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Chapter 1  

Introduction 

1.1 Image compression 

   Humans usually use the eyes to observe and recognize the world. Related research shows 

that external information that human vision receives accounts for 83% of senses. In 

addition, being the direct projection of the real world in human eyes, images can also be 

recorded and transmitted in real media by being stored on some mediums. From the early 

manual painting, to the later film, to the digital images stored in electronic devices in 

modern society, the storage media of the images are constantly improved and updated, and 

we can record the world more and more accurately.  

   Firstly, we will introduce the basic process of image compression. The image 

compression consists encoder and decoder, where encoder compresses the uncompressed 

original images, and generates the bitstream for storage and transmission. The decoder 

reconstructs the bitstream into images. We mainly introduce the basic concepts and 

principles in image compression. The core of image compression is to reduce redundant 

information in the data, so the process of image compression is to make full use of spatial 

correlation to reduce redundant information and reduce the storage space of the image. 

1.1.1 Spatial Correlation 

   The information of the adjacent points of the image in the two-dimensional space has a 

strong correlation. Therefore, before doing quantization and entropy coding, we need to 

consider how to fully reduce the redundancy of these spatial information. Its methods 

include discrete cosine transform (DCT)[1], discrete wavelet transform, and mode 

prediction commonly used in Intra coding of video coding for energy concentration. Take 

DCT as an example, as shown in the Fig.1, the left image is transformed by DCT, the 

coefficient matrix shown in the middle. The DCT has the important information of the 

image concentrated on a few coefficients of the transformation, as shown in the right 
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spectrogram, mainly concentrated in the upper left corner. Therefore, when doing entropy 

coding, the bitrate can be greatly reduced, which is conducive to image compression. 

1.1.2 Quantization 

   After transforming the image, quantization can store floating point numbers with less 

space with losing a little of the accuracy. Different from lossless compression, quantization 

is the source of the loss of image accuracy in the compression algorithm. Quantization 

transforms the transformed image from floating-point numbers to fixed-point numbers, to 

be used as input for subsequent entropy coding. Common quantization methods include 

scalar quantization and vector quantization. Scalar quantization is a very common 

quantization method. Corresponding to vector quantization, it deals with one-dimensional 

values. By dividing the limited range of the one-dimensional space into several sub-

intervals according to certain rules, scalar quantization represents each value to be 

quantified by the representative value of its sub-interval, thereby reducing the number of 

bits occupied by data. 

1.1.3 Entropy Coding 

   In the quantized original uncompressed data, each value is represented by a fixed-length 

bit, and the occurrence probability of different values in the actual value is not completely 

uniform. Characters with a high probability of occurrence are allocated a binary code with 

a short character length, and characters with a low probability of occurrence are allocated 

a binary code with a long character length, so that the average encoding length of a 

character is the shortest. This can further improve the storage efficiency of the data while 

preserving entropy (without losing any information). This method of encoding according 

to the probability distribution characteristics of the median value of the data is called 

entropy coding. Entropy coding is lossless coding. 

Fig. 1: Discrete cosine transform and energy distribution 
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   Commonly used entropy coding methods include Huffman coding[3], arithmetic 

coding[5], and CAVLC[6] and CABAC[13] used in video coding. Taking the Huffman 

coding as an example, Huffman coding is a form of statistical coding that attempts to reduce 

the bits number, which required to represent a symbol string. Huffman tree, also known as 

optimal binary tree, is a binary tree with the shortest weighted length of path. The so-called 

weighted path length of a tree is the weight of all leaf nodes in the tree multiplied by the 

path length to the root node (if the root node is 0 layers, the length of path from the leaf 

node to the root node is the number of layers of the node). 

   Huffman encoding is a very effective encoding method widely used for data file 

compression. Its compression ratio is usually between 20% and 90%. Suppose there is a 

file containing 100,000 characters, and each character appears differently, as shown in the 

Table 1. 

   There are multiple ways to represent the information in the file. If you use the 0,1 code 

to represent characters, that is, each character is represented by a unique 0,1 string. If the 

fixed-length encoding is used, 3 characters are required to represent one character, and the 

entire file encoding is required to be 240,000 bits. If the variable-length encoding is used 

as shown in Fig. 2, calculate the average code length by the following formula: 

𝐿𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = ∑𝑝𝑖𝐿𝑖

𝑁

𝑖=0

(1) 

Table 1: Huffman code table 
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where, L is the code length. We can get that (40 × 1 + 10 × 3 + 9 × 3 + 13 ×  3 +

 6 ×  4 +  2 ×  4)  × 1000 =  168,000 bits. The variable length code is better than the 

fixed length code scheme, and the total code length is reduced by about 30%. 

1.2 Evaluation of Image Compression Quality 

   There are two important indicators for evaluating the quality of a compression algorithm, 

which are bit per pixel, and reconstruction quality. The bit rate represents the size of the 

storage space occupied by the compressed image. The formula is as follows, 

𝑏𝑝𝑝 =  
𝐵𝑖𝑡𝑟𝑎𝑡𝑒𝑆𝑖𝑧𝑒

𝐼𝑚𝑎𝑔𝑒𝐻𝑒𝑖𝑔ℎ𝑡 × 𝐼𝑚𝑎𝑔𝑒𝑊𝑖𝑑𝑡ℎ
(2) 

   Image compression technology has been commonly utilized in various fields, and the 

evaluation of images quality has become a basic subject. Because image information has 

incomparable advantages over other information, reasonable processing of image 

information has become an indispensable means in various fields. For example, medical 

images have very high requirements for image quality because they will affect the 

judgment of the disease. Systems such as teleconferencing and video playback are affected 

by unfavorable factors such as transmission errors and network delays and need to 

dynamically adjust the image quality to adapt to changing network conditions; for 

computer vision, different tasks have very different tolerances for image distortion. On the 

Fig. 2: Huffman tree 
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other hand, the focus of the machine on the image and the human eyes are also very 

different. Therefore, reasonable image quality evaluation indexes have important 

application value. 

1.2.1 PSNR 

   Peak signal to noise ratio (PSNR)[8], a full reference image quality evaluation indicator. 

The formula of PSNR as follow, 

𝑀𝑆𝐸 =  
1

𝐻 × 𝑊
∑∑(𝑋(𝑖, 𝑗) − 𝑌(𝑖, 𝑗))

2
𝑊

𝑗=1

𝐻

𝑖=1

   (3) 

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔10 (
(2𝑛 − 1)2

𝑀𝑆𝐸
) (4) 

   From the formula that the MSE represents the mean square error of the input image X 

and the reference image Y. In addition, H and W are the height and width of the image, 

respectively; n is the number of bits per pixel, it always set as 8, that is, the number of pixel 

gray levels is 256. The unit of PSNR is dB. The smaller the MSE, the larger the PSNR, 

which means that the closer the reconstructed image is to the original image, the smaller 

the image loss. PSNR is the earliest objective evaluation index of images quality. From the 

research results and experiments in recent years, it can be found that the PSNR cannot fully 

express the subjective visual perception of the human eyes, and sometimes the subjective 

quality of the reconstructed image with a high PSNR value is worse than the low PSNR 

value. Because it is not considered that the human eyes are more sensitive to the contrast 

difference with lower spatial frequency, and to the contrast difference than the chroma. 

Besides, the human eye's perception of a region will be affected by its surrounding 

neighboring areas. Therefore, the evaluation results often do not agree with the subjective 

feelings of people. Due to the simple calculation of the PSNR and the direct evaluation 

method, it is still an objective image quality evaluation index widely used at present. 

1.2.2 SSIM 

   Structural similarity index (SSIM)[9] is a measure of the similarity of two images. The 

difference from traditional image quality indicators (such as MSE or PSNR) is that these 

original methods are estimating absolute errors, while SSIM is a perception-based model 
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that treats image degradation as a perceived change. At the same time, important visual 

phenomena such as brightness masking and contrast masking are also integrated. The idea 

of structural information comes from the strong interdependence between pixels, especially 

when they are close in space, these dependencies includes important information about the 

structure in the visual scene. Brightness occlusion is a phenomenon in which image 

distortion is more difficult to find in bright areas. Contrast occlusion is a phenomenon in 

which distortion becomes less noticeable when there is a significant texture or the like in 

an image. 

   As a concrete realization of this kind of theory, in SSIM, the mean value is used to 

estimate the brightness, the standard deviation is used to estimate the contrast, the 

covariance value is used to estimate the structural similarity, and the three are combined 

into the final value of the SSIM, which shown as follow, 

𝑙(𝑋, 𝑌) =  
2𝜇𝑋𝜇𝑌 + 𝐶1

𝜇𝑋
2 + 𝜇𝑌

2 + 𝐶1

(5) 

𝑐(𝑋, 𝑌) =  
2𝜎𝑋𝜎𝑌 + 𝐶2

𝜎𝑋
2 + 𝜎𝑌

2 + 𝐶2

(6) 

𝑠(𝑋, 𝑌) =
𝜎𝑋𝑌 + 𝐶3

𝜎𝑋𝜎𝑌 + 𝐶3

(7) 

where, 𝜇𝑋 , 𝜇𝑌 are represent the means of X and Y, respectively. 𝜎𝑋 , 𝜎𝑌 are represent the 

variance of X and Y, respectively. 𝜎𝑋𝜎𝑌 is the covariance. 𝐶1, 𝐶2, 𝐶3 are the constant, and 

to avoid the denominator being zero, set 𝐶1 = (𝑘1 ∗ 𝐿)2 , 𝐶2 = (𝑘2 ∗ 𝐿)2 , 𝐶3 = 𝐶2 2⁄ , 

where default the 𝑘1 = 0.01, 𝑘2 = 0.03, 𝐿 = 255, so the SSIM can be shown as follow, 

𝑆𝑆𝐼𝑀(𝑋, 𝑌) = 𝑙(𝑋, 𝑌) ∙ 𝑐(𝑋, 𝑌) ∙ 𝑠(𝑋, 𝑌) (8) 

where, the range of SSIM is [0,1], so larger the value, the smaller the image distortion. 

1.2.3 MS-SSIM 

   MS-SSIM[10] is an improvement on SSIM. MS is the abbreviation of Multi-Scale. It 

performs calculations on multiple scales through multiple stages of down sampling. Many 
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experiments have shown that MS-SSIM is like or better than SSIM in measuring subjective 

quality. The formula of MS-SSIM as follow, 

𝑀𝑆 − 𝑆𝑆𝐼𝑀(𝑋, 𝑌) = [𝑙𝑀(𝑋, 𝑌)]𝛼𝑀 ∙ ∏[𝑐𝑗(𝑋, 𝑌)]
𝛽𝑗

[𝑠𝑗(𝑋, 𝑌)]
𝛾𝑗

𝑀

𝑗=1

 (9) 

where, the scale of the original image is 1, and the highest scale is M. 𝛼𝑀, 𝛽𝑗, 𝛾𝑗 adjust the 

proportion of each part. 

1.3 Main Contribution 

    This thesis main has three contributions which can be listed as follows: 

    First, image compression has become a fundamental research topic. This thesis is to 

study image compression based on deep learning. Recently learned Image compression has 

achieved many great progresses which benefit from fast development of deep learning. 

Currently, convolutional neural networks (CNNs) are widely used in majority of learned 

image compression approaches and achieved great success. However, CNNs are not fit for 

scalable coding and multiple models need to be trained separately to achieve different rates. 

Therefore, we propose a scalable learned image compression architecture based on 

recurrent neural networks (RNNs).  Different from existing RNN-based image 

compression methods, we present an RNN architecture with quantization to make the 

feature maps of RNNs more compressible. Then, we utilize the entropy coding to further 

reduce the redundancy and generate the bitstream.  

    Second, in order to realize the scalable coding, we allocate the bits to multiple layers, by 

adjusting the layer-wise lambda values in Lagrangian multiplier-based rate-distortion 

optimization function. Experimental results demonstrate that our performance can be 

comparable with traditional image coding algorithms and existing RNN-based methods on 

Kodak dataset. Besides, our method is scalable and flexible coding approach, to achieve 

multiple rates using one single model, which is very appealing in practice. 

    Third, in order to further optimize the bitrate, this thesis first tried to adopt RNN-based 

hyperprior to multiple layers.   
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1.4 Outline 

    The rest of this thesis is organized as follows. Chapter 2 discusses the related work of 

image compression. Chapter 3 describes the method we proposed in this thesis. We show 

our experiment results in chapter 4, and in this chapter, we also analysis our experiment 

results. In the chapter 5, we discuss our research and summarize the thesis and propose the 

future work. In the chapter 6, we do the conclusions of our research work.  
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Chapter 2 

Related Work 

2.1 Traditional Image Compression 

2.1.1 JPEG 

   Joint photographic exports group (JPEG)[1] is a lossy compression standard method 

widely used for images. It is the first international image compression standard. As the 

earliest generation of image compression standards, JPEG is difficult to compare with 

subsequent improved versions in performance, but for various reasons, it is still the most 

widely used image compression algorithm. JPEG has very good reconstruction quality in 

the middle and high bit rate segments, but in the low bit rate part, its quality will quickly 

decline, and obvious block effects will appear. 

   Taking the benchmark JPEG algorithm to compress a 24-bit color image as an example, 

the compression steps are as follows. 

a. Color mode conversion 

    JPEG uses the YCbCr color space, while BMP uses the RGB color space. If you want to 

compress a BMP image, you will first convert the RGB format image to the YCbCr (YUV) 

format. YUV is also a common color-coding method. RGB reflects the perception of color 

by the human eye. YUV highlights the sensitivity of the human eye to brightness. Its 

application areas include television systems and analog video. Among them, Y represents 

the luminance channel, and U and V represent the chroma and saturation respectively. If 

the U and V channels are ignored, the separate Y channel can also be displayed on a black 

and white TV, so that the black and white TV and the color TV are compatible in signal. 

When using YUV format to save images, human visual perception characteristics can be 

used to reduce the chroma channel bandwidth moderately. 

   The conversion formula[1] between RGB and YCbCris as follows, 

𝑌 = 0.299 ∗ R + 0.587 ∗ G + 0.114 ∗ B (10) 
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𝐶𝑏 = −0.1687 ∗ R − 0.3313 ∗ G + 0.5 ∗ B + 128 (11) 

𝐶𝑟 = 0.5 ∗ R − 0.4187 ∗ G − 0.0813 ∗ B + 128  (12) 

b. DC level offset 

    The effect of DC offset is to make the dynamic range of the input image approximately 

concentrated around 0. Taking 8bits data as an example, the original range of the data is [0, 

255]. In order to reduce the absolute value fluctuation, first shift the value (minus 128) to 

[-128, 127]. 

c. Sampling  

    Studies have shown that the human eyes are much more sensitive to brightness 

transformations than to color transformations. Therefore, we can think that the Y 

component is more important than the UV component, so we can down-sample the UV 

channel to reduce the data storage as much as possible without the loss of visual quality. 

YUV has many different sampling methods, the common ones include YUV4: 4: 4, YUV4: 

2: 2 and YUV4: 2: 0[4]. The Fig.3 shows the different sampling methods, 

where, the cross represents the Y component, the circle represents the UV component, and 

the amount of sampled data decreases from left to right. YUV4: 2: 0 is very widely used in 

video and image encoding tasks. Although this sampling method loses a certain degree of 

accuracy, it reduces the amount of data stored in a range that the human eye does not 

perceive. 

d. Block 

Fig. 3: From left to right are YUV4: 4: 4, YUV4: 2: 2 and YUV4: 2: 0, respectively 
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    Because DCT processes 8x8 sub-blocks, the original image data must be divided into 

blocks before performing DCT. Because the three components of each point in the original 

image appear alternately, the three components must first be separated and stored in three 

tables. After reading 8x8 sub-blocks from left to right and from top to bottom, and storing 

them in a table of length 64, DCT can be performed. 

    JPEG is processed every 8x8 points as a unit. So, if the length and width of the original 

image is not a multiple of 8, you need to fill in multiples of 8 first so that it can be processed 

block by block. After the original image data is divided into a matrix of 8 * 8 data units, 

each value must be subtracted from 128 and then brought into the DCT transformation 

formula one by one to achieve the purpose of DCT. The data value of the image must be 

subtracted from 128 because the numerical range accepted by the DCT formula is between 

-128 and 127. 

e. DCT  

    Discrete cosine transform (DCT) is a transform coding method commonly used in bit 

rate compression. It has the function of separating high and low frequency information, so 

after the image block passes DCT, the DC component and low frequency signal will be 

concentrated in the upper left corner of the block. The higher frequency information will 

be in the lower right corner. Based on this feature, you can design corresponding 

quantization and coding strategies to further save the bit rate. After dividing the image into 

multiple 8x8 matrices, and then performing DCT on each pixel block, the image is 

transformed into a matrix of frequency coefficients composed of floating-point numbers. 

    The formula for forward DCT is as follows, 

𝐹𝑢,𝑣 =
1

4
𝛼(𝑢)𝛼(𝑣)∑ ∑ 𝑔𝑥,𝑦 cos [

(2𝑥 + 1)𝑢𝜋

16
] cos [

(2𝑦 + 1)𝑣𝜋

16
]

7

𝑦=0

7

𝑥=0

(13) 

where, 0 ≤ 𝑢, 𝑣 < 8, 𝑔𝑥,𝑦 is the pixel block. 

𝛼(𝑢), 𝛼(𝑣) = {

1

√2
, 𝑖𝑓 𝑢, 𝑣 = 0

1, 𝑒𝑙𝑠𝑒

(14) 
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   In decoding, the inverse discrete cosine transform (IDCT) is used to restore the frequency 

domain information to pixel space, 

𝑓𝑥,𝑦 =
1

4
∑ ∑ 𝛼(𝑢)𝛼(𝑣)𝐹𝑢,𝑣 cos [

(2𝑥 + 1)𝑢𝜋

16
] cos [

(2𝑦 + 1)𝑣𝜋

16
]

7

𝑦=0

7

𝑥=0

(15) 

f. Quantization  

   DCT has realized the separation of high and low frequency signals. At this time, the large 

value in the 8x8 block is concentrated in the upper left corner. JPEG determines the 

quantization level at different positions through the quality factor. The lower the value of 

the quality factor (1 is the minimum value), the higher the image reconstruction quality and 

the lower the compression ratio. Conversely, the higher the value, the worse the image 

reconstruction quality, but the higher the compression ratio. 

   ISO specifically developed a standard quantization table for JPEG, as shown in the 

following table. These two watches are designed based on psychological vision 

experiments performed by Lohscheller. These quantization tables can have relatively good 

results on most natural images with 8bits accuracy. The quantization table is the key to 

controlling the JPEG compression ratio. This step removes some high frequency amounts 

and loses a lot of detailed information and cannot be applied to all images. 

   Standard brightness quantization table,  

𝑄𝑌 = 

[
 
 
 
 
 
 
 
16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 99
24 35 55 64 81 104 113 99
49 64 78 87 103 121 120 99
72 92 95 98 112 100 103 99]

 
 
 
 
 
 
 

(16) 

   Standard color quantization table, 
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𝑄𝐶 =

[
 
 
 
 
 
 
 
17 18 24 47 99 99 99 99
18 21 26 66 99 99 99 99
24 26 56 99 99 99 99 99
47 66 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99]

 
 
 
 
 
 
 

(17) 

g. Entropy coding 

   First, zig-zag[11] ordering is used for encoding, shown in Fig.4. This is because in the 

8x8 matrix, many values are concentrated in the upper left corner, and many zero values 

exist in the lower right corner. The zigzag sequence can maximize the function of run-

length encoding. Second, run-length encoding (RLE) is used to encode the AC coefficient. 

The zero-valued RLE is for consecutive zero values. Instead of repeatedly storing each 

zero, it records the number of consecutive occurrences of zero. To achieve the purpose of 

reducing the amount of data. Third, the differential pulse code modulation (DPCM) is used 

to encode the direct current coefficient (DC). Finally, entropy coding is used for coding. 

Huffman coding or arithmetic coding is allowed in JPEG. 

2.1.2 JPEG2000 

   JPEG2000 supports progressive encoding, transmission, and lossy and lossless 

compression[2]. Compared with JPEG, JPEG2000 has obvious advantages in the case of 

high compression rate. At higher compression ratios (more than 100 times), JPEG2000 can 

still maintain a good reconstruction quality, but JPEG has been severely distorted and 

Fig. 4: Zig-zag ordering[11] 
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cannot be used. In the case of low compression rate (less than 10 times), the traditional 

JPEG image quality may be better than JPEG2000. The distortion of JPEG2000 is mainly 

fuzzy distortion, which is mainly caused by the loss of high-frequency information. Of 

course, this problem also exists in the traditional JPEG standard. JPEG2000 can achieve 

progressive transmission, which is an extremely important feature of JPEG2000. This is 

what we often call the "fade-in" feature of GIF-format images. It first transfers the outline 

of the image, then gradually transfers the data, and continuously improves the image 

quality, so that the image is displayed from hazy to clear, instead of slowly displaying from 

top to bottom like the current JPEG. So, in general, JPEG2000 is a new compression 

method that is much better than traditional JPEG. Under the same reconstruction quality, 

JPEG2000 can usually save about 30% of storage space. 

   The core content of JPEG2000 has the following points, 

a. Discrete wavelet transform 

   JEPG2000 replaces the traditional DCT transform of JPEG with discrete wavelet 

transform (DWT), which can further reduce the correlation between data. Compared with 

the DCT used by JPEG, DWT has good locality, can use different spatial frequency 

resolutions for different regions in different types of images, so it is possible to achieve 

better compression ratios, and it can also achieve lossless compression. For example, one-

dimensional DWT is a series of high-pass and low-pass filtering on the source signal and 

reduces the data sampling frequency to half of the original after time conversion to ensure 

that the coefficients obtained after each wavelet transform are the same as the number of 

source signals. Each time the low-pass filtered output saves the low-frequency information 

of the source information. It is a reproduction of the source signal at a lower resolution, 

which concentrates most of the energy in the source signal. The high-pass filtered output 

saves the source signal High-frequency information, such as boundaries and materials, 

contains very little energy. A low pass filtered signal still has a lot of correlation. To 

improve the compression performance, it still needs to be filtered again until the correlation 

between the signals reaches a negligible degree. Because the high pass filtered signal has 

very small energy, it is often not cost effective to filter it, so it is generally no longer filtered.  

This filtering method is called dyadic decomposition. 
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b. EBCOT: 

   Embedded block coding with optimized truncation (EBCOT) is a coding algorithm 

published by David Taubman in 1998[12]. EBCOT is the core of the JPEG2000 standard. 

It is an embedded bit-layer coding method of wavelet coefficients. It mainly includes 

embedded bit-layer coding, optimized truncated bit stream ordering, and Multiple 

Quantization (MQ) arithmetic entropy coding. MQ coding is an adaptive binary arithmetic 

coding. It can be divided into two parts, tier1 and tier2. 

   The first is Tier, which divides each sub band into independent coding blocks and 

decomposes the wavelet coefficients in each block into a bit plane. Encoding is coded on 

a scan-by-scan basis from the non-zero most significant bit plane (MSB plane) to the lowest 

bit plane (LSB plane) of the coded block. Then, each coded block is subjected to embedded 

code scanning independently. Three scans are performed on each bit plane, and the bits on 

the bit plane are divided into three different coding channels according to certain rules. 

Next, the results of the three scanning processes are sequentially subjected to conditional 

encoding of the bit plane. The encoded bitstream and corresponding context information 

generated after the conditional encoding are sent to an MQ arithmetic encoder for encoding 

to obtain an embedded bitstream. 

   The second is Tier2. The output of Tier1 is a series of encoded channels. In the case of 

lossy encoding, you can weigh the bit rate and reconstruction quality according to the 

output code rate requirements. By combining the embedded code streams of each encoding 

block, find the most optimal truncation point. According to this truncation point, only the 

most important coding channels in the code stream are retained, and other channels are 

discarded. This is another major source of information loss for JPEG2000 beyond 

quantization. A series of encoded channel information that is finally retained will be packed 

and then output into a JPEG2000 code stream. 

2.1.3 BPG 

   Better Portable Graphics (BPG) is a new image format. The main features of BPG are 

that it is based on the HEVC video compression standard, has a higher compression rate 

under the same recovery quality, and supports lossless compression. Since BPG is based 
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on the HEVC standard, the HEVC is the best performing image compression algorithm, 

currently. 

   HEVC uses Context-based Adaptive Binary Arithmetic Coding (CABAC)[13] as the 

lossless entropy coding module. The specific implementation of CABAC is introduced into 

four parts as follow, the CABAC flow diagram is shown in Fig.5. 

a. Binarization 

   CABAC uses binary arithmetic coding, which means that only two digits 1 or 0 can be 

encoded. A non-binary numeric symbol, such as a conversion coefficient, is binarized or 

converted into a binary codeword before arithmetic coding. This binary codeword is further 

encoded by an arithmetic encoder before transmission. 

b. Context model selection 

   The context model is a probability model. This model is a model selected based on the 

statistics of the most recently encoded data symbol. This model holds the probability that 

each bin is 1 or 0. 

c. Arithmetic coding 

   Arithmetic coding is a lossless data compression method and an entropy coding method. 

Other entropy coding methods usually divide the input message into symbols and then 

encode each symbol. Different from other entropy coding methods, the arithmetic coding 

Fig. 5: Context-based Adaptive Binary Arithmetic Coding [13] 
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directly encodes the entire input message into a number. Here The arithmetic encoder 

encodes each bin according to the selected probability model. 

d. Probability update 

The context model is updated based on the actual encoding value. For example, if the value 

of bin is 1, the frequency count of 1 is incremented. 

Table 2: Binarization table 

   Before CABAC performs context modeling and arithmetic coding, it needs to convert 

the data to be coded into a binary code stream that meets the requirements of binary 

arithmetic coding according to certain rules. This process is called binarization. Taking the 

simplest unary code as an example, for a non-binary unsigned integer value symbol n, a 

unary code can be composed of n ones and a trailing 0, as shown in the table below. For 

example, the input un-coded value is 4, and the result of binarizing the unary code is 11110. 

2.2 Deep Learning for Image Compression 

2.2.1 Convolutional Neural Network 

a. Autoencoder 

    The Autoencoder[14] framework contains two major modules: the encoding and 

decoding process. The procedure of autoencoder shown in Fig.6. The input sample x is 

mapped to the feature space z through encode, which is the encoding process; then the 

abstract feature z is mapped back to the original space through decode to obtain the 

reconstructed sample 𝑥̂ , which is the decoding process. The optimization goal is to 

Value Binarization 

0 0     

1 1 0    

2 1 1 0   

3 1 1 1 0  

4 1 1 1 1 0 
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optimize the encoder and decoder at the same time by minimizing the reconstruction error, 

thereby learning to obtain the abstract feature representation z for the sample input x. 

   Autoencoder does not need to use sample labels in the optimization process. Essentially, 

the input of the sample is used as the input and output of the neural network at the same 

time. By minimizing the reconstruction error, the abstract feature representation z of the 

sample can be learned. This unsupervised optimization method greatly improves the 

generality of the model. 

   For the Autoencoder model based on neural network, the encoder part compresses the 

data by reducing the number of neurons layer by layer, and the decoder part increases the 

number of neurons layer by layer based on the abstract representation of the data, and 

finally realizes the reconstruction of the input samples. 

2.2.2 Recurrent Neural Network 

   The Fig.7 shows the recurrent neural network (RNN) structure[15]. After expansion, a 

sequence structure will be obtained. The previous output will be used as the next input (that 

is, the previous output will affect the subsequent input). This chain-like feature reveals that 

the RNN is essentially related to sequences, so this sequence is very suitable for processing 

speech, text, and so on. The key point of RNN is the ability to connect previous information 

to the current task, such as inferring the meaning of the current sentence through the 

previous text. However, when the distance between the relevant information and the 

Fig. 6: Image compression progressing of autoencoder 
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current sentence is too large, it will be difficult for the RNN to learn long-distance 

information. Therefore, the following RNN network structure is derived. 

a. LSTM 

   Long short-term memory (LSTM)[16] is a special type of RNN, the architecture of 

LSTM is shown in Fig.8. Through exquisite design, the problem of gradient disappearance 

and gradient explosion during long sequence training can be solved, that is, the problem of 

information loss caused by long distance transmission is solved. 

   The core of LSTM is the cell state, that is, the horizontal line running from left to right 

above the LSTM cell in the figure. It is like a conveyor belt, passing information from the 

previous unit to the next unit, and there is only a small linear interaction with other parts. 

LSTM uses gate to control discard or increase information, to realize the function of 

forgetting or remembering. A gate is a structure that allows information to pass selectively 

and consists of a sigmoid function and a dot multiplication operation. The output value of 

Fig. 7: Recurrent neural network architecture 

Fig. 8: The LSTM architecture of three units 
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the sigmoid function is in the interval [0,1], where 0 means completely discarded and 1 

means completely passed. An LSTM unit has three gates, the forget gate, the input gate, 

and the output gate, respectively. 

   Forget gate: The forget gate is a sigmoid function where the output ℎ𝑡−1 of the previous 

unit and the input 𝑥𝑡 of this unit are inputs. Generate a value in [0,1] for each term in 𝐶𝑡−1, 

controlling the degree to which the last cell state is forgotten. 

𝑓𝑡 =  𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡]  + 𝑏𝑓) (18) 

Input gate: The input gate works with a 𝑡𝑎𝑛ℎ function to control what new information is 

added. The tanh function generates a new candidate vector 𝐶𝑡̃, and the input gate generates 

a value in [0,1] for each of 𝐶𝑡̃, which controls how much new information is added. At this 

point, we have the output 𝑓𝑡  of the forget gate, which is used to control the degree of 

forgetting of the previous unit. There is also an output 𝑖𝑡 of the input gate, which is used to 

control how much new information is added, so that the unit status of the memory unit can 

be updated. 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡̃ (19) 

𝑖𝑡 = 𝜎(𝑊𝑡 ∙ [ℎ𝑡−1, 𝑥𝑡]  + 𝑏𝑖) (20) 

𝐶𝑡̃ = tanh(WC ∙ [ht−1, xt]  + bC) (21) 

Output gate: The output gate is used to control how much the current unit state is filtered 

out. The unit state is activated first, and the output gate generates a value within [0,1] for 

each of them, controlling the degree to which the unit state is filtered. 

𝑜𝑡 =  𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡]  + 𝑏𝑜) (22) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡) (23) 

b. Produce progressive codes 
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   G.Toderici[19] firstly proposed a LSTM-based image compression architecture. The 

method that starts to use LSTM and other methods to cyclically output code streams is 

called produce progressive codes. This method is the same as JPEG2000, which can make 

the reconstructed image quality better and better with the continuous output of code streams. 

as shown in Fig.9. 

c. Priming 

   At the first iteration, the hidden state of each GRU layer is initialized to zero. The 

study[20] found that during the first few iterations, the improvement in image quality was 

significant. Because the encoder and decoder are stacked with many GRU network layer 

sequences, the encoder's binarizer and decoder reconstruction require several iterations to 

observe the improvement of the hidden state of the first layer GRU. Therefore, the research 

uses hidden-state priming technology to generate a better initial hidden state for each GRU 

layer. 

   The hidden state priming, or "k-priming," alone increases the loop depth of the first 

iteration of the encoder and decoder networks, the network architecture shown in Fig 10. 

In order to avoid occupying additional bandwidth, these steps are run separately, and the 

Fig. 9: LSTM-based produce progressive architecture [19] 
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extra bits generated by the encoder are not added to the actual code stream. For the encoder, 

this means processing the original image multiple times, discarding the generated bits, but 

saving changes in the hidden state of the loop unit of the encoder. For the decoder, this 

means generating decoded images multiple times, but only retaining the final image 

reconstruction.  

Fig. 10: The loop depth of the first iteration of encoder-decoder architecture [20] 
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Chapter 3 

Proposed Method 

3.1 Overview 

   In this paper, we propose a scalable learned image compression architecture based on 

recurrent neural networks (RNN). First, we present an RNN architecture with quantization 

to make the feature maps of RNNs more compressible and we utilize the entropy coding to 

further reduce the redundancy and generate the bitstream. Second, in order to realize the 

scalable coding, we allocate the bits to multiple layers, by adjusting the layer-wise lambda 

values in Lagrangian multiplier-based rate-distortion optimization function. Third, we add 

an RNN-based hyperprior to effectively capture spatial dependencies in potential 

representations, and further optimize the bit rate.  

3.2 Proposed RNN-based Architecture  

3.2.1 RNN-based architecture with quantization and entropy coding 

   When using deep learning to handle image compression and reconstruction, a problem 

often encountered is that the main battlefield of deep learning has been the field of 

computer vision for a long time, so a lot of design work is aimed at some tasks such as 

recognition and detection. When we want to introduce some structures and designs that 

have been proven to be very effective in the field of computer vision into image 

compression, they may not produce good results. At this time, we must adjust the structure 

of the original network or layer. 

   The basic structure still inherits the autoencoder structure mentioned above. The 

characteristics of this structure determine that it mainly uses spatial correlation and 

removes redundant information in space through multiple down sampling. In addition, this 

paper is based on RNNs, so we use the network structure pattern of produce progressive 

codes for design. 



31 
 

   The single layer of RNN-based image compression architecture with quantization and 

entropy coder shown in Fig.11. The encoder has two CNNs, three RNNs, a quantization 

layer and an entropy coder, which we utilized the arithmetic encoder. The input size of the 

network is 𝐻 × 𝑊 × 3. In general, the forward encoder network uses the first 3 × 3 CNN 

layer and three 3 × 3 RNNs layers for down sampling. Down sampling the image size as 

1

2
, 

1

4
, 

1

8
, 

1

16
 , respectively. The decoder has two CNNs, four RNNs, a de-quantization layer 

and an entropy decoder. Besides, there are also four depth-to-space behind each RNN for 

up sampling. The architecture of the decoder is a symmetrical structure of the encoder used 

to reconstruct the signal from the compressed feature maps. 

   The multiplayer of RNN-based architecture shown in Fig.12. For the first layer, the input 

is the RGB image passed into encoder-decoder architecture and generate output. The input 

minus the output get the residual1, then set the residual1 as the input of second layer and 

generate a residual output named resudual1’. Residual1 minus the residual1’ get the 

residual2, then set the residual2 as the input of third layer, and so on. From the second layer, 

the input are all the residuals, and generate the residuals as output, so that the final 

reconstructed image is 𝑜𝑢𝑡𝑝𝑢𝑡1 + 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙1’ + 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙2’ + ⋯+ 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑛’. For the 

RNNs have the memory function, so the RNNs of each layer share the weight to each other. 

Fig. 11: The single layer of RNN-based image compression architecture with 

quantization and entropy coding 
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3.2.2 RNN-based architecture with Hyperpriors 

   For the further optimize the bit rate and avoid reweighting during training. We add an 

RNN-based hyperprior to further compress the encoded data and generate the output from 

hyper-decoder. The pass the hyper-decoded data into baseline entropy coder, to optimize 

the bitrate. 

Fig. 12: The multiple layers of RNN-based image compression with quantization and 

entropy coding 
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   As shown in the Fig.13, the encoded data pass into two ways, one is the quantization and 

entropy coder layer, and another is the hyperprior network. RNN-based hyperprior 

architecture is designed like the baseline architecture, consists encoder, decoder, 

quantization and entropy coder. The hyper-encoder has two CNNs, two RNNs, a 

quantization and an entropy encoder, the two RNNs are for down sampling. Down 

sampling the feature map size into 
1

2
, 

1

4
. The hyper-decoder has two CNNs, two RNNs, 

Fig. 13: The multiple layers of RNN-based image compression architecture with RNN-

based hyperpriors 
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which is symmetric architecture of hyper-encoder. Besides, there are also two depth-to-

spaces behind each RNN for up sampling. 

3.2 Quantization 

   In conventional image compression coding usually uses a round-based function, and the 

quantized digital value is located at the center of the integer bins, which can be presented 

by the equation as 𝑦̂ =  𝑟𝑜𝑢𝑛𝑑(𝑦), where 𝑦 is the representations generated by encoder, 

and the 𝑦̂ is the quantized data by using round-based quantization. Since the derivative of 

the round-based quantization function itself is almost get 0 everywhere, it is impossible to 

perform effective backpropagation directly into the network. In the works[14] added an 

additive uniform noise instead of quantization. And in the works[21], they directly use the 

sign function as the binarization, 

𝑆𝑖𝑔𝑛(𝑥) = {
−1, 𝑥 < 0

1, 𝑥 ≥ 0
(24) 

   For this method also has some limitation, therefore, in our works, during the process of 

training, adding uniform noise as quantization, that is 𝑦̂ = 𝑦 +  𝜃 , where 𝜃 is random 

uniform noise. Enhance, we use as 𝑦̂ =  𝑟𝑜𝑢𝑛𝑑(𝑦) as the quantization operation in the test 

stage.  

3.3 Rate-distortion Optimization 

   For lossy compression, we want the bit rate to be as small as possible and the 

reconstructed image quality to be as high as possible. The traditional autoencoder 

structure that only constrains the output does not optimize the entropy of the 

intermediate data. There are two methods, one is to maximize the entropy to make the 

reconstruction quality as high as possible, and the other is to minimize the entropy while 

maintaining the reconstruction quality. The two conflict with each other, so it is 

necessary to weigh the image quality loss caused by the bit rate and compression to 

find the optimal result under the balance[22]. Therefore, a more complete loss function 

can be expressed by the following formula, 

𝐿 =  𝜆 ∗ 𝐿𝑑 + 𝐿𝑅 (25) 
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where, the L is the loss, 𝐿𝑑 is distortion that can set as MSE, L1 loss or even MS-SSIM. 

The 𝐿𝑅 is the actual rate. 

   Under the structure of autoencoder, what we want to store is the intermediate data 

generated by the encoder. This data will become the actual bit stream after entropy coding. 

Therefore, by calculating the entropy of the intermediate data, the concentration degree of 

the intermediate data can be approximated, and the calculation formula of the entropy  

3.3.1 Multiplayer without hyperprior 

    In order to realize the scalable coding, we allocate the bits to multiple layers, by adjusting 

the layer-wise lambda values in Lagrangian multiplier-based rate-distortion optimization 

function.  

𝐿 =  ∑(𝜆𝑖 ∗ 𝐿𝑑𝑖  + 𝐿𝑅𝑖)

𝑁

𝑖=1

(26) 

where, we set different λ values in each layer. As for the experiment, we train four layers, 

and each layer set λ as [0.001, 0.002, 0.004, 0.008] 

3.3.2 Multiplayer with hyperprior 

   For the RNN-based architecture with hyperprior, not only generate the bitstream from 

encoder, also generate the bitstream from hyper-encoder. 

𝐿 = ∑(𝜆𝑖 ∗ 𝐿𝑑𝑖  + (𝐿𝑦𝑖  +  𝐿𝑧𝑖))

𝑁

𝑖=1

(27) 

where,  𝐿𝑑𝑖 is the distortion of each layer, 𝐿𝑦𝑖 is the bitrate of encoded, 𝐿𝑧𝑖 is the bitrate of 

hyper-encoded. 
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Chapter 4 

Experiments and Results 

4.1 Overview 

   In this chapter, we show the comparison of our work and traditional image compression 

algorithm and existing deep learning-based image compress method. We show the design 

of our experiments and visualization of reconstructed images.  

4.2 Experiment Setting 

4.2.1 Dataset 

   The dataset includes the kodak dataset[17] containing 24 uncompressed images, and the 

MS-COCO dataset[18] contains 1.18 million images, the sample of MS-COO dataset 

shown in the MS-COCO dataset was cropped into 256x256 blocks for training. Kodak's 

uncompressed 24 images were used for testing. 

Fig. 14: MS-COCO dataset samples 
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4.2.2 Training details 

   With Adam Optimizer[7], the initial learning rate is set to 0.0001. For RD optimization, 

set the rate loss to 0 in the initial stage, and after the network has fully converged, gradually 

increase the weight of the rate loss, so that the distribution of intermediate data is gradually 

concentrated. This can prevent the network from quickly converging to a local optimum 

with a low entropy value and cannot fully learn the characteristics of the image distribution. 

The batch size is 8 and the training step is 400,000. 

4.3 Experiment Results 

   Our work compare with the traditional image compression algorithm such as JPEG, 

JPEG2000, BPG, and the existing deep learning-based image compression methods, which 

are Google’s work[21] and Balle’s work[22]. The results is based on average of Kodak 

dataset. 

4.3.1 RD curves under single layer without hyperprior 

   First, we present an RNN-based image compression with quantization and entropy 

coding, different from the Google’s work that RNN-based image compression with 

binarization. To check whether our work can improv the performance or not, we first do 

the comparison under the baseline (single layer). And the Balle’s work also under the 

baseline. The Fig.15 and Fig.16 show the comparison of PSNR and MS-SSIM, respectively. 

   The red point is our work which is under the baseline without hyperprior architecture. 

The 256_512 means the hidden values of RNNs. In the encoder, the first CNN hidden value 

set as 128, the RNNs hidden values set as [256, 512, 512]. In the decoder, RNNs hidden 

values set as [512, 512, 256, 128]. 

   The experimental results demonstrate that our work in baseline can be better than JPEG, 

JPEG2000, and exiting RNN-based image compression method in PSNR. In the MS-SSIM, 

our work can be better than Balle’s work, and approach to the BPG. 

Fig. 15: RD curves of PSNR compared baseline of our work with existing image 

compression methods 
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Fig. 16: RD curves of PSNR compared baseline of our work with existing image 

compression methods 

 

Fig. 17: RD curves of MS-SSIM compared baseline of our work with existing image 

compression methods 
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4.3.2 RD curves under multiple layers without hyperprior 

   For the baseline is performed better than JPEG, JPEG2000, BPG and exiting RNN-based 

image compression method. So, we try to compare the results under the multiple layers. 

For our work in multiple layers is scalable coding, that we allocate the bits to multilayer, 

by setting different lambda values in Lagrangian multilayer-based rate-distortion 

optimization function. As we test the four layers, and each layer, we set the different 𝜆 

values. From the first layer to fourth layer, we set 𝜆1= 0.001, 𝜆2= 0.002, 𝜆3= 0.004, 𝜆4= 

0.008, respectively. The results shown in Fig.17 and Fig.18. 

   The green line is our work. The experimental results demonstrate that our work in four 

layers can be better than JPEG, JPEG2000, and exiting RNN-based image compression 

method, even the fourth layer point is a little bit better than Balle’s work[23] in PSNR. In 

the MS-SSIM, our work can be better than Balle’s work, and approach to the BPG. 

 

Fig. 18: RD curves of PSNR under 4 layers of our work compare with existing image 

compression method 
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4.3.3 RD curves under multiple layers with hyperprior 

   Because the curve of RNN-based image compression without hyperpriors, has a clear 

tendency to keep to the right, in order to avoid reweighting and optimize the bitrate at same 

time, we try to add the hyperprior. For the CNN-based hyperprior cannot fit for scalable 

coding, so we present an RNN-based hyperprior. The experiment results shown in Fig19 

and Fig.20. 

   The green line is our work without hyperprior, and the red line is our work with 

hyperprior. The experimental results demonstrate that our work in four layers can be better 

than JPEG, JPEG2000, and exiting RNN-based image compression method. And add 

hyperprior can improve the performance, even the fourth layer point is approach to the 

Balle’s work with hyperprior in PSNR. In the MS-SSIM, our work with hyperprior can be 

better than the BPG. 

 

 

Fig. 19: RD curves of MS-SSIM under 4 layers of our work compare with existing image 

compression method 
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Fig. 20: RD curves of PSNR comparison of our work with hyperprior and existing image 

compression methods 

Fig. 21: RD curves of MS-SSIM comparison of our work with hyperprior and existing 

image compression methods 

4.4 Visualization of Reconstructed Images 

4.4.1 RNN-based image compression without hyperprior 
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Fig. 23: Comparison of our work without hyperprior and the existing image compression 

methods, under Kodak dataset 4th image 

 

Fig. 22: Comparison of our work without hyperprior and the existing image compression 

methods, under Kodak dataset 7th image 
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Fig. 24: Comparison of our work without hyperprior and the existing image compression 

methods, under Kodak dataset 15th image 

Fig. 25: Comparison of our work without hyperprior of different λ value, each value from 

left to right is 0.001, 0.002, 0.004, 0.008, respectively. 
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Fig. 26: Comparison of our work without hyperprior of different λ value, each value from 

left to right is 0.001, 0.002, 0.004, 0.008, respectively. 

Fig. 27: Comparison of our work without hyperprior of different λ value, each value from 

left to right is 0.001, 0.002, 0.004, 0.008, respectively. 
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4.4.2 RNN-based image compression with hyperprior 

Fig. 28: Comparison of our work with hyperprior and the existing image compression 

methods, under Kodak dataset 4th image. 

Fig. 29: Comparison of our work with hyperprior and the existing image compression 

methods, under Kodak dataset 7th image. 
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Fig. 30: Comparison of our work with hyperprior and the existing image compression 

methods, under Kodak dataset 15th image. 

Fig. 31 Comparison of our work with hyperprior of different λ value, each value from left 

to right is 0.001, 0.002, 0.004, 0.008, respectively. 
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Fig. 32 Comparison of our work with hyperprior of different λ value, each value from left 

to right is 0.001, 0.002, 0.004, 0.008, respectively. 

Fig. 33 Comparison of our work with hyperprior of different λ value, each value from left 

to right is 0.001, 0.002, 0.004, 0.008, respectively. 

  



48 
 

Chapter 5 

Discussion 

5.1 Discussion of RNN Performance 

   We do some discussions of RNN architecture. For different RNN hidden value can make 

different results. We set the encoder RNN hidden value as [64, 128, 128], and [256, 512, 

512], the decoder is the symmetric set, respectively. All the work based on the RNN-based 

image compression without hyperprior. The results shown in Fig.33 and Fig.34. 

Experiment results demonstrate that the RNN hidden value of [256, 512, 512] can be better 

than the hidden value of [64, 128, 128] both in PSNR and MS-SSIM. This is why we are 

using more high RNN hidden value to do all above work. 

Fig. 34: RD curves of PSNR of our works compare with the existing image compression 

method. And our works include two different RNN hidden values-based image 

compression without hyperprior. 
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Fig. 35: RD curves of MS-SSIM of our works compare with the existing image 

compression method. And our works include two different RNN hidden values-based 

image compression without hyperprior. 

5.2 Future Work 

   Based on this work, two schemes can be tried in the future. First is to change the RNN 

architecture, for currently we utilize LSTM architecture for image compression. In the 

future, we can utilize GRU[24] architecture for image compression. As we introduced in 

chapter 2, the LSTM has three gates to do the computation while GRU is the simplification 

of LSTM, which only has two gates for computation. Can reduce the amount of calculation 

and increase the calculation speed and can improve the accuracy based on GRU. Second, 

we will improve the loss function. We use the rate distortion optimization for optimize loss, 

and we utilize the MSE for distortion part, in the future, we will try to utilize MS-SSIM as 

the distortion. 
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Chapter 6 

Conclusion 

   This paper first introduces the basic concepts of image compression, and then introduces 

the basic steps and principles of image compression including transformation, quantization, 

and entropy coding. Then it summarizes a variety of existing traditional image compression 

methods, including JPEG, JPEG2000, and BPG, and analyzes and introduces the current 

learning-based image compression methods. 

   In this paper, first we present an RNN architecture with quantization to make the feature 

maps of RNNs more compressible. Then, we utilize the entropy coding to further reduce 

the redundancy and generate bitstream. Then we allocate the bits to multilayer, by setting 

different lambda values in Lagrangian multilayer-based rate-distortion optimization 

function. Experimental results demonstrate that better than JPEG2000. Finally, we present 

an RNN-based hyperprior to optimize bitrate, and change RNN hidden value larger, 

experimental results demonstrate that adding hyperprior architecture can improve the final 

performance, and change RNN hidden value larger, the performance can be improved.  
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