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Abstract

We studied a group of cooperative agents’ behavior when there are conflicts
between their actions occurring in the environment. All the agents try to achieve
a common goal but if their needed resources are scarce, it will results in system
conflicts. We make use of deep reinforcement learning (DRL) to make agents in
the distributed system learn how to avoid conflicts automatically without any prior
knowledge on overall cooperation. The DRL is achieved by training a deep neu-
ral network that simulates the Q function of reinforcement learning, and the deep
neural network that simulates Q function is termed as DQN. Our goal is to opti-
mize the system’s overall performance which is measured by agents’ total reward in
one episode. In this paper,we conducted experiments by comparing system’s per-
formances under different environmental settings, including agent numbers, task
density, conflict density and other neural network parameters, various types of
DQN design and so on. We also analyse agents’ learning behaviors from different
perspectives. In this paper, we also introduced specific experimental implementa-
tion especially the use of deep learning framework – Keras. In our experiments, the
results can prove that even though the self-autonomous agents are doing tasks in a
distributed environment and with decentralized control, they can still work coop-
eratively and optimize the overall performance with an appropriate DQN deisgn.
After sufficient training episodes, the deep Q-network can converge to a stable state
even though the environment is dynamic, which also denotes the reasonability and
success of our simulation environment’s design.
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1 INTRODUCTION

1 Introduction

Multi-agent system ( MAS )[18], which is defined as a system that comprises two or more
agents, which cooperate with each other while achieving local goals[1], is an extending
field of classical fields like game theory and decentralized control with modern approaches
like machine learning[2]. The word ”agent” has many meanings as well as many forms,
but we generally discuss about those parts with autonomous and intelligent properties in
a system. MAS is a more natural alternative to build intelligent systems, and thus it gives
a solution to the current complex real world problems that need to be solved. MAS is
also a more realistic abstraction model of our real world comparing to single agent model
which only study individual behaviors. So single agent system is not suitable for study-
ing communication, interaction and interference among different parts of a system. The
emergence of MAS study comes from growing computational need, because modeling and
computation tasks are becoming much more complex as the size continues to increase,
and thus it is laborious and difficult to handle using centralized methods[3] or approaches
for single agent system. There are a wide range of real world applications deriving from
the study of MAS, for example, distributed intelligent electronic devices, distributed en-
ergy resources, cloud computing, Internet of Things (IoT), distributed control, resource
management, collaborative decision support systems, data mining, etc. Furthermore, the
tendency of using MAS to develop applications is increasing every year due to the world’s
explosive growth of data.

However, with all these benefits of MAS, there are a lot of unsolved problems and are
generally even more complicated than the similar cases in a single agent system. This is
mainly because of the complex nature of MAS. On the other hand, the current technology
is still far from achieving many commercial-product-level applications. Furthermore it’s
even harder than a single agent system when implementing a multi-agent environment
using same algorithm in a program. This is because asynchronization and synchronization
among agent objects for computing on a variable should be carefully considered in order
to obtain the correct simulation environment. Generally speaking, there are two types
of control approaches for MAS: centralized and decentralized control [4]. By having
centralized control, the global information of the environment has been used to calculate
the path, trajectory or position of the agents before all [5, 6, 7, 8, 9, 10]. However, in
centralized control the computation will become high since there is only one centralized
processor that control over all of the system. That’s why decentralized control is needed in
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1 INTRODUCTION

order to reduce computing load. Decentralized control has a good scalability, adaptivity
and flexibility in a complex system. In the decentralized control strategy, each part works
freely utilizing its local information so removing or adding a new part makes no influence
on other parts’ self-control. However, in decentralized control, the main problem is the
task has to be distributed in a robust an efficient manner to ensure that every agent is able
to perform its individual task cooperatively with another agents to achieve certain target
[4]. However, no matter it’s centralized or decentralized control to design a MAS, system
conflict is a common problem that affects the whole system’s performance and efficiency
significantly. In a real MAS application, which usually possess a large amount of resources,
system conflicts can cause a huge loss if there is no handling for this, so we conducted
this research mainly focusing on how to reduce system conflict in MAS. In multi-agent
environments, when agents work cooperatively, they will select some policies or strategies
to eliminate conflicts among agents. Such strategies include negotiation, arbitration,
and voting. In many reality situations, the system common shared resource is often not
allocated to every agent or even sparser comparing to agents’ requests. For example, when
a large amount of http requests are all sent to a server, there will be serious bandwidth
congestion, which largely damage the network’s performance. So in such systems, conflicts
are inevitably to happen by reason of the fact that system’s common resource is shared
among agents, and especially when agents are under decentralized control, each agent
tries to optimize its own performance, the problem is even worse. If there is no proper
regulation, it’s very hard for the whole system to work as expected.
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2 RELATED WORK

2 Related Work

As is mentioned above, system conflict can not only reduce efficiency, but also can cause
huge economic losses in a reality application. Many researchers are studying how to reduce
conflicts in a large distributed system and their study mainly focus on path-planning
strategy or negotiation. Jingjin Yu et al. [11] studied the problem of optimal multi-robot
path planning on graphs focusing on structural and computational complexity issues.
Wolfgang et al. [12] put forward a method named Multi-Agent Path-Finding(MAPF) to
reduce conflicts in MAS. Their approach is based on creating a search forest (CBS-TA)
on demand and focuses on path planning dynamically according to CBS-TA and got
complete and optimal results.

Path-planning method is a good way to solve conflict problems, however, such ap-
proaches are primarily implemented in a supervised learning scenario, which require
large efforts on algorithm design mathematically and labeled data collecting. However,
most MAS environments have countless states and is hard to label training data. Even
those simple as a Markov decision process (MDP) environment can have extremely large
amounts of scenarios that is not easy to get the correct path option. In a complicated and
dynamic MAS environment, reinforcement learning seems to be a more practical solution
because it is aimed to implement human-level control in a real world [13]. Recent years
have seen more research on multi-agent reinforcement learning (MARL) with good results.
However, natural extension from single agent environment’s methods to MARL has been
proven failure [14, 15] , which is mainly due to the high-dimensional state-action space
that has to be explored by agents.

Recently, deep Q-learning has been applied to multi-agent systems to achieve co-
operation and coordination behaviors. For example, Elhadji Amadou Oury Diallo and
Toshiharu Sugawara[16] proposed a n fully end-to-end learning method to study how to
make agents minimize their encounters with opponents by strategically forming a group
and by combining their knowledge of the environment to maximize the probability of
avoiding opponents and obstacles by using Deep Q-network (DQN). Yuki Miyashita et
al. [17] researched on how agents with their independent DQN cooperate in a distributed
system.

However, these research are all facing such a common problem in MARL that because
other agents are also part of the environment to some agent, it’s not easy to balance the
environmental dynamics and Markov assumptions required for the convergence of Q-
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2 RELATED WORK

learning algorithms such as DQN. A number of algorithms have been proposed that help
address this issue, e.g., LOLA, RIAL, and Q-MIX. At a high level, these algorithms take
into account the actions of the other agents during RL training, usually by being partially
centralized for training, but decentralized during execution. Implementation wise, this
means that the policy networks may have dependencies on each other[25]. Similarly,
policy-gradient algorithms like A3C and PPO may struggle in multi-agent settings, as the
credit assignment problem becomes increasingly harder with more agents. Therefore, in
spite of the current success in some MARL research, there are still a alot more waiting to
be explored in this field.
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3 Purpose of this research

In this paper, we intended to study how to reduce the conflicts as many as possible by a
group of autonomous and cooperative agents’ learning as well as what kind of cooperative
behaviors these agents can learn in a distributed system. At the same time, we aim to
implement such ideas in a fully automatic way. There is no human interfere in the process
where agents executing tasks in the system. Our goal is to train agents to learn a stable
conflict-avoidance policy in a dynamic environment by themselves. Based on previous
research, we primarily use DQN as our baseline algorithm to study how agents react
when conflicts occur so as to coordinate with other agents and achieve cooperation gooals
in the system. We also want to understand why and how agents can learn a good policy
by observing the environment from a deeper perspective. We also want to investigate
how deep reinforcement learning and convolutional neural network help agents find a
stable pattern and learn strategies online in a highly dynamic environment. The study
also sought explanation as to why different policies are learned when conflict density is
changed. Finally, we want to examine how DQN parameters affect agents learning ability
and attempt to investigate how to obtain the finest-tuning set of parameters.
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4 DQN in multi-agent system and the implementa-
tion

In this chapter, we will go to more details about DQN and multi-agent system’s imple-
mentation, and how to abstract the real world into a model. We will also introduce the
difficulties and challenges in this research.

4.1 Multi-agent reinforcement learning

As is mentioned above, MAS is a complex and dynamic system which makes it difficult
or even impossible to solve tasks with preprogrammed methods. Moreover, in an envi-
ronment that changes over time, a hardwired behavior may become inappropriate. So
it’s more natural to make agents discover a solution on their own using learning. In ad-
dition to benefits owing to the distributed nature of the multi-agent solution, such as the
speed-up is made possible by parallel computation, multiple RL agents can also harness
new benefits from sharing experience, e.g., by communication, teaching, or imitation[19].
Even so, RL still has more advantage over other methods for the problem of dynamic
environment, and together with the simplicity and generality of the setting, this makes
reinforcement learning attractive also multi-agent system.

A reinforcement learning (RL) agent learns by interacting with its dynamic envi-
ronment [20]. Even though RL’s feedback is less informative than supervised learning
methods, it’s more informative than unsupervised methods. So in this case where super-
vised learning cannot be applied, RL is a better solution to such problems. Reinforcement
learning has two large categories considering the environment state: continuous and dis-
crete reinforcement learning. In this paper, we see the problem as discrete reinforcement
learning problem. Starting from single agent case, the concrete RL procedure is : at each
time step, the agent perceives the state of the environment and takes an action, which
causes the environment to transit into a new state. A scalar reward signal evaluates the
quality of each transition, and the agent’s goal is to maximize the cumulative reward
during the whole process.

A single agent RL process can be modeled as the Markov decision process(MDP).
A MDP is a discrete time stochastic control process, which provides a math framework
for modeling many real world decision situations. A finite Markov decision process is a
tuple ⟨S,A, f, ρ⟩, where S is the finite set of environment states, A is the finite set of
agent actions, f : S × A × S → [ 0, 1] is the state transition probability function, and
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ρ : S × A × S → R is the reward function. The behavior of the agent is described by
its policy, which specifies how the agent chooses its actions given the state. So the goal
of reinforcement learning to make agents take actions with respect to different states in
the process of interacting with environment in order to maximize the expected discounted
return till the terminal state. The expected discounted return R from time step t is
defined as :

Rh(s) = E{
T∑

t′=t

γt′−trt′+1|s0 = s, h}

h : policy

T : assume total time step is T

γ : discount rate

r : reward for each transition

s, s0 : state

Multi-agent reinforcement learning (MARL) can be extended from the single agent
reinforcement learning. To a certain agent, its environment includes both the non-agent
part and other agents. And thus, the formula of expected cumulative reward R for MARL
is rewrite as:

Rh
i(s) = E{

T∑
t′=t

γt′−tri,t′+1|s0 = s, h}

The core concept of RL is Q function which is used to estimate the optimal Q-value of
each state and the value of action for a specific state, and thus this algorithm is named
as Q-learning. The optimal Q-value of a state s and action a is the maximum discounted
cumulative reward that the agent can receive after taking action a in state s:

Q∗(s, a) = maxπE{
T∑

t′=t

γt′−trt′+1|s0 = s, a0 = a, h}
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Similar to the extension on the formula of R from single agent to multi-agent, Q function
in multi-agent environment is rewrited as :

Q∗
i(s, a) = maxπE{

T∑
t′=t

γt′−tri,t′+1|s0 = s, a0 = a, h}

As one RL algorithm, Q-learning is a method for estimating the optimal Q∗ that does
not require any knowledge of the transition model. In Q-learning the agents repeatedly
interacts with the environment and tries to estimate Q∗ by trial and error. There are two
types of solutions for Q function : Monte-Carlo and Temporal Difference.

However, with all these benefits of RL in MAS, the difficulty cannot be ignored as
well. This is due to the computation dimensionality of Q values which has exponential
growth of the discrete state-action space in the number of state and action variables (di-
mensions). Because basic RL algorithms like Q-learning estimate values for each possible
discrete state or state-action pair, this growth leads directly to an exponential increase
of their computational complexity. The complexity of MARL is exponential also in the
number of agents, because each agent adds its own variables to the joint state-action
space. This makes the curse of dimensionality more severe in MARL than in single-agent
RL [19]. So this is where deep Q-network is introduced, because we can get estimated Q

values from a deep neural network so that the optimal state-action value can be obtained.

4.2 Deep Q-network

As is talked above, if we want to get the Q values from a high-dimension RL model, using
deep neural network is a good choice. Deep learning has made it possible to extract high-
level features from raw sensory data, leading to breakthroughs in computer vision and
speech recognition[21, 22, 23]. DQN is a model-free approach to Reinforcement Learning
based on Deep Neural Networks for estimating the Q-function over high-dimensional and
complex state space. DQN is parameterized by a set of network weights θ , which can be
updated by a variety of RL algorithms. The parameters θ are learned by gradient descent
or other optimization methods which iteratively minimizes the loss function L(θ) using
samples (s, a, r, s′).

At time t, to get optimal Q-value approximation from the network, parameters θi,t

in the network of agent i are updated to minimize the loss function Li,t(θi,t).
There are also many choices for loss functions, and each loss function is optimal for

different problems. The most commonly used is mean square loss function, and in this
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problem, its form is defined as:

Li,t(θi,t) = E(si,ai,ri,s′i)
[(ri + γmax

a′i

Qi(s
′
i, a

′
i; θ

−
i,t)−Qi(si, ai; θi,t))

2],

While in our experiment, we use the Huber loss. The Huber loss acts like the mean
squared error when the error is small, but like the mean absolute error when the error is
large. Note that in this paper we use the Double DQN, target network parameters θ−i,t

are copied from θ periodically to stabilize learning for deep Q-network; The algorithm is
shown as Fig1.

Figure 1: DQN with experience replay
https://www.cs.toronto.edu/ vmnih/docs/dqn.pdf
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4.3 Convolutional neural network

Neural Network has a long history in studying artificial intelligence and is still a cutting-
edge field in AI, mainly because of the rise of deep neural network. In theory, a deep
neural network can approximate any function as long as more layers are added. Sample
data’s different local features are extracted when they passing through different layers
of a DNN. Convolutional Neural Network(CNN) is such a neural network that points at
input samples with spacial local features, and often used in image recognition.

In this paper, we mainly adopt CNN for the main part of the structure of DQN, but
the option is flexible, depending on specific problem. And there are also some researches
are using LSTM as the main layer and get good results[24]. But there are various benefits
that make CNN suitable for such dynamic environment. One reason is that the model
environment is a grid world which can be seen as an image, and the input matrices can
be seen as the input pixels similar to image processing while using CNN.

Figure 2: An example showing data flow in this model

In addition to the convolutional layers that we have just described, convolutional
neural networks accompany the convolution layer with pooling layers, which are usually
applied immediately after the convolutional layers. There are several ways to condense
the information, the commonly used methods are max-pooling, which as a value keeps
the maximum value of those that were in the input window or use the average value in
the input window.

12
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Figure 3: max-pooling
https://images.app.goo.gl/MYYz9xGURfb7sGoj7

In theory, a deep neural network can approximate any function as long as more
layers are added. Sample data’s different local features are extracted when they passing
through different layers of a neural network. Convolutional Neural Network(CNN) is
such a neural network that points at input samples with spacial local features, and often
used in image recognition, recommender systems and natural language processing. In
this problem, the input of states is actually a batch of two dimensional matrix, and the
nature of this problem is to let neural network recognize different patterns given the
environment matrices, therefore it can be seen as an image so this is actually an implicit
image classification problem. So CNN approaches can be extended naturally to this
problem.

4.4 Implementation by Tensorflow and Keras

There are various open source deep learning frameworks for building neural network in
an easier way. The popular ones like Keras, Pytorch, Tensorflow, Theano, Caffe, MXNet
are all sharing their own nice features. Among them, Keras is a higher level framework
that makes user think less about how backend is implemented and thus focus more on
the algorithm itself. Keras also supports backends like Tensorflow, CNTK and Theano.

In the experiment for our research, we use Keras 2.2.4 to implement our experiment
neural network structure, and Tensorflow as backend.

There are some advantages of using Keras comparing other frameworks:

• Keras models can be developed with a range of different deep learning backends,
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and can also be trained on a wide range of different hardware platforms beyond
CPUs.

• Keras has built-in support for multi-GPU data parallelism that can speed up com-
putation to a large extent.

• Keras is noot only easy to use, but also easy to change model into products.

• Keras is backed by key companies in the deep learning ecosystem like Google, Mi-
crosoft, NVIDIA and AWS.

There is one thing to note that it’s very important to make sure what the input tensor’s
dimension is. In our problem, the input tensor is a 4 dimensional array with the shape
(batch, height, width, channel).

• batch: number of samples from replay memory.

• height: the grid world’s height size.

• width: the grid world’s width size.

• channel: borrowing the concept of image processing, which in our problem is matrix
number representing different observing environmental information.

14
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5 Problem Formulation
5.1 Model description

The problem is set in a N ×N grid world (or game board), which could be described by
the Fig 5. Emoji shape represents agents, apple shape represent tasks, the centered dark
square represents the destination in this environment, which agents should transport a
task to. Around the dark destination, there are four yellowish squares representing access
points or waiting zones which means when an agent carrying a task arrives at such points
and choose the action to execute taks can successfully execute tasks and get a score. We
numbered each access point for later discussion, and each access point is numbered as Fig
4.

Figure 4: access points number

This model can be described as a game with the following rules:

• At the beginning of game, it’s initialized as that agents and tasks are randomly
placed

• The destination’s position is fixed throughout game ( scarce resource)

• There are four access points(waiting zone) around the destination, any agent who
arrives at such place is eligible to score(put ball at the Goal), but at any time step,
at most one agent can score (use the resource), others who are also eligible can only
wait or leave

• Each agent can only carry no more than one task while moving on the board

• Agents can only observe its surrounding area’s information within a certain range

15



5 PROBLEM FORMULATION

• Agents know the position of the destination and can observe the destination’s sur-
rounding information within a specific range

• Agents execute tasks with a certain amounts of steps. When step count is larger than
the limit, an episode terminates, and another episode begins, and the environment
is randomly initialized again.

• Previous episodes are experience and stored in agents’ separate memories. Agents
use such experience to take actions in a new episode.

• Purpose of this game is to score as many as the agents can (agents work coopera-
tively to maximize total reward)

Figure 5: model environment demo
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5 PROBLEM FORMULATION

From a mathematical perspective, the whole environment for this problem can be
defined as tuple ⟨I,m,N, {Ai}, {Ωi}⟩, where I = {1, · · · , n} is a set of finite number of
agents, m is the number of tasks, N is the edge size of the environment, Ai is the action
set of agent i, {Ai} denotes all the agents’ action set in the environment, and Ωi is the
observation space of agent i.

In our model, all the agents are independent and self-autonomous with its own Deep
Q-network, so we don’t take joint action into account, for it is unnecessary and inducing
unnecessary complexities. The cooperative behavior is represented by reward function.
In later part of this paper, we will introduce more details on this reward scheme . Because
the grid world environment is a discrete reinforcement learning model, so we introduce
discrete time t = 0,1,2,3,… as discrete execution steps which is also compatible with MDP.

Action : We define the action to “collect a task” as when an agent without any
tasks(in the figure represented as apple) in hand (empty agents) arrives at the cell within
which an apple is located in. Similarly we define the action to “execute the task (take
an apple to the destination)” as when an agent who is carrying an apple in hand (non-
empty) arrives at the access points. The possible actions of an agent can be modeled as
UP, DOWN, LEFT, RIGHT.

Observation : each agent has only a limited local view (see Fig 6) around itself.
More specifically, the local observation includes tasks’ positions. However,the position of
the destination is treated as global knowledge as well as the all the agents’ locations. Such
setting can help agents focus on collecting tasks when it’s empty and after it has collected
one task, it can head to the destination to execute task and try to avoid conflicts.

5.1.1 Reward scheme

In reinforcement learning, how to design a reward to each state is the key to help agents
learn correct behavior. In our experiment, the reward is set as below:

At each step:

• if agent moves to an empty cell, then it gets negative reward r = −0.001 ;

• if agent carrying a task moves to a cell with a task in it, it will ignore the task,
r = 0;

• if agent carrying a task moves to the waiting zone, and is able to successfully execute
it, then it will get a reward r = 1.0

• if agent turns into waiting status, then it will get a reward r = −0.005

17
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Figure 6: partial observation 6

As we can see from the above setting, when agents turn into waiting status, they can get
a relatively larger punishment (negative reward). This is because we want to reduce the
waiting time as well as reduce the cases when some agent just occupy the access point
but do nothing, which results in deadlock on resource. So the longer one agent chooses
to wait, the more negative it will get which is incompatible with DQN’s optimization.

5.1.2 Conflict case

To simplify the problem, we primarily consider such scenarios as the main conflict: when
more than one agent reach the access points, only one can successfully execute the task
while others can choose either to wait or leave (gaining different rewards). And if agents
choose to wait, then the access point is seen as waiting zone. The number of agents in
the waiting zone is seen as the conflict count.

For example, Fig 7 is one of the steps that 3 agents with tasks are trying to use the
common resource at the same time. But the next step, shown as Fig 8 shows that only
one agent successfully executed the task (the agent at I access point)

18
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Figure 7: conflict occurs Figure 8: different choices to solve conflict
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6 Simulation Model

It’s flexible when designing DQN architecture. In our problem, we have two kinds of
input matrices with different dimensions, so we will use two input layers with different
dimensions as input branches. Then concatenate two intermediate results, and input it
to the next layer. In the end, the neural network output 4 Q-values, and agents adopt
the action with the largest Q-value to decide next step’s action.

6.1 DQN architecture

The specific network architecture is shown as Fig 9. In each branch, input matrices
representing observations of one agent both follow the same type of layers with different
parameters. They first enter 2 convolutional layers, then down-grade the dimension to a
vector, and enter dense layer. Two vectors from the previous dense layers are concatenated
and then enter another dense layer to get the final output – 4 scalar Q-values evaluating
each action.

We used two convolutional layers for the input based on the nature of the environ-
ment. Two convolutional layers can already extract spatial features well based on previous
researches, and in our problem, not too many layers can also avoid overfitting.

When combining two kinds of intermediate results with different dimensions, we
adopted direct concatenation of these two vectors. Same as DQN structure design, the
combination approach is also flexible, and the only difference among these methods is the
neural network parameters.
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6 SIMULATION MODEL

Figure 9: DQN architecture
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6.2 Replay memory

In reinforcement learning, the agent observes a stream of experiences and uses each expe-
rience to update its internal beliefs. For example, an experience could be a tuple of (state,
action, reward, next state), and the agent could use each experience to update its Q func-
tion. In the earlier stage of experiment, we also did a trial using Prioritized Experience
Replay [26], this method differs from traditional ones because it considers the significance
of a transition experience by assigning a weight value to that transition. It shows a much
better result in their experiment but in our problem, the improvement is not very large, so
in this experiment, we use DDQN with traditional experience replay, in which experience
transitions were uniformly sampled from a replay memory, and also has a good effect to
avoid overfitting. Agent i stores the experienced data ci,t = (si,t, ai,t, ri,t, si,t+1) into its
own memory Di,t−1 = {ci,t−d, · · · , ci,t−1}, where d > 0 is memory capacity, at t steps. The
basic workflow is shown in Fig 10

Figure 10: Experience replay

6.3 Epsilon decay

Balancing the ratio of exploration/exploitation is a great challenge in reinforcement learn-
ing (RL) that has a great bias on learning time and the quality of learned policies. In this
paper, we adopt ϵ exponential decay by episode to optimize learning performance. At the
beginning of the training process, the ϵ value is large so that agents work almost randomly

22



6 SIMULATION MODEL

and can gather as many experience as they can, while in the later part of training agents
mainly make use of their experience because the ϵ value now is very small.

6.4 Optimization

Optimizers update the weight parameters to minimize the loss function. The commonly
used optimizers for deep learning are Stochastic Gradient Descent, RMSProp, Adam,
Batch Gradient Descent etc. Many DQN related researches are using RMSprop and got
fairly good result. But in our problem, we adopt Adam optimizer in training. Adam is
an algorithm for first-order gradient-based optimization of stochastic objective functions,
based on adaptive estimates of lower-order moments. The method is straightforward to
implement, is computationally efficient, has little memory requirements, and thus this is
suitable for minimizing the loss function of our problem.

23



7 EXPERIMENT AND ANALYSIS

7 Experiment and Analysis

We primarily conducted two types of experiments with different conflict density in the
environment and found that agents in different environment have learned different policies.

7.1 Experiment Data and Parameter

We compared agents’ behavior in two types of environment. Agents in both environment
are both using the same DQN architecture. One is a sparse environment where fewer
conflicts happen.

7.1.1 Sparse environment

Details are shown in Table 1 Sparse environment has fewer agents in a larger grid world.
So in such an environment, agents have more opportunities to get a score with fewer
obstacles in the way.

Table 1: agent parameter:sparse environment

parameter value
(height, width) (20,20)
agent number 6
task number 100

episodes 5000
step per episode 1000

steps update Ttrain 1000
ε decay rate γε 0.9992 (max:1, min:0.1)

Discount rate γQ 0.95
Adam learning rate η 0.0001
replay memory size 10000

mini batch size 64
θ−t update step Tcopy 100

7.1.2 Conflict-prone environment

We set more agents in a smaller grid world, so in such environment, on the one hand,
each agent wants to get more reward for itself, while on the other hand, such individual
purpose would result in more conlicts among agents who all want to access to the common
resource. The specific setting is shown as Table 2.
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7 EXPERIMENT AND ANALYSIS

Table 2: agent parameter: conflict-prone environment

parameter value
(height, width) (10,10)
agent number 10
task number 70

episodes 5000
step per episode 200

steps update Ttrain 1000
ε decay rate γε 0.9992 (max:1, min:0.1)

Discount rate γQ 0.95
Adam learning rate η 0.0001
replay memory size 10000

mini batch size 64
θ−t update step Tcopy 100

7.2 Experiment Result Analysis

For both environment, we did 10 independent experiments separately and the following
shows the average results on these 10 experiments.

Fig 11 shows at the almost end the game (1000 steps in total), most tasks have
been executed. Fig 12 shows how total reward is changing by training in the sparse

Figure 11: An example showing the end of the game

environment. And the corresponding loss is shown by Fig 13. Fig ?? shows the conflict
rate (defined as conflict count divided by finished task number) changing by episode.

As we can see from the results, in later part of training, total reward can almost
reach the highest value which means all the tasks in the environment have been executed
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7 EXPERIMENT AND ANALYSIS

Figure 12: Total reward of sparse environment

Figure 13: Loss of sparse environment
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7 EXPERIMENT AND ANALYSIS

Figure 14: conflict rate of sparse environment

successfully. At the same time, loss value is also turning flat in later episodes while
training. At the beginning, loss value is increasing, which makes sense that at early
stages, agents are behaving almost randomly, which largely incompatible with the target
network.

27



7 EXPERIMENT AND ANALYSIS

Next is a summary of different agents choosing different access points when execute
their tasks. As we can see from Fig 15, Fig 16, Fig 17, Fig 18 that even though the ϵ

is largely different, there is always clear difference on position choices among agents in a
certain episode.

Figure 15: Agent’s preference on access point, episode=100

Figure 16: Agent’s preference on access point, episode=1000
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7 EXPERIMENT AND ANALYSIS

Figure 17: Agent’s preference on access point, episode=4000

Figure 18: Agent’s preference on access point, episode=5000
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7 EXPERIMENT AND ANALYSIS

However, if we see all the agents as a whole, there is no big difference on access points
choices, see Fig 19

Figure 19: All agents’ preference on access point, episode=5000

The following graph Fig 20 shows at what step tasks are executed the most. We can
see from this figure that agents can finish almost all the tasks within about 500 steps in
an episode.

Figure 20: Step distribution of task execution, N=20
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7 EXPERIMENT AND ANALYSIS

In the conflict-prone environment, when N = 10, agent number is 10, total reward
plot is similar to the sparse environment, see Fig 21

Figure 21: Total reward, N=10

However, the loss function varies from the sparse case. Although the loss reaches to
a relatively flat value in the end, the value is relatively higher than the beginning. This
might be resulted from the environmental random seed that initialize neural network’
parameters in an inappropriate starting value. While at the same time, comparing to the
counterpart of sparse environment, the convergent loss value is higher in conflict-prone
environment, mainly because more conflicts make agents easier to change the policy. Fig
22

Meanwhile, the individual accessing frequency and step distribution of executing
tasks are similar to the sparse case, see Fig 24 and Fig 25, however, the total access
frequency is also a little different from the sparse system, as you can see that there is a
clear frequency different between No.1 and No.3 access points. See Fig 23
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Figure 22: Loss, N=10

Figure 23: Overall access points preference, N=10
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Figure 24: individual access points preference, N=10

Figure 25: Step distribution of task execution, N=10

33



8 CONCLUSION

8 Conclusion

By conducting two kinds of experiments to compare the performance with different con-
flict density, we show that agents can execute the task well and even can obtain the
highest score in the game, which means they have learned an effective policy and achieve
cooperation. Aside from that, some interesting findings are listed below.

• Agents prefer a certain access point when executes its own task, and choose a specific
direction to move away;

• when there is conflict happening, agents prefer to leave the access points and move to
the cell next to access points rather than simply waiting to execute. Such behavior
means that they have learned a policy to avoid conflicts.

• After agents collect a task, they can automatically find the shortest path to the
access points.
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