not able to be calculated. 

3 Results 

The results of this search were 626, 366, 406, 244 articles from PubMed, Embase, SPORTDiscus and 

CINAHL respectively. Nineteen articles were initially selected for this review; after the reference list of 

each of these articles was further examined an additional study was added to bring the total number of 

articles reviewed to 20.  Figure 1 displays a flow chart of the article selection process used in this review. 

[INSERT FIGURE 1] 

Table 1 displays the results of the PEDro scale assessment for the longitudinal studies and Table 2 displays 

the results of the risk of bias assessment for the cross-sectional studies. Of the eight longitudinal studies 

included, only three studies were deemed to be of fair methodological quality, with five studies deemed 

to be of poor quality (29,50,58–63). The mean PEDro scale score for the longitudinal studies was 3.25 out 

of 10 suggesting that, on average, the current longitudinal research on HVPT and RPA is of poor 

methodological quality. Of the 12 cross-sectional studies included, all of these studies were considered to 

be of low risk of bias (16,64–74). The mean risk of bias assessment score for the cross-sectional studies 

was 78.25% suggesting that, on average, the current cross-sectional research on HVPT and RPA is of low 

risk of bias. 

Across the longitudinal studies, the strengths were a) 85% of subjects receiving 1 key measurement; b) 

statistical significance reported for one key outcome and c) the inclusion of drop outs in the statistical 

analysis (intention to treat). The weaknesses were a) the lack of the use of a concealed allocation; and b) 

the lack of blinding of assessors, subjects and coaches.   

http://dx.doi.org/10.1007/s40279-020-01273-0
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Across the cross-sectional studies the strengths were a) the objectives/purpose of the study is clearly 

defined; b) the design of the study adequately tests the hypothesis; c) the statistical methods used were 

well described; d) the statistical tests used to analyse the data were appropriate; e) the results were well 

described; f) the information provided in the paper is sufficient to allow a reader to make an unbiased 

assessment of the findings of the study; g) confounding factors were identified. The weaknesses were a) 

the criteria for the inclusion of subjects were not clearly described; b) a description of how the study size 

was arrived at was not provided; c) sponsorships/conflicts of interest were not acknowledged. 

[INSERT TABLE 1 and 2 HERE] 

The results of the systematic review revealed twenty studies in total that both described and utilised or 

explicitly examined HVPT protocols or RPA assessments. Of the twenty studies included in this review, 14 

studies described a variety of different HVPT protocols (see Table 3), with the acute effect of HVPT 

reported in nine of the 14 HVPT studies (59,65–67,70–74). Four of these studies examined the change in 

power output throughout the training session (65,70,71,74). In each of these studies there was no 

difference found in maximal power output between sets, despite significant declines in power output 

found within each sets. Two additional studies attempted to report the acute effect of HVPT at various 

time points post training (67,72). These studies found maximal force output to recover by 7 minutes post 

HVPT while time-dependent force qualities were still depressed up to 30 minutes post HVPT respectively. 

[INSERT TABLE 3 HERE] 

 

The chronic effect of HVPT training was assessed in five HVPT studies (50,58,60,61,63), with the results of 

these studies summarised in Table 4. Of the five training studies presented, only one examined the effect 

of training on RPA (49). Between these studies, there was considerable heterogeneity in terms of the 

training performed and performance variables assessed. All five HVPT studies examined the effect of HVPT 

http://dx.doi.org/10.1007/s40279-020-01273-0
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on some form of sporting performance where movements like change of direction, hopping, sprinting or 

jumping were performed (50,58,60,61,63). Only one of the HVPT studies examined the chronic effects of 

HVPT on single maximal intensity efforts, RPA and RHIEs collectively (60).  

[INSERT TABLE 4 HERE] 

The results of this review also indicate seven studies that attempted to measure RPA 

(16,29,60,62,64,68,69). Within these seven studies there was heterogeneity found in terms of the 

assessment protocols and parameters used to measure RPA. A summary of these studies is provided in 

Table 5. Three of these seven studies identified the reliability of the RPA assessment (29,64,68), with one 

of these studies also having analysed the validity of the assessment used (68). For each of the reliability 

studies, a high degree of test-retest reliability was found (with Intraclass correlation coefficient’s [ICC’s] 

ranging from 0.730-0.987) despite the different RPA assessments used. In terms of validity of RPA 

assessments, power output in the Kansas Squat Test demonstrated validity with respect to the maximum 

test power and the mean test power of 30 second Wingate assessment (r = 0.775 and 0.752 respectively) 

(68).   

[INSERT TABLE 5 HERE] 

4 Discussion 

4.1 High volume power training protocols 

4.1.1 Exercise modality 

There was considerable heterogeneity with respect to the exercise modalities utilised within the studies 

reporting physiological responses to HVPT; with these including the speed squat, power clean, clean pull, 

countermovement jump (CMJ), speed bench press and speed biceps curl (with one study also including 

multiple 10 s stationary cycle sprints within the HVPT protocol). Unfortunately, the range of modalities 

http://dx.doi.org/10.1007/s40279-020-01273-0
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used makes the research difficult to compare due to the variation in non-ballistic, ballistic and 

weightlifting exercises used in the studies. In studies involving non-ballistic exercises, where the system 

mass or object do not gain flight,  such as the speed squat, speed bench press and biceps curl, there is a 

substantialy greater deceleration phase of the barbell in the second half of the concentric portion of the 

lift in comparison to ballistic exercise alternatives (75). The deceleration of the barbell in non-ballistic 

exercise is proportionate to the momentum generated in the propulsion phase, where in the early 

concentric part of a lift the force imparted on the barbell is greater than the gravitational force (76,77). 

This is particularly true with lighter load, non-ballistic exercises where higher barbell velocities cause a 

greater percentage of the range of motion to be spent in deceleration and a smaller percentage of the 

range of motion spent in propulsion (77). The propulsion and deceleration in non-ballistic exercise 

variations is likely to impart very different biomechanical and physiological requirements in comparison 

to ballistic exercises (75,78,79), thereby resulting in improved acute responses and chronic adaptations 

when using ballistic exercises (80,81).  

In comparing force-time characteristics between ballistic and non-ballistic half squats, Suchomel et al. (78) 

found higher peak force and impulse across a range of light to heavy loads during the ballistic condition. 

Likewise, it appears that ballistic exercise variants allow higher peak velocities and longer propulsive 

phases in comparison to non-ballistic derivatives (77,79). A combination of higher peak forces, greater 

impulse, higher movement velocities and longer propulsive phases are likely to impose higher levels of 

acute fatigue in relation to non-ballistic variants (81).   

With reference to the Olympic weightlifting exercises (e.g. the clean and snatch), the execution of these 

lifts require the control of many degrees of freedom in comparison to more traditional lifts like the squat 

or the squat jump were the barbell follows a more linear path (82). The use of derivatives of these 

exercises,  for example the mid-thigh pull, can reduce the number of degrees of freedom requiring control 

and the resulting technical demand, whilst still providing a high force and a high velocity stimulus that is 

http://dx.doi.org/10.1007/s40279-020-01273-0
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considered just as effective as the full variants of the lift (83,84). The ability to reduce the degrees of 

freedom within an exercise used for HVPT may minimise the various technical strategies that could be 

utilised to increase the work performed and maintain power output as a result of fatigue (85–87). When 

performing HVPT using 3 sets of 9 repetitions of the power clean, Date et al. (66) found blood lactate 

accumulation of 7.43±2.94 mmol∙L-1, indicating significant skeletal muscle substrate utilisation. Some 

support of this view of how increased technical demands may acutely effect HVPT performance, can be 

found in the resuts of Hatfield et al. (70) and Volek et al. (88). Higher blood lactate accumulation, between 

9.6±3.3 mmol∙L-1
 and 16.1±3.9 mmol∙L-1

  respectively, were found while using a HVPT protocol consisting 

of 4 sets of 12 repetitions and 5 sets of 10 repetitions of continuous CMJs. It is important to note the 

difficulty in comparing acute physiological responses between different HVPT exercises and the way they 

are executed, with or without rest between repetitions, along with the range of volumes, external loads 

and inter-set rest periods used. 

4.1.2 Load 

The load utilised in HVPT can also create some difficulty in comparing the research. Date et al. (66) and 

Romero et al. (63) used loads of between 60-75% 1RM for the power clean and clean pull respectively, 

whereas studies involving the speed squat utilised loads between 30-60% 1RM (60,67,71,73,74,89). The 

load utilised in non-ballistic lifts, like the speed squat, have a substantial effect on the propulsive phase 

and ensuing barbell deceleration of a lift. Smaller propulsive phases and greater levels of deceleration are 

found with lighter loads in order to counteract the higher velocities that can be attained (90,91). During 

ballistic exercise, higher external loads have been shown to have a greater effect on fatigue levels. During 

a six-repetition set of jump squats, Thomassen and Comfort (92) found a 60% 1RM load to have a 

significant decrease in power output by the sixth repetition. However, there was no significant decrease 

in power output by the sixth repetition when using a 40% 1RM load (92).  It is also important to note that 
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although there is a range of % 1RM loads utilised in HVPT, the % 1RM loads have been derived from a 

range of exercises and therefore the absolute loads may differ substantially (93).  

4.1.3 Volume and frequency 

In the longitudinal training studies found, two to three sessions per week was the most common 

frequency of training (50,58–61,63). Training frequency of two to three sessions per week seemed to be 

the most common training strategy for other traditional strength training methods that focused on 

developing either strength, muscle hypertrophy or power (9,94–96). Depending on the magnitude of 

fatigue and corresponding time an athlete may need to recover, HVPT frequency may need to be 

perioidsed and individualised. For example, highly fatiguing protocols may need a minimum of 72 hours 

recovery between sessions, with less fatiguing protocols only requiring 48 hours between sessions (9). 

Consideration around other elements of weekly training will also dictate the frequency of HVPT; with 

perhaps less fatiguing protocols being more suited closer to competition periods or important technical 

training sessions. 

Most of the training studies found utilised six to ten week training blocks, with only the Bosco et al. (58) 

study investigating a more general overview of a 20-week training period. This was similar to most training 

studies, where training periods between four to twelve weeks were common (97). If HVPT can be utilised 

effectively as a brief training intervention, for example peaking into competitions, then perhaps a six to 

ten week training block is an appropriate prescription guideline. It is important to note, however, that 

there are recommendations that neuromuscular training studies must include at least 40 to 50 training 

sessions across several months, in order to appropriately quantify the training effects (97).  This suggests 

that more studies may need to examine HVPT interventions over 40 to 50 training sessions across several 

months to better determine if this type of training should be considered a useful longitudinal method of 

training. 
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In an article outlining the physical preparation for sevens rugby, a number of HVPT protocols ranging from 

1 to 3 series of 4 sets, 4 to 12 sets in total, were described (25). Although Bosco et al. (58) also reported 

the use of up to 10 sets, protocols consisting of 3-5 sets seem to be most common in the literature. The 

common number of sets found in HVPT seems to be consistent with other traditional strength training 

volumes (9,94). Considering the objectives of HVPT, the number of repetitions per set showed a large 

variation between studies, this may be due to the variety of loads and exercises used in HVPT or this could 

be an indication that more research is required to understand the effect of repetitions per set in HVPT.  

The within set repetition schemes range from 8 to 25 with most of the protocols utilising repetitions from 

12 to 20 (58–60,67,70–72,74). When focused solely on the lower body exercises, the HVPT studies had a 

total repetition range per session of between 27 to 80 repetitions, with only Bosco et al. (58)  describing 

ranges from 100 to 200 repetitions. These within set repetition ranges and total repetition ranges were 

similar to that found in muscle hypertrophy and muscular endurance training protocols (9,94). The total 

number of sets performed also seemed to be similar between traditional power training and HVPT, 

however, it is the repetitions per set that causes a substancial discrepancy in total repetitions between 

both methods of training (9,12,13). 

4.1.4 Inter and intra set rest 

Inter-set recovery seems to be fairly consistent between HVPT protocols with all, except three of the 

protocols found, utilising a 2-3-minute recovery (50,59,61,65–67,70–74). This recovery range is within the 

margins of recovery periods utilised in traditional power training (12). Although higher repetition ranges 

are used in HVPT in comparison to traditional power training, it seems as though a two-minute inter-set 

rest period is often enough recovery to restore physiological systems responsible for maximal power 

output (70,71,88). As the utilisation of shorter inter-set rest periods, for example ≤ 1 minute, has not been 

well investigated within the HVPT literature, future research should investigate whether athletes can be 

trained to tolerate such short rest periods in an attempt to improve RPA and associated physiological 
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capacities. Although Schuster et al. (25) describe inter-set rest periods of 2 minutes, 1 minute and also 30 

seconds for their HVPT protocols, they do not provide any empirical evidence to support these 

recommendations.  Reducing the length of the inter-set rest periods is an approach that can considerably 

effect the acute training response and the likely chronic physiological adaptation that may occur (71).  

Within a periodisation structure, a gradual reduction in inter-set rest periods over several weeks or even 

months may be one viable approach to maximising the training effect when using HVPT to improve RPA 

in athletic populations. 

Romero-Arenas et al. (63) utilised a HVPT protocol consisting of very short inter-set rest periods, 

performed in a circuit format. In this study the training effect between what was described as a traditional 

power training protocol, with relatively high volume (approximately 80-200 repetitions), was compared 

directly to a volume matched HVPT protocol.  Each protocol required 10 seconds of all-out work for each 

of the four exercises, but the work to rest ratio and the set to set configuration differed. In the traditional 

power training protocol, the completion of up to 5 sets for each of the four exercises was conducted 

consecutively with 90 s rest between each set. In the HVPT protocol, a continuous circuit was conducted 

whereby after completing 10 seconds of all out work on one exercise, 15 s rest was provided before 

performing the next exercise and so on. Although completing HVPT with very short rest periods, as in 

circuit based formats, is likely to provide a substantial cardiorespiratory stress (41,42), the limited 

recovery may acutely decrease power output in consecutive sets (98). With an acute fatigue induced 

reduction in power output, the chronic neuromuscular adaptations may be reduced (63). Therefore, care 

should be taken in the prescription of inter-set rest periods, with acute performance measures, e.g. power 

output periodically recorded to ensure the likelihood of positive long-term cardiorespiratory and 

neuromuscular adaptations. 

Besides inter-set recovery, another method used to maintain power output in HVPT is the use of cluster 

sets. Cluster sets may be used at the start of a HVPT training block with the intra-set rest periods gradually 
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decreasing as the athlete adapts and is better able to maintain power-output. In one of the HVPT protocols 

described by Schuster et al. (25), a 5 second intra-set rest period was provided after every 5 repetitions 

of a 15 repetition set. This cluster set format was said to reduce fatigue when HVPT is performed in the 

lead in to a rugby sevens competition, but no empirical evidence is provided to support this suggestion 

(25).  Although two of the eligible studies utilised cluster set formats (in the form of 5-20 seconds intra-

set recovery dispersed throughout the set) (59,99), no data has been provided in order to show the 

chronic effects of such HVPT protocols.  

With careful planning cluster set schemes may well be used to good effect in the progression and 

periodization of HVPT (59). In the initial stages of introducing HVPT, the use of cluster sets may provide a 

viable method that would allow power output to be maintained throughout the set. For example, Garcia-

Ramos et al. (69) showed that the decline in power output to pre-established thresholds can be 

attenuated, resulting in ~100-150% more repetitions when each repetition of speed squats is interspersed 

with 6 s of rest.  As the athlete starts to adapt to the total volume of work during HVPT, intra-set rest can 

be gradually reduced throughout the training block, until there is no longer any intra-set rest provided 

(59).  

Gonzalo-Skok et al. (50) utilised cluster sets in their successful application of HVPT, however, they chose 

to keep intra-set rest periods consistent throughout the training block, whilst instead providing 

progression in the form of increased volume of work. In this study, a single set of 25 repetitions, where 

every 5 repetitions were separated by 20 s of rest, was progressed to two sets of 25 repetitions after an 

initial three-week training period. It is unknown which of these progressions (reducing inter-set rest 

periods or increasing volume of training) is more effective, but it is suggested that there is potential to 

use each of these progressions throughout an annual periodised training plan. It is important to note, 

however, that Apanukul et al. (60) did not utilise any form of progressive overload in their eight-week 

training study. Instead Apanukul et al. (60) applied a consistent 30% 1RM loading to 3 sets of 20 repetitions 
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of speed squats; despite this they were still able to significantly enhance RPA, power and agility measures. 

This finding may suggest that a consistent prescription of HVPT, over an 8-week period, may provide a 

sufficiently large physiological stress to cause significant adaptations, without having to provide 

progressive overload per se for athletes who were initially naive to HVPT.  This may however require the 

athletes to consistently try to accelerate the loads as rapidly as possible across all repetitions in training. 

An in-depth understanding of these methods and findings are important when deciding on implementing 

a particular HVPT protocol, especially with respect to how a HVPT protocol may be prescribed in relation 

to other training and recovery elements. For example, technical and tactical training, speed and agility or 

injury prevention sessions all need to be concurrently performed in the weekly training schedule. If the 

training stress and concomitant fatigue associated with HVPT are so high that other forms of training are 

compromised or the risk of injury increases, then HVPT may not be considered a feasible form of training. 

It is therefore important to understand the acute physiological responses to HVPT and the ensuing impact 

on recovery and regeneration between training elements and competition.   

4.2 The acute effects of high volume power training 

4.2.1 Power output 

As suggested previously, of the fourteen studies found, nine of these studies provide some physiological 

or biomechanical data pertaining to the acute HVPT responses (59,65–67,70–74). The other five studies 

have been included as they incorporated potential HVPT training variables that may be considered in the 

planning or prescription of HVPT (50,58,60,61,63). 

It is important to consider some methodological limitations in the measurement of power output during 

a number of these HVPT studies. Firstly, as a consequence of fatigue in vertical jumping, power output 

and jump height may be maintained, at least in part, by utilising a different jump strategy, for example by 

increasing squat depth or countermovement displacement (85–87). None of the HVPT studies included in 
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this review quantified potential changes in joint or segment kinematics throughout a HVPT session, 

meaning it is unclear if the maintenance of power output within or between HVPT sets may have been a 

result of a change in kinematics. 

It is also important to consider the equipment used to measure power output and how power output is 

calculated during HVPT. Overestimations in power output have been shown to occur when using barbell 

displacement time data in comparison to using the system centre of mass (100). Barbell displacement 

time data was used in each of the HVPT studies that measured power output, therefore it is important to 

consider that power output will have been overestimated in these studies. However, it could be argued 

that such errors are systematic in nature, meaning the magnitude of change with fatigue should be 

relatively unaffected. 

Hatfield et al. (70) and Volek et al. (65) used the Plyometric Power System to measure the acute response 

to 4 sets of 12 and 5 sets of 10 repetitions of jumps squats, respectively.  These studies demonstrated 

strong similarities with respect to the relative maintenance of mean power and increase in blood lactate 

responses across the sets. This finding shows the importance of the measurement device, metric and 

sample population used when comparing the results of HVPT. Although only Hatfield et al. (70) actually 

analysed the change in mean power from set to set, the maximal mean power in each set in both studies 

remained relatively unchanged throughout the HVPT protocol. This was despite the post blood lactate 

readings of 9.6 ± 3.3 mmol∙L-1 and 16.1 ± 3.9 mmol∙L-1, respectively. The two minutes’ inter-set recovery 

in both protocols may have provided enough recovery in order for both the metabolic and neuromuscular 

system to have recovered sufficiently to produce mean power outputs close to maximal levels. 

Incidentally, the difference in blood lactate readings may well be the result of the additional set that was 

performed in the Volek et al. (65) study. Nonetheless, the increase in blood lactate levels did not seem to 

affect maximal power outputs in consecutive sets.  Future studies should investigate what characteristics 
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may be required for athletes to maintain their mean power values over multiple sets while experiencing 

high metabolic demands, as indicated by the blood lactate values. 

An objective of HVPT prescription may be to provide sufficient, but not excessive recovery between sets 

in order to produce maximal or near-maximal levels of power output at the commencement of the 

ensuing set(s). This would seem a reasonable training objective if improvements, or at least maintenance, 

of both maximal power output and RPA are the objective.  Further, it appears that mean and peak power 

output can be maintained across multiple sets despite significant reductions in power output. Within set 

reductions in power-output can be as much as  -23% when using 30-40% 1RM loads for up to 5 sets of 10-

16 repetitions  (65,70,71,74). Unfortunately, the effect of HVPT repetitions above 16 repetitions were not 

examined in any of the studies found. Therefore, it is unknown whether or not maximal power output can 

be maintained from set to set with the use of the higher repetition ranges. 

4.2.2 Hormonal and immune response 

Nune et al. (73) identified no significant differences in acute hormonal and immune responses between 

three different resistances training schemes (a HVPT type scheme, a strength-hypertrophy scheme and 

strength-endurance scheme). The findings from Nune et al. (73) provide potential evidence to suggest 

that a HVPT type scheme may induce no greater acute hormonal or immune response than traditional 

muscular strength, hypertrophy and endurance training schemes.  Only the strength-hypertrophy scheme 

showed a significant increase in pre vs. post training cortisol levels, with no schemes showing any 

significant changes in testosterone or immunoglobulin A. It may be reasonable to suggest that the total 

training load volume in this HVPT session (approximately 2000 kg/90 repetitions in total) was not large 

enough to stimulate a significant hormone or immune response. The use of exercises involving smaller 

muscle mass, as in the bench press and bicep curl exercise, in comparison to the squat, are likely to require 

lower energy expenditure and metabolic demand that will result in a sub-maximal hormone and immune 

response (101). The fact that female athletes were used in this study may also have had an effect on 
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potential testosterone response, with males having substantially greater testosterone levels than females 

(102). The hormone and immune response to HVPT protocols involving the use of large muscle mass for 

high volumes of work still needs to be elucidated as well as the relevance of acute hormonal responses in 

the potential long-term training adaptations (103). Hormonal markers that are suggested to be more 

indicative of metabolic challenge than testosterone include insulin-like growth factor 1+ and growth 

hormone, which may prove to be more sensitive in investigating HVPT responses (104).  

4.2.3 Cardiorespiratory response 

While it has been suggested that HVPT would produce a substantial metabolic demand and homeostatic 

challenge, there appear to be no studies that have identified these aspects in relation to HVPT protocols. 

Previous resistance training studies have shown that the type of exercise, the number of repetitions, the 

amount of inter-set rest and the load used can significantly affect exercise performance, energy 

expenditure and oxygen consumption (101,105,106). In order to prescribe and programme HVPT 

effectively, it is important to quantify and understand the physiological demands and their effect on 

fatigue and the ensuing recovery imposed by different HVPT protocols.   

4.2.4 Recovery post HVPT 

Conchola et al. (67) and Mackey et al. (72) were the only studies found to investigate the time course 

effects post HVPT. The HVPT protocol in each of these studies consisted of 5 sets of 16 repetitions of speed 

squats with a 40% 1RM load and directly compared to a volume matched hypertrophy-based protocol 

consisting of 5 sets of 8 repetitions with an 80% 1RM load. Conchola et al. (67) found a significant 

reduction in peak knee extensor torque immediately post HVPT (pre = 264.37 ± 53.14 vs. post = 226.06 ± 

48.54 N∙m). By 7 minutes’ post HVPT, peak torque was no longer significantly different from pre HVPT 

levels (249.47 ± 36.52 N∙m); indicating that the recovery of maximal force generating capacity of leg 

muscles can occur relatively quickly after this type of protocol.  
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In contrast to these findings for peak torque, time-dependent neuromuscular qualities, like peak rate of 

torque development and maximal unloaded velocity were shown to have slower recovery characteristics 

(67,72). The rate of torque development 30 minutes’ post HVPT was still significantly depressed in 

comparison to pre HVPT levels (pre = 2005.42 ± 405.31 vs. 30 minutes’ post = 1735.48 ± 347.85 N∙m/s) 

(67).  Similarly, unloaded maximal velocity was also significantly reduced after 30 minutes (males pre = 

491.48 ± 9.03 vs. 30 minutes post = 479.73 ± 16.70 deg∙s-1 and females pre = 484.76 ± 7.78 vs. 30 minutes 

post = 479.73 ± 11.29 deg∙s-1). It is important to note that although the pre to post changes were 

significantly different, the relative change in mean scores were very small and therefore care should be 

taken in interpretting these findings. Although measures of rate of torque development and velocity 

recovery were only taken for a 30-minute period post HVPT, it is interesting to note that the same recovery 

trends were also found in the matched hypertrophy-based session.  

As hypertrophy training is common place in many sport and physical preparation programmes, the 

findings of similar fatigue time courses in HVPT and hypertrophy training programmes is important for 

establishing how HVPT might fit into weekly training plans. For example, the planning of the training week 

to optimise recovery between a HVPT session and a speed or high intensity technical session may be the 

same as that used for hypertrophy training. However, with only a 30-minute post-exercise time period 

assessed in these studies, the time needed to fully recover lower body neuromuscular function remains 

somewhat unknown. As rate of force development and maximal shortening velocity are important 

physical qualities in sport performance (107), their full recovery for skill and speed based conditioning 

training sessions is paramount. It is essential that future studies in this area include additional 

observations conducted over multiple days, in order to better quantify the physiological cost and recovery 

profile of such sessions. It may also be important to account for bimodal recovery patterns, which have 

been observed in high volume stretch shortening cycle activities; where following acute fatigue, a brief 

recovery period ensues before another depression in performance was observed (108). 
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4.3 The chronic effects of high volume power training and traditional training on measures 

of repeat power ability 

Apanukul et al. (60) investigated the effect of specific HVPT on RPA in competitive male tennis players. 

Although the primary aims of the research were to examine the differences in traditional barbell lifting 

versus a pneumatic lifting device, the researchers applied a matched HVPT protocol to both groups, while 

a control group performed normal tennis training consisting of court-based skill and conditioning work. 

Over an eight-week training period, where two sessions a week of HVPT were completed, both 

experimental groups significantly increased RPA as measured by the average relative peak power for 30 

continuous CMJs. This research provides evidence in support of the use of a specific HVPT modality to 

improve RPA. However, Apanukul et al. (60) did not compare the training effects between traditional and 

specific HVPT modalities. Thus, which training modality is more effective at increasing RPA is currently 

unknown. However, with the time cost of training in mind, it is of interest that HVPT can improve both 

maximal power and RPA by 22% and 21% respectively, across a total of sixteen HVPT sessions (60). It is 

clearly evident that both changes in maximal power and RPA can come at a relatively low time cost when 

using a specific HVPT modality.  

4.4 The effects of high volume power training on performance and repeat high intensity 

efforts 

Apanukul et al. (60) demonstrated that an eight-week block of HVPT not only significantly increased RPA 

but also maximal power output and a specific tennis change of direction test in comparison to a matched 

control group who only performed on court tennis training. As the change of direction test in this study 

took approximately 17 s to complete,  such high intensity work for this period of time is likely to apply a 

substantial stress to glycolytic energy production (109).  It is therefore unknown if the HVPT programme 

would improve shorter duration discrete change of direction tasks inherent to the game of tennis and 

other sports.  
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In another investigation of the performance effect of HVPT, Gonzalo-Skok et al. (50) examined the effect 

of two HVPT sessions per week on running and jumping ability over a six-week period. In addition to the 

training completed by the control group, which included general exercises for injury prevention and on 

court basketball practice, the experimental group performed a progressive HVPT protocol. In this study, 

HVPT significantly improved hop distance, a measure of lower limb power, by approximately 8% and RHIE 

ability by approximately 2%. Similar improvements in both repeated sprint ability and repeated change of 

direction ability were also found for the HVPT group in this study, with no improvements in any of the 

measures found for the control group.  

Bosco et al. (58) examined the effect of ~20 weeks of specific strength and HVPT on 12 international alpine 

skiers. Unfortunately, all participants in this study used a combination of both traditional strength training, 

where loads of between 70-100% 1RM were utilised in the squat and leg press exercises, and HVPT, where 

both unloaded and loaded jumps, ranging from 20-50 kg, were used for up to 10 sets of 20 repetitions. 

The combination of these two training approaches was highly effective in improving a variety of jump 

power and anaerobic capacity measures by between ~23-60% and ~15-16%, respectively. However, 

conclusions cannot be made on the relative effectiveness of traditional strength training or HVPT, in 

contributing to these adaptations. It is also important to note again that the data presented in Bosco et 

al. (58) is more of a description of training and physical capacities at different time points rather than a 

training study per se.  

Balsalobre-Fernandez et al. (61) performed weighted squat jumps in their investigation of the effects of 

HVPT in high level track and field hurdlers. Although a thorough description of the training status of these 

participants was not provided, baseline half squat strength was ~2.3 times body weight, and this would 

indicate a substantial strength training background. Despite there being no traditional strength training 

performed during the study period, significant improvements in half squat strength along with jump 

power and acceleration performance were observed over a 10 week training period.  While changes in 
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track times were not assessed in this study, the significant improvements in squat strength and jump 

power are noteworthy given the high level training base of the subjects and the fact that only 2 sessions 

a week were conducted, each with a short training session duration of approximately 15 minutes. 

Although no assessments of cardiorespiratory or RHIE performance were conducted in this study, the 

combination of HVPT and track and field hurdle training had a significant effect on neuromuscular 

performance. 

In a recent study examining the training effects of HVPT with short inter-set rest periods (15 s in a circuit 

format) versus moderate rest periods (90 s), several neuromuscular and cardiorespiratory adaptations 

were also observed (63). Significant increases in maximal power, anaerobic capacity and aerobic 

performance were found in both the circuit format group and the moderate rest period group after six 

weeks of training consisting of three sessions per week. This is the only study to have measured the change 

in maximal aerobic speed after a HVPT intervention and its results suggest that HVPT can improve aerobic 

as well as anaerobic performance. Surprisingly, these adaptations also occurred with total training session 

durations as short as 5-8 minutes in the circuit training group.  

In elite sporting environments, training time can often be scarce with only a few available training sessions 

to optimise recovery and regeneration and to prepare athletes both technically and tactically and for the 

physical components of the sport. If HVPT can simultaneously enhance a number of different physiological 

systems, this training method may provide a time efficient training alternative for many sports. Although 

care must be taken when comparing the results from a cohort of healthy men (63) to high level athletes, 

these findings may warrant further investigations of the effect of HVPT on a number of physical qualities.  

These studies provide evidence that HVPT can collectively enhance power, RPA, anaerobic performance, 

aerobic performance, explosive sporting tasks like change of direction ability and RHIE tasks including 

repeated change of direction and repeated sprint tasks. The effect of HVPT on RHIE like those found in 
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collision and grappling type sports (mentioned in section 1.1) still need to be established. As each of these 

studies utilised quite different exercise prescriptions additional comparative training studies need to be 

conducted so to better understand how variations in the acute training stimuli contribute to chronic 

training adaptations. 

4.5 Measuring repeat power ability 

The 60 s Bosco jump test was the first repeated jump power assessment devised to measure anaerobic 

power and capacity and was developed because other popular assessments did not replicate the ballistic 

characteristics of the lower limbs’ and stretch shortening cycle actions found in many sports (110). The 60 

seconds Bosco jump test requires participants to perform 60 s worth of continuous maximal effort CMJs 

on a force platform or jump mat without additional load. When performing the Bosco jump test, between 

55-65 jumps are typically performed in the 60 s time frame and for each 15 s segment the average power 

output is calculated (110). It is important to note that power in the original work was not directly assessed 

in the Bosco jump test, but instead it was derived from jump height, based on flight time and gravitational 

acceleration using a  jump mat. This should be taken into account when comparing RPA assessments 

between protocols that measure or calculate power with other devices like force plates and/or rotary 

encoders (111). 

More recently, repeated jump assessments have incorporated the use of external loads to replicate the 

external loading demands that occur in many sports; to impose a greater stress on the neuromuscular and 

cardiorespiratory systems; and to more closely resemble the externally loaded training modalities often 

used to improve power output (16,64,68). Alemany et al. (64), Baker and Newton (16), Patterson et al. 

(29) and Patterson et al. (62) all developed RPA assessments where they used barbell loaded CMJs, either 

using a continuous (repeated jumps with no between jump rest) or discontinuous (with brief rest periods 

between jumps) protocol. Although Patterson et al. (29,62) used a free bar, all other studies used a Smith 
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machine, including Fry et al. (68) and Garcia-Ramos et al. (69) in their speed squat protocols. The Smith 

machine controls the vertical tracking of the bar and in doing so assists in reducing the technical demands 

placed on the athlete and the potential for measurement error associated with any horizontal motion 

during the vertical jump. Only two studies used a maximal power reference (29,62), whereby a maximal 

power reference value was obtained before performing their RPA assessment. Collecting this maximal 

power reference before the RPA test is important as it allows the researcher to quantify the true decline 

in power output during each RPA assessment.  A maximal power reference can also inform the assessor 

and athlete of any potential pacing strategies that may have been utilised in order to conserve energy for 

later parts of the RPA test. Therefore, establishing this maximal power reference should be considered an 

important part of an RPA protocol to ensure a maximal effort at the commencement of the assessment.  

Unfortunately, the differences between the RPA assessment protocols used in these studies are more 

apparent than their similarities (refer to Table 5.). There seems to be no consensus between the loads 

(with 30%, ~52% and ~67% 1RM, an absolute load of 60 kg [approximately 35% 1RM], 70% 1RM system 

mass and 40% body mass all used), number of repetitions/duration (with 30, 15, 10 repetitions, 2 minutes 

or 2.5 minutes used), jump or squat depth (self-selected, posterior thigh parallel to ground or a 90˚ knee 

angle used), repetition timing (self-selected, 6 s or 2.5 s between repetitions), measurement devices (jump 

mat, integrated force plate and velocity transducer or either force plate only or velocity transducer only) 

and the measurement indices used (average relative mean power, % average relative mean power, 

average mean power, average peak power, average mean velocity and average peak velocity and a fatigue 

index). With such large variation in assessment and analysis procedures, it is difficult to identify which 

factors may influence the reliability and validity of the RPA assessments described in the studies. It is 

suggested that, in order to minimise measurement error, greater control around jump kinematics is 

required along with establishing the most appropriate measurement device and measurement variable(s) 

to explain and help quantify RPA.  
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4.6 Reliability and validity of assessments of repeat power ability 

Although power output is calculated and not directly measured, the 60 s Bosco jump test was originally 

found to be (and still is) a reliable and valid relatively low-cost assessment of anaerobic power and 

capacity in unloaded jump conditions (112,113). More recently, Fry et al. (68) investigated the reliability 

and validity of an externally loaded RPA type assessment, named the Kansas Squat Test, which consists of 

one set of 15 speed squats with each repetition performed every 6 s. It is important to note that in 

traditional barbell exercises such as speed squats, a significant deceleration occurs toward the end of the 

range of motion (up to 40% of the concentric portion of the lift) (114). Therefore, the study of Fry et al. 

(68) who examined the RPA qualities of speed squats is somewhat different to the other studies utilising 

jumping activities. Specifically, a ballistic lifting alternative, such as a squat jump, that again allows the 

barbell to be accelerated through a greater portion of the movement, will result in significantly greater 

forces, velocities and power values to be produced, especially in the second half of the concentric phase 

(75,114).  

Despite the deceleration of the barbell during the speed squats, Fry et al. (68) established reliability and 

validity of the test protocol, with ICC’s of 0.937, 0.811 and 0.754 for mean test power, single repetition 

power and relative fatigue, respectively. Likewise, significant relationships with maximum test power and 

mean power between their RPA test and the Wingate test (r = 0.775 and 0.752, respectively) were also 

found. The validity of the test in comparison to a gold standard anaerobic capacity assessment, the 30 

second Wingate, provides strong evidence in support of repeated high velocity resistance training 

assessments to measure anaerobic power and capacity. Yet when comparing the relationship in relative 

fatigue between the Wingate and the Kansas Squat Test RPA, the correlation was low (r = 0.174). This 

finding suggests that each test may be measuring different aspects of anaerobic performance and fatigue. 

A difference in muscle mechanics between the Wingate and the Kansas Squat Test assessment may well 

be one reason why there is a disparity in the power decrement between the two tests.  
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Fry et al. (68) suggest that the difference in fatigue may be related to the Kansas Squat Test relying more 

heavily on the phosphagen system in comparison to the Wingate test. This is perhaps evident with the 

Wingate test showing higher blood lactate concentration (8.94 ± 0 versus 5.96 ± 0.39 mmol∙L-1) which is 

suggestive of a greater reliance on the fast-glycolytic system. However, the different contraction modes, 

concentric only in the Wingate and eccentric-concentric in the RPA assessment, may have also contributed 

to the metabolic and fatigue relationship differences between the two assessments. The stretch-

shortening cycle actions performed in a 60 second Bosco jump test (where 60 seconds of continuous 

maximal jumps are performed) (113), were suggested to account for difference in anaerobic power and 

capacity when compared to the 30 second Wingate test (112). It is therefore suggested that the validity 

of a potential RPA assessment may be affected by both mechanical and metabolic demands when 

compared to the criterion measure selected.  

Results of Fry et al. (68) need to be interpreted with caution as the deceleration of the barbell in the speed 

squat ascent is likely to present a very different mechanical stress in comparison to a ballistic movement 

(as established in section 4.1.1). The ground reaction forces experienced upon landing in ballistic loaded 

jump conditions could also impose a very different mechanical stress that alters the degree of 

coordination required on landing and the overall level of fatigue. Currently, differences between the 

mechanical stresses imposed by the deceleration of the barbell in a speed squat and the ground reaction 

forces upon landing in a loaded jump are unknown. The difference in mechanical stress provided in each 

of these conditions is likely to contribute to differences in the rate and extent of fatigue and therefore 

RPA between conditions. However, despite the potential differences in fatigue between speed squats and 

squat jumps, in terms of specificity to sporting tasks it is considered more appropriate to use ballistic 

exercise tasks like jumping in order to assess sport related power output and RPA (12,80). 

Alemany et al. (64) also assessed the reliability of an RPA assessment of ballistic CMJs on four separate 

occasions with the use of a Smith machine, where vertical tracking of the barbell was able to be controlled. 
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The assessment involved 1 set of 30 repetitions with a load equivalent to a 30% 1RM. The coefficients of 

variation (CV) for CMJ mean power, peak power, mean velocity, peak velocity and work were 4.4%, 3.2%, 

3.4%, 3.4% and 5.7% respectively. ICCs for CMJ measures in session 1 to sessions 2, 3 and 4 ranged from 

0.73-0.97. No significant difference in ICCs from session 1-2 vs 1-4 were found, therefore high reliability 

for the test was established. This is the only study of RPA assessments to have used an absolute measure 

of reliability (CV), therefore little is known about the absolute reliability of RPA assessments. The relative 

lack of absolute measures of reliability mean that it is difficult to determine the magnitude of change 

required to be confident of a real change in RPA caused by training or injury. 

Patterson et al. (29) also investigated the reliability of a 2.5-minute RPA assessment involving a maximal 

CMJ performed every 2.5 seconds with a barbell load equivalent to 40% of the participant’s body weight. 

Patterson et al. (29) found a high degree of test-retest reliability for the average relative mean power for 

the whole test and for the average relative mean power for each 30 s segment of the test (ICC’s were 

0.955, 0.931, 0.958, 0.960, 0.900, 0.881, respectively).  Although CMJs using a free bar were performed in 

this assessment, the authors did provide some control of potential jump variables by including a 2.5 s 

pause between jumps and by also controlling countermovement depth to a 90˚ knee angle. Again, similar 

to Alemany et al. (64), Patterson et al. (29) did not provide a measure of the extent of fatigue or power 

decrement in this study, however in more recent research by Patterson et al. (62) a fatigue index was 

calculated in order to describe the power decrement more accurately. It is important to note that 

although the RPA assessment used by Patterson et al. (29) was found to be a reliable measure of anaerobic 

power and anaerobic capacity, anaerobic capacity over 4 seasons was not significantly correlated (r = -

0.35) with ski racing performance (62).  

Collectively the results of the six studies examining the reliability and/or validity of RPA assessments 

suggest that such assessments have adequate relative reliability, but little data exist for their absolute 
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reliability and validity.  This suggest that additional research needs to be performed to determine the most 

reliable and valid measures of RPA, especially for the quantification of fatigue indices. 

With regards to HVPT, future research should address the acute and chronic effects of a combination of 

different training variables, for example load, volume, interset rest time and also the chronic effect of 

using cluster sets. The acute or chronic effects of HVPT on the cardiorespiratory system is also an area 

requiring further research.  

5 Conclusions  

Considering the importance of RHIEs in many sports, there appears to be a relative lack of research on 

HVPT, the acute responses to this form of exercise and the chronic effect of this form of training on RPA 

and RHIEs.  

Although a number of different HVPT protocols have been described in the literature, prescription 

generally consisted of speed squats, CMJs or Squat Jumps for 2-3 sessions per week. Common loading 

protocols consisted of 30-40% 1RM for 10-20 repetitions of 3-5 working sets, with inter-set rest periods 

of between 2-3 minutes. When using HVPT with the weightlifting derivatives, loads are generally higher 

(~60-65% 1RM) and repetition ranges are slightly lower (~9 repetitions per set). Further longitudinal 

studies are required to establish training prescription guidelines for weightlifting exercises, including 

whether repetitions are to be done continuously or with brief rest periods between repetitions.  

Based on the somewhat limited literature, HVPT may be an effective training method in enhancing RPA, 

RHIEs, anaerobic power and capacity and aerobic performance. However, there is a lack of research on 

the chronic effect of HVPT in elite sporting cohorts with extensive training backgrounds and relatively high 

baseline levels of cardiorespiratory fitness and strength.  
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Although several assessments of RPA have demonstrated adequate reliability and/or validity, there is a 

relative lack of research on these assessments. Currently, the Kansas Squat Test may be suited to the 

training environment; however, the muscle actions used in this test may not be representative of ballistic 

sporting actions.  It still remains unclear whether RPA is a unique physical quality,  what constitutes the 

best way to measure or quantify RPA and the impact of RPA on sporting performance like RHIEs.  
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Fig 1 Flow chart of the article selection process 

 



Table 1 Risk of bias and quality rating of included longitudinal studies 

 PEDro criteria 
 

Study 1 2 3 4 5 6 7 8 9 10 11 Totals (10 
possible) 

Apanukul et al. (2015) (60) 
 

Yes 1 0 1 0 0 0 0 0 1 1 5 

Balsalobre-Fernandez et al. (2013) (61) 
 

No 0 0 0 0 0 0 0 0 0 1 1 

Bosco et al. (1994) (58) 
 

Yes 0 0 0 0 0 0 0 0 1 0 1 

Gonzalo-Skok et al. (2016) (50) 
 

Yes 1 0 1 0 0 0 1 1 1 1 6 

Mosey et al. (2011) (59) 
 

No 0 0 0 0 0 0 1 1 0 0 2 

Patterson et al. (2014) (29) 
 

Yes 0 0 0 0 0 0 1 0 0 1 2 

Patterson et al. (2019) (62) 
 

Yes 0 0 0 0 0 0 1 1 0 1 3 

Romero-Arenas et al. (2018) (63) Yes 1 0 1 0 0 1 1 1 1 0 6 
 

1 eligibility criteria specified, 2 random group allocation, 3 concealed allocation, 4 similar groups at baseline, 5 blinding of subjects, 6 blinding of coaches, 7 blinding of assessors, 8 85% of subjects received 1 key 
measurement, 9 intention to treat, 10 statistical significance reported for 1 key outcome, 11 point measures and measures of variability reported. 

 

 

 

 

 

 

 

 

 



Table 2 Risk of bias and quality rating of included cross-sectional studies 

Study 1.1 1.2 1.3 2.1 2.2 2.3 2.4 3.1 3.2 3.3 3.4 4.1 4.2 4.3 4.4 4.5 Score (%) 

Alemany et al. (2005) (64) 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 81% (L) 

Baker and Newton (2007) (16) 0 1 1 0 1 1 0 1 1 1 1 1 1 1 0 0 69% (L) 

Conchala et al. (2015) (67) 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 0 75% (L) 

Date et al. (2013) (66) 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 1 69% (L) 

Fry et al. (2014) (68) 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 1 81% (L) 

Garcia-Ramos et al. (2016) (69) 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 88% (L) 

Hatfield et al. (2006) (70) 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 69% (L) 

Hester et al. (2014) (71) 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 75% (L) 

Mackey et al. (2018) (72) 1 1 1 0 1 1 0 0 0 1 1 1 1 1 1 1 75% (L) 

Nunes et al. (2011) (73) 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 88% (L) 

Tufano et al. (2016) (74) 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 94% (L) 

Volek et al. (1997) (65) 
 

1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 0 75% (L) 

Method for assessing risk of bias: (1.1) study design is clearly stated; (1.2) the objectives/purpose of the study is clearly defined; (1.3) the design of the study adequately tests the hypothesis; (2.1) the criteria 
for the inclusion of subjects is clearly described; (2.2) the characteristics of the population is clearly described; (2.3) the study sample is representative of the population intended to the study; (2.4) a description 
of how the study size was arrived at is provided; (3.1) the testing methods are clearly described; (3.2) the measurement tools used are valid and reliable; (3.3) the statistical methods used are well described; 
(3.4) the statistical tests used to analyse the data are appropriate; (4.1) the results are well described; (4.2) the information provided in the paper is sufficient to allow a reader to make an unbiased assessment 
of the findings of the study; (4.3) confounding factors are identified; (4.4) sponsorships/conflicts of interest are acknowledged; (4.5) any limitations to the study are identified. Note: the risk of bias score for an 
article (given as a percentage) is calculated through the addition of the score from each criterion being met divided by the maximum possible score across all criteria (16), multiplied by 100. L low risk of bias 
(67–100%), S satisfactory risk of bias (34–66%), H high risk of bias (0–33%) 

 

 

 

 

 



Table 3 A summary of HVPT protocols and where reported, the acute responses to HVPT  

M male, F female, 1RM 1 repetition maximum, PT peak torque, RTD rate of torque development, La lactate, MaxMP maximum mean power, MaxPP maximum peak power, AvgMP average mean power, FI% fatigue 
index %, ACC240 angular acceleration at 240 deg∙s-2, ACC500 angular acceleration at 500 deg∙s-2 , Vmax maximal unloaded velocity, C cortisol, T testosterone, IGA immunoglobulin A, CMJs Counter Movement Jumps). 

Authors Participants Type Session per 
week/ No. of 

weeks 

Sets Repetitions/duration Load Inter-set rest Intra-set rest Measurement 
tool/s 

Response/Result 

Apanukul et al. 
(2015) (60) 

30 competitive M 
tennis players 

 

Speed Squat 2 sessions per 
week/ 8 weeks 

 

3 20 repetitions 30% 1RM 4 minutes 0   

Balsalobre-
Fernandez et al. 

(2013) (61) 
 

7 high -level M 
hurdlers 

Squat Jumps 2 sessions per 
week/10 weeks 

5 8 repetitions ~55% 1RM 3 minutes 0   

Bosco et al. 
(1994) (58) 

 

12 international Alpine 
Skiers 

Loaded and unloaded jumps (additional 
strength training-no aerobic training) 

 

3 sessions per 
week/ 20 weeks 

10 10-20 repetitions 20-50 kg     

Conchala et al. 
(2015) (67) 

 

17 resistance trained 
men 

Speed squat Single session 5 16 repetitions 40% 1RM 2 minutes 0 Biodex isokinetic 
dynamometer 

↓PT Post0 264±53 to 226±49 (N∙m) 
↓RTDpeak Post0, Post7, Post15 and Post30 (2005±405 to 

1516±406, 1753±450, 1770±420, 1735±348 N∙m∙s-1 
respectively) 

↓RTDnorm Post0 1710±311 to 1321±359 
 

Date et al. 
(2013) (66) 

 

10 resistance trained 
men 

Power clean Single session 
 

3 9 repetitions 70-75% 3RM 2 minutes 0 Lactate Plus 
analyser 

 

↑La to 7.43±2.94 mmol∙L-1 

↑La% 365.35±260.2 

Gonzalo-Skok 
et al. (2016) 

(50) 

22 M elite young 
basketball players 

Explosive Leg Press 2 sessions per 
week/ 6 weeks 

 

Week 1-3 = 1 
Week 4-6 = 2 

25 repetitions MaxP Load: 120.3 
± 22.1 kg 

3 minutes 20 s   

Hatfield et al. 
(2006) (70) 

 

8 recreationally active 
men 

Continuous CMJ Single session 4 12 repetitions 30% 1RM 2 minutes 0 PPS rotary encoder ↔MaxMP Set 1: 1160±121, Set 2: 1154±127, Set 3: 1139±131, 
Set 4: 1111±132 W 

↓AvgMP Set 1: 1095±125, Set 2: 1076±131, Set 3: 1049±128 
Set 4: 1037±119 W 

↑La 1.2±0.4 to 9.6±3.3 mmol∙L-1 
FI%- 5.29% 

 
Hester et al. 
(2014) (71) 

 

19 resistance trained 
men 

Speed squat Single session 5 16 repetitions 40% 1RM 2 minutes 0 Tendo rotary 
encoder 

↔ maxPP 1985-2045 W 
Within set FI% = 17.9-22.3% 

Between set FI% = 31.3% 
 

Mackey et al. 
(2018) (72) 

 

14 resistance trained 
men and 16 resistance 

trained women 

Speed squat Single session 5 16 repetitions 40% 1RM 2 minutes 0 Biodex isokinetic 
dynamometer 

↓Vmax Post0-Post30 (M: 491±9 to 481±16, 478±24, 477±22, 
480±17; F: 485±8 to 476±15, 480±12, 479±11, 479±11 deg∙s-1) 

 
 

Mosey (2011) 
(59) 

 
4 elite M rowers 

 
 

 
Continuous CMJs 

 
2 sessions per 
week/ 6 weeks 

 
3 

 
15 repetitions 

 
Progressed from 

30-40 kg 

 
3 minutes 

 
Progressed from 
10 s, 5 s and 0 s 

 

 
Gym Aware rotary 

encoder 

 
Mixed responses in individuals- no statistical analysis provided 

Nunes et al. 
(2011) (73) 

14 elite F basketball 
players 

 

Speed Bench Press, Speed Squat and 
Speed Biceps Curl 

Single session 9 (total sets) 10 repetitions 50% 1RM 3 minutes 0 Salimetrics-Salivary 
Testosterone 

Immunoassay kit 

Data not reported 
No difference between pre and post-training C 

Post session C trending lower than strength/hypertrophy 
scheme (p ≤ 0.08) 

No differences in T or IgA between lifting schemes 

Romero-Arenas 
et al. (2018) 

(63) 

29 healthy M Circuit- Speed bench, Repeat CMJs, Clean 
Pull, Cycle Sprint 

3 sessions per 
week/ 6 weeks 

Week 1-3 = 3 
Week 4-6 = 5 

10 seconds = 5-10 
repetitions 

Bench Press = 30% 
1RM 

Clean Pull = 60% 
1RM 

 

Circuit = 15 s or 
traditional = 90 s 

0   

Tufano et al. 
(2016) (74) 

 

12 strength trained M Speed squat Single session 3 12 repetitions 60% 1RM 2 minutes 0 AMTI force plate 
and Celesco 
tranducers 

 

↓AvgMP Set 1: 1181±83, Set 2: 1154±77, Set 3:1096±107 
Within set FI%: 8% 

1st-36th repetition FI%: 23% 
 

Volek et al. 
(1997) (65) 

14 recreationally 
active men 

Continuous CMJs Single session 5 10 repetitions 30% 1RM 2 minutes 0 PPS rotary encoder ↔maxMP (not analysed) Set 1: 1160, Set 2:1140, Set 3: 1145, 
Set 4: 1120, Set 5: 1090 W 

↑La 1.09±0.7 to 16.1±3.9 mmol∙L-1 



Table 4 The chronic effect of HVPT on RPA and other performance variables 

avg.rel.PP average relative peak power, avg.rel.MP average relative mean power, relPP relative peak power, MaxP maximal power, 1RM 1 repetition maximum, BW body weight, UHop unilateral hop, RSAm repeated 

sprint ability mean sprint time, RCODm repeated change of direction mean time, 15BJT 15 second repeated Bosco jump test, 30BJT 30 second repeated Bosco jump test, MAS maximal aerobic speed, Win. 30 s 

Wingate. 

 

 

Authors Participants RPA Power Strength COD Speed Repeated 
Speed 

Repeated COD Anaerobic 
Capacity 

Aerobic Power 

Apanukul et al. 
(2015) (60) 

 

30 competitive 
male tennis 

players 
 

Speed Squat avg.rel.PP 
(W/kg)- 51.3±2.5 to 

65.3±1.8 and 53±5.4 to 
60.9±4.3 

 

Speed Squat relPP 
(W/kg):64.8±3.9 to 81.3±5.4 and 

64.6±5 to 75.0±4.1 

 17.39±0.6 to 
16.11±0.68 and 
17.81±0.75 to 
16.45±0.37 s 

     

Balsalobre-
Fernandez et al. 

(2013) (61) 

7 high level M 
hurdlers 

 SJ flight time (ms): 580.2±48 to 
594.1±54 

MaxP %1RM: 56±4.4 to 63±6.5 

Half Squat 1RM 
(kg): 172.5±23.9 

to186.2±26.5 

 30-m sprint 
4.19±0.19 to 

4.13±0.16 

    

 
Bosco et al. 
(1994) (58) 

 
 
 
 
 

 
12 international 

Alpine Skiers 
 

  
Jump height BW (cm) - 34.6±3.8 

to 42.7±5.0 cm 
Jump height +20 kg (cm)- 
25.1±3.2 to 32.0±5.1 cm 
Jump height +1xBW (cm) 

10.1±2.6 to 15.7±2.4 
 

      
15BJT avg.rel.PP 

(W/kg)- 27.1±2.2 to 
30.5±3.2 

30BJT avg.rel.PP 
(W/kg)- 24.6±3.3 to 

28.9±3.1 
 

 

Gonzalo-Skok et 
al. (2016) (50) 

22 male elite 
young basketball 

players 
 

 UHop (cm)- 169.1±16.8 and 
170.4±16.6 to 180.9±14.4 and 

182.7±12.8 
 

   RSAm (s)- 
7.52±0.23 to 

7.4±0.23 

RCODm (s)- 
6.86±0.25 to 

6.72±0.23 

  

 
Romero-Arenas 

et al. (2017) 
(63) 

 
29 healthy 

males 

 
 

 
Jump height BW (cm)- 32.3±5.8 

to 34.3±4.4 
Clean pull (W)- 1522.8 ± 208.4 

to 1710.4±273.9 
Win. MaxP (W)- 811.4±121 to 

883.7±134.4 

 
Clean Pull (kg)- 

58.5±11.2 to 
63.4±9.3 

Bench Press (kg): 
72.4±13.8 to 

74.5±12.2 
 

     
Win. avgP (W)- 
662.9±85.9 to 

706.9±96.4 

 
MAS (km∙h-1)- 

17.5±0.8 to 
18.2±0.9 



Table 5 The different assessments proposed for assessing RPA, including reliability and validity results where reported 

CMJ countermovement jump, 1RM 1 repetition maximum, avgMP average mean power, avgPP average peak power, avgMvel average mean velocity, avgPvel average peak velocity, avg.rel.MP average relative mean 

power, CV coefficient of variation, ICC inter-class correlation, relMP relative mean power, FI% fatigue index %, WAnT wingate anaerobic threshold,   MP%loss mean power % loss, %avg.rel.MP % average relative mean 

power. 

Authors Participants Type Equipment Load Set x 
repetitions/ 

duration 

Depth Maximal 
Power 

reference 
value 

Pacing 
strategy 

Assessment 
tool/s 

Data analysis 
procedure 

Reliability Validity Results (%) 

Alemany et 
al. (2005) 

(64) 
 

10 healthy 
male soldiers 

Continuous CMJ Smith 
Machine 

30 % 1RM 
parallel squat 

1 x 30 Self-
selected 

  Ballistic 
Measurement 

System 

avgMP avgPP 
avgMvel 

avgPvel work 
 

CV’s = 3.2-
5.7% 

ICC’s = 
0.73-0.97 

 

 ̴↓47.8 avgMP 

Apanukul 
et al. 

(2015) (60) 

30 
competitive 
male tennis 

players 
 

Continuous CMJ 
(Alemany et al., 
2005 protocol) 

Smith 
Machine 

30 % 1RM 
parallel squat 

1 x 30 Self-
selected 

  Fitech Force 
plate 

avg.rel.MP    

Baker and 
Newton 

(2007) (16) 

15 
professional 
rugby league 

players 
 

Continuous CMJ Smith 
Machine 

60 kg (= group 
avg. of 35% 1RM) 

1 x 10 Self-
selected 

  PPS velocity 
transducer 

relMP 
FI% 

  ↓6.88 relMP 

Fry et al. 
(2014) (68) 

14 resistance 
trained men 

 

Concentric 
Speed Squats 

Smith 
Machine 

70% 1RM System 
mass 

1 x 15 Posterior 
thigh 

parallel to 
ground 

 Squat 
every 6 
seconds 

Fitrodyne 
velocity 

transducer 
 

relMP 
avgMP  

 FI% 

ICC’s = 
0.754-
0.937 

WAnT r = 
0.752-0.775 

(FI% r = 
0.174) 

 

↓20.4 ± 13.9 
FI% 

Garcia-
Ramos et 
al. (2016) 

(69) 
 

16 active-duty 
soldiers 

Concentric 
Speed Squats 

Smith 
Machine 

~52% 1RM and 
~67% 1RM 

1 x ~19-20        
1 x ~14-18 

90˚ knee 
angle 

 Squat 
every 3 
seconds 

T-Force System 
velocity 

transducer 
 

MP%loss   ↓8%: 6 and 4 
repetitions,  

↓15%: 12 and 
8 repetitions 
respectively 

  

Patterson 
et al. 

(2014) (29) 

13 well 
trained men 

 

Discontinuous 
CMJ 

Barbell 40% of body 
weight 

1 x 2.5 
minutes 

90˚ knee 
angle 

Assessed 
and 

Utilised 

Jump 
every 

2.5 
seconds 

 

SPSport Force 
plate 

avg.rel.MP%a
vg.rel.MP 

ICC’s = 
0.881-
0.987 

 

 ̴↓20.9  
avg.rel.MP 

Patterson 
et al. 

(2019) (62) 

10 elite 
female Alpine 

ski racers 

Discontinuous 
CMJ 

Barbell 20% of body 
weight 

1 x 2 minutes 90˚ knee 
angle 

Assessed 
and 

Utilised 

Jump 
every 

2.5 
seconds 

 

SPSport Force 
plate 

relMP 
Avg.rel.MPFI

%  

  14.8-17.3 FI% 
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